Guan A, Wang S, Qiu C, et al. The role of gamma oscillations in central nervous system diseases: mechanism and treatment. Front Cell Neurosci, 2022, 16: 962957
Widge A S, Miller E K. Targeting cognition and networks through neural oscillations: next-generation clinical brain stimulation. JAMA Psychiatry, 2019, 76(7): 671-672
Sreeraj V S, Shivakumar V, Sowmya S, et al. Online theta frequency transcranial alternating current stimulation for cognitive remediation in schizophrenia: case report and review of literature. J ECT, 2019, 35(2): 139-143
Henao D, Navarrete M, Valderrama M, et al. Entrainment and synchronization of brain oscillations to auditory stimulations. Neurosci Res, 2020, 156: 271-278
Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng, 2007, 9(1): 527-565
Haller N, Hasan A, Padberg F, et al. Gamma transcranial alternating current stimulation in patients with negative symptoms in schizophrenia: a case series. Neurophysiol Clin, 2020, 50(4): 301-304
Von Conta J, Kasten F H, Schellhorn K, et al. Benchmarking the effects of transcranial temporal interference stimulation (tTIS) in humans. Cortex, 2022, 154: 299-310
Lee J, Ryu S, Kim H, et al. 40 Hz acoustic stimulation decreases amyloid beta and modulates brain rhythms in a mouse model of Alzheimers disease. bioRxiv, 2018. doi: 10.1101/390302
Iaccarino H F, Singer A C, Martorell A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540(7632): 230-235
Martorell A J, Paulson A L, Suk H J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell, 2019, 177(2): 256-271.e222
Adaikkan C, Middleton S J, Marco A, et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron, 2019, 102(5): 929-943.e928
Calderone D J, Lakatos P, Butler P D, et al. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn Sci, 2014, 18(6): 300-309
Hanslmayr S, Axmacher N, Inman C S. Modulating human memory via entrainment of brain oscillations. Trends Neurosci, 2019, 42(7): 485-499
Elyamany O, Leicht G, Herrmann C S, et al. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psy Clin Neurosci, 2021, 271(1): 135-156
Adaikkan C, Tsai L H. Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci, 2020, 43(1): 24-41
Schutter D J L G. Syncing your brain: electric currents to enhance cognition. Trends Cogn Sci, 2014, 18(7): 331-333
Terhune D B, Kadosh R C. Modulating cognitive control in major depression with transcranial electrical stimulation. Biol Psychiat, 2013, 73(7): 595-596
Sreeraj V S, Suhas S, Parlikar R, et al. Effect of add-on transcranial alternating current stimulation (tACS) on persistent delusions in schizophrenia. Psychiat Res, 2020, 290: 113106
Brooks H, Mirjalili M, Wang W, et al. Assessing the longitudinal relationship between theta-gamma coupling and working memory performance in older adults. Cereb Cortex, 2022, 32(8): 1653-1667
Booth S J, Taylor J R, Brown L J E, et al. The effects of transcranial alternating current stimulation on memory performance in healthy adults: a systematic review. Cortex, 2022, 147: 112-139
Mosilhy E A, Alshial E E, Eltaras M M, et al. Non-invasive transcranial brain modulation for neurological disorders treatment: a narrative review. Life Sci, 2022, 307: 120869
Guleyupoglu B, Schestatsky P, Edwards D J, et al. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Meth, 2013, 219: 297-311
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci, 2023, 27(2): 189-205
Reinhart R M G. Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proc Natl Acad Sci USA, 2017, 114(43): 11542-11547
Reinhart R M G. Synchronizing neural rhythms. Science, 2022, 377(6606): 588-589
Zhang D W, Moraidis A, Klingberg T. Individually tuned theta HD-tACS improves spatial performance. Brain Stimul, 2022, 15(6): 1439-1447
Wu L, Liu T, Wang J. Improving the effect of transcranial alternating current stimulation (tACS): a systematic review. Front Hum Neurosci, 2021, 15: 652393
Reinhart R M G, Cosman J D, Fukuda K, et al. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys, 2017, 79(1): 3-23
Grover S, Nguyen J A, Viswanathan V, et al. High-frequency neuromodulation improves obsessive-compulsive behavior. Nat Med, 2021, 27(2): 232-238
Grossman N, Bono D, Dedic N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 2017, 169(6): 1029-1041.e1016
Guo W, Yuchen H, Zhang W, et al. A novel non-invasive brain stimulation technique: “temporally interfering electrical stimulation”. Front Neurosci, 2023, 17: 1092539
Cuellar J M, Alataris K, Walker A, et al. Effect of high-frequency alternating current on spinal afferent nociceptive transmission. Neuromodulation, 2013, 16(4): 318-327
Kilgore K L, Bhadra N. Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation, 2014, 17(3): 242-255
Rampersad S, Roig-Solvas B, Yarossi M, et al. Prospects for transcranial temporal interference stimulation in humans: a computational study. Neuroimage, 2019, 202: 116124
Hutcheon B, Resonance Yarom Y., oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci, 2000, 23(5): 216-222
Bikson M, Inoue M, Akiyama H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol, 2004, 557(1): 175-190
Howell B, Mcintyre C C. Feasibility of interferential and pulsed transcranial electrical stimulation for neuromodulation at the human scale. Neuromodulation, 2021, 24(5): 843-853
Mirzakhalili E, Barra B, Capogrosso M, et al. Biophysics of temporal interference stimulation. Cell Syst, 2020, 11(6): 557-572.e555
Dmochowski J, Bikson M. Noninvasive neuromodulation goes deep. Cell, 2017, 169(6): 977-978
Cao J, Doiron B, Goswami C, et al. The mechanics of temporal interference stimulation. bioRxiv, 2020. doi:
Huang Y, Parra L C. Can transcranial electric stimulation with multiple electrodes reach deep targets?. Brain Stimul, 2019, 12(1): 30-40
Huang Y, Datta A, Parra L C. Optimization of interferential stimulation of the human brain with electrode arrays. J Neural Eng, 2020, 17(3):
Lee S, Lee C, Park J, et al. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: a simulation study with different head models. Sci Rep, 2020, 10(1): 11730
Esmaeilpour Z, Kronberg G, Reato D, et al. Temporal interference stimulation targets deep brain regions by modulating neural oscillations. Brain Stimul, 2021, 14(1): 55-65
Tavakoli A V, Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front Cell Neurosci, 2017, 11: 214
Clements-Cortés A, Ahonen H, Evans M, et al. Short-term effects of rhythmic sensory stimulation in Alzheimer’s disease: an exploratory pilot study. J Alzheimers Dis, 2016, 52(2): 651-660
Ismail R, Hansen A, Parbo P, et al. The effect of 40-Hz light therapy on amyloid load in patients with prodromal and clinical Alzheimer''''s disease. Int J Alzheimers Dis, 2018, 2018: 6852303
Sahin L, Figueiro M G. Flickering red-light stimulus for promoting coherent 40 Hz neural oscillation: a feasibility study. J Alzheimers Dis, 2020, 75: 911-921
Agger M P, Carstensen M S, Henney M A, et al. Novel invisible spectral flicker induces 40 Hz neural entrainment with similar spatial distribution as 40 Hz stroboscopic light. J Alzheimers Dis, 2022, 88: 335-344
Agger M P, Danielsen E R, Carstensen M S, et al. Safety, feasibility, and potential clinical efficacy of 40 Hz invisible spectral flicker versus placebo in patients with mild-to-moderate Alzheimer’s disease: a randomized, placebo-controlled, double-blinded, pilot study. J Alzheimers Dis, 2023, 92: 653-665
Voicikas A, Niciute I, Ruksenas O, et al. Effect of attention on 40 Hz auditory steady-state response depends on the stimulation type: flutter amplitude modulated tones versus clicks. Neurosci Lett, 2016, 629: 215-220
Griskova-Bulanova I, Dapsys K, Melynyte S, et al. 40Hz auditory steady-state response in schizophrenia: sensitivity to stimulation type (clicks versus flutter amplitude-modulated tones). Neurosci Lett, 2018, 662: 152-157
Chan D, Suk H J, Jackson B, et al. 40Hz sensory stimulation induces gamma entrainment and affects brain structure, sleep and cognition in patients with Alzheimer’s dementia. medRxiv, 2021. doi: 10.1101/2021.03.01.21252717
Chan D, Suk H J, Jackson B L, et al. Gamma frequency sensory stimulation in mild probable Alzheimer’s dementia patients: results of feasibility and pilot studies. PLoS One, 2022, 17(12): e0278412
Suk H-J, Chan D, Jackson B, et al. Sensory gamma frequency stimulation in cognitively healthy and AD individuals safely induces highly coordinated 40 hz neural oscillation: a preliminary study of non-invasive sensory stimulation for treating Alzheimer’s disease. Alzheimers Dement, 2020, 16(S7): e041146
He Q, Colon-Motas K M, Pybus A F, et al. A feasibility trial of gamma sensory flicker for patients with prodromal Alzheimer’s disease. Alzheimer Dement (N Y), 2021, 7(1): e12178
Cimenser A, Hempel E, Travers T, et al. Sensory-evoked 40-Hz gamma oscillation improves sleep and daily living activities in Alzheimer’s disease patients. Front Syst Neurosci, 2021, 15: 746859
Herrmann C S. Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res, 2001, 137(3): 346-353
Chen X, Shi X, Wu Y, et al. Gamma oscillations and application of 40-Hz audiovisual stimulation to improve brain function. Brain Behav, 2022, 12(12): e2811
Ferretti A, Rogers-Healion K, Fotros A. The therapeutic potential of restoring gamma oscillations in Alzheimer’s disease. Behav Res Ther, 2022, 2(1): 47-55
Picton T W, John M S, Dimitrijevic A, et al. Human auditory steady-state responses. Int J Audiol, 2003, 42(4): 177-219
Pastor M A, Artieda J, Arbizu J, et al. Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. J Neurosci, 2002, 22: 10501-10506
O’donnell B F, Hetrick W P, Vohs J L, et al. Neural synchronization deficits to auditory stimulation in bipolar disorder. Neuroreport, 2004, 15: 1369-1372
Krishnan G P, Hetrick W P, Brenner C A, et al. Steady state and induced auditory gamma deficits in schizophrenia. Neuroimage, 2009, 47(4): 1711-1719
Galambo? R, Makeig S, Talmachoff P. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA, 1981, 78(4): 2643-2647
O''''donnell B F, Vohs J L, Krishnan G P, et al. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Suppl Clin Neurophysiol, 2013, 62: 101-112
Herdman A T, Lins O, Van Roon P, et al. Intracerebral sources of human auditory steady-state responses. Brain Topogr, 2002, 15(2): 69-86
Korczak P A, Smart J L, Delgado R E, et al. Auditory steady-state responses. J Am Acad Audiol, 2012, 23(3): 146-170
Smith R G, Cheng K, Schoen W R, et al. A nonpeptidyl growth hormone secretagogue. Science, 1993, 260(5114): 1640-1643
Ross B, Picton T W, Pantev C. Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res, 2002, 165(1-2): 68-84
Elberling C, Don M, Cebulla M, et al. Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delaya). J Acoust Soc Am, 2007, 122(5): 2772-2785
Uhlhaas P J, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 2010, 11(2): 100-113
Rürup L, Mathes B, Schmiedt-Fehr C, et al. Altered gamma and theta oscillations during multistable perception in schizophrenia. Int J Psychophysiol, 2020, 155: 127-139
Shanbhag V, Sreeraj S V, Bose A, et al. Effect of tACS on working memory and processing speed in schizophrenia: an open label study. Brain Stimul, 2019, 12(2): 520
Phillips K G, Uhlhaas P J. Neural oscillations as a translational tool in schizophrenia research: rationale, paradigms and challenges. J Psychopharmacol, 2015, 29(2): 155-168
Sreeraj V S, Shanbhag V, Nawani H, et al. Feasibility of online neuromodulation using transcranial alternating current stimulation in schizophrenia. Indian J Psychol Med, 2017, 39(1): 92-95
Kallel L, Mondino M, Brunelin J. Effects of theta-rhythm transcranial alternating current stimulation (4.5 Hz-tACS) in patients with clozapine-resistant negative symptoms of schizophrenia: a case series. J Neural Transm, 2016, 123(10): 1213-1217
Ahn S, Mellin J M, Alagapan S, et al. Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. NeuroImage, 2019, 186: 126-136
Mellin J M, Alagapan S, Lustenberger C, et al. Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia. Eur Psychiatry, 2018, 51: 25-33
Zhang M, Force R B, Walker C, et al. Alpha transcranial alternating current stimulation reduces depressive symptoms in people with schizophrenia and auditory hallucinations: a double-blind, randomized pilot clinical trial. Schizophrenia, 2022, 8(1): 114
Schwab B, Misselhorn J, Engel A. Modulation of interhemispheric alpha-band connectivity by transcranial alternating current stimulation. Brain Stimul, 2019, 12(2): 423
Riddle J, Alexander M L, Schiller C E, et al. Reduction in left frontal alpha oscillations by transcranial alternating current stimulation in major depressive disorder is context dependent in a randomized clinical trial. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(3): 302-311
Force R B, Riddle J, Jarskog L F, et al. A case study of the feasibility of weekly tACS for the treatment of auditory hallucinations in schizophrenia. Brain Stimul, 2021, 14(2): 361-363
Hoy K E, Whitty D, Bailey N, et al. Preliminary investigation of the effects of γ-tACS on working memory in schizophrenia. J Neural Transm, 2016, 123(10): 1205-1212
Wang S Y, Lin I M, Fan S Y, et al. The effects of alpha asymmetry and high-beta down-training neurofeedback for patients with the major depressive disorder and anxiety symptoms. J Affect Disord, 2019, 257: 287-296
Leuchter A F, Cook I A, Hunter A M, et al. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS One, 2012, 7(2): e32508
Henriques J B, Davidson R J. Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. J Abnorm Psychol, 1990, 99(1): 22
Alexander M L, Alagapan S, Lugo C E, et al. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl Psychiatry, 2019, 9(1): 106
Riddle J, Rubinow D R, Frohlich F. A case study of weekly tACS for the treatment of major depressive disorder. Brain Stimul, 2020, 13(3): 576-577
Palm U, Baumgartner C, Hoffmann L, et al. Single session gamma transcranial alternating stimulation does not modulate working memory in depressed patients and healthy controls. Neurophysiol Clin, 2022, 52(2): 128-136
Haller N, Senner F, Brunoni A R, et al. Gamma transcranial alternating current stimulation improves mood and cognition in patients with major depression. J Psychiatr Res, 2020, 130: 31-34
Wilkening A, Kurzeck A, Dechantsreiter E, et al. Transcranial alternating current stimulation for the treatment of major depression during pregnancy. Psychiatry Res, 2019, 279: 399-400
Kehler L, Francisco C O, Uehara M A, et al. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. Annu Int Conf IEEE Eng Med Biol Soc (EMBC), 2020, 2020: 3649-3653
Vosskuhl J, Struber D, Herrmann C S. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci, 2018, 12: 211
Mably A J, Gereke B J, Jones D T, et al. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer’s disease. Hippocampus, 2017, 27(4): 378-392
Klein A, Donoso J, Kempter R, et al. Early cortical changes in gamma oscillations in Alzheimer’s disease. Front Syst Neurosci, 2016, 10: 83
Verret L, Mann E O, Hang G B, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 2012, 149(3): 708-721
Mourtzouchos K, Riga M, Cebulla M, et al. Comparison of click auditory brainstem response and chirp auditory steady-state response thresholds in children. Int J Pediatr Otorhinolaryngol, 2018, 112: 91-96
Benussi A, Cantoni V, Cotelli M S, et al. Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimul, 2021, 14(3): 531-540
Benussi A, Cantoni V, Grassi M, et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann Neurol, 2022, 92(2): 322-334
Cavanna A E, Trimble M R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 2006, 129(3): 564-583
Kim J, Kim H, Jeong H, et al. tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: a direct comparison between tACS and tDCS. J Psychiatr Res, 2021, 141: 248-256
Sprugnoli G, Munsch F, Cappon D, et al. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer’s disease. Alzheimers Res Ther, 2021, 13(1): 203
Dhaynaut M, Sprugnoli G, Cappon D, et al. Impact of 40 Hz transcranial alternating current stimulation on cerebral Tau burden in patients with Alzheimer’s disease: a case series. J Alzheimers Dis, 2022, 85(4): 1667-1676
Bréchet L, Yu W, Biagi M C, et al. Patient-tailored, home-based non-invasive brain stimulation for memory deficits in dementia due to Alzheimer’s Disease. Front Neurol, 2021, 12: 598135
Zhou D, Li A, Li X, et al. Effects of 40 Hz transcranial alternating current stimulation (tACS) on cognitive functions of patients with Alzheimer''''s disease: a randomised, double-blind, sham-controlled clinical trial. J Neurol Neurosurg Psychiatry, 2022, 93(5): 568
Markewitz R, Engel S, Langguth B, et al. Effects of acoustic paired associative stimulation on late auditory evoked potentials. Brain Topogr, 2019, 32(3): 343-353
Conlon B, Langguth B, Hamilton C, et al. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med, 2020, 12(564): eabb2830
Liu Y, Tang C, Wei K, et al. Transcranial alternating current stimulation combined with sound stimulation improves the cognitive function of patients with Alzheimer’s disease: a case report and literature review. Front Neurol, 2022, 13: 962684
Liu Y, Liu S, Tang C, et al. Transcranial alternating current stimulation combined with sound stimulation improves cognitive function in patients with Alzheimer’s disease: study protocol for a randomized controlled trial. Front Aging Neurosci, 2023, 14: 1068175
Klimke A, Nitsche M A, Maurer K, et al. Case report: successful treatment of therapy-resistant OCD with application of transcranial alternating current stimulation (tACS). Brain Stimul, 2016, 9(3): 463-465
Nakao T, Okada K, Kanba S. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci, 2014, 68(8): 587-605
Voss U, Holzmann R, Hobson A, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci, 2014, 17(6): 810-812
Frohlich F, Riddle J, Abramowitz J. Transcranial alternating current stimulation for the treatment of obsessive-compulsive disorder?. Brain Stimul, 2021, 14(4): 1048-1050
Ma R, Xia X, Zhang W, et al. High gamma and beta temporal interference stimulation in the human motor cortex improves motor functions. Front Neurosci, 2022, 15: 800436
Wessel M J, Beanato E, Popa T, et al. Evidence for temporal interference (TI) stimulation effects on motor striatum. Brain Stimul, 2021, 14(6): 1684
Zhang Y, Zhou Z, Zhou J, et al. Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals. Front Hum Neurosci, 2022, 16: 918470
Zhu Z, Xiong Y, Chen Y, et al. Temporal interference (TI) stimulation boosts functional connectivity in human motor cortex: a comparison study with transcranial direct current stimulation (tDCS). Neural Plast, 2022, 2022: 7605046
Clements-Cortes A, Bartel L. Long-term multi-sensory gamma stimulation of dementia patients: a case series report. Int J Environ Res Public Health, 2022, 19(23): 15553
Davis M, O`Connell T, Johnson S, et al. Estimating Alzheimer’s disease progression rates from normal cognition through mild cognitive impairment and stages of dementia. Curr Alzheimer Res, 2018, 15(8): 777-778
Lee K, Park Y, Suh S W, et al. Optimal flickering light stimulation for entraining gamma waves in the human brain. Sci Rep, 2021, 11(1): 16206
Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol, 2017, 128(9): 1774-1809