• [1]

    Guan A, Wang S, Qiu C, et al. The role of gamma oscillations in central nervous system diseases: mechanism and treatment. Front Cell Neurosci, 2022, 16: 962957

  • [2]

    Widge A S, Miller E K. Targeting cognition and networks through neural oscillations: next-generation clinical brain stimulation. JAMA Psychiatry, 2019, 76(7): 671-672

  • [3]

    Sreeraj V S, Shivakumar V, Sowmya S, et al. Online theta frequency transcranial alternating current stimulation for cognitive remediation in schizophrenia: case report and review of literature. J ECT, 2019, 35(2): 139-143

  • [4]

    Henao D, Navarrete M, Valderrama M, et al. Entrainment and synchronization of brain oscillations to auditory stimulations. Neurosci Res, 2020, 156: 271-278

  • [5]

    Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng, 2007, 9(1): 527-565

  • [6]

    Haller N, Hasan A, Padberg F, et al. Gamma transcranial alternating current stimulation in patients with negative symptoms in schizophrenia: a case series. Neurophysiol Clin, 2020, 50(4): 301-304

  • [7]

    Von Conta J, Kasten F H, Schellhorn K, et al. Benchmarking the effects of transcranial temporal interference stimulation (tTIS) in humans. Cortex, 2022, 154: 299-310

  • [8]

    Lee J, Ryu S, Kim H, et al. 40 Hz acoustic stimulation decreases amyloid beta and modulates brain rhythms in a mouse model of Alzheimers disease. bioRxiv, 2018. doi: 10.1101/390302

  • [9]

    Iaccarino H F, Singer A C, Martorell A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540(7632): 230-235

  • [10]

    Martorell A J, Paulson A L, Suk H J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell, 2019, 177(2): 256-271.e222

  • [11]

    Adaikkan C, Middleton S J, Marco A, et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron, 2019, 102(5): 929-943.e928

  • [12]

    Calderone D J, Lakatos P, Butler P D, et al. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn Sci, 2014, 18(6): 300-309

  • [13]

    Hanslmayr S, Axmacher N, Inman C S. Modulating human memory via entrainment of brain oscillations. Trends Neurosci, 2019, 42(7): 485-499

  • [14]

    Elyamany O, Leicht G, Herrmann C S, et al. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psy Clin Neurosci, 2021, 271(1): 135-156

  • [15]

    Adaikkan C, Tsai L H. Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci, 2020, 43(1): 24-41

  • [16]

    Schutter D J L G. Syncing your brain: electric currents to enhance cognition. Trends Cogn Sci, 2014, 18(7): 331-333

  • [17]

    Terhune D B, Kadosh R C. Modulating cognitive control in major depression with transcranial electrical stimulation. Biol Psychiat, 2013, 73(7): 595-596

  • [18]

    Sreeraj V S, Suhas S, Parlikar R, et al. Effect of add-on transcranial alternating current stimulation (tACS) on persistent delusions in schizophrenia. Psychiat Res, 2020, 290: 113106

  • [19]

    Brooks H, Mirjalili M, Wang W, et al. Assessing the longitudinal relationship between theta-gamma coupling and working memory performance in older adults. Cereb Cortex, 2022, 32(8): 1653-1667

  • [20]

    Booth S J, Taylor J R, Brown L J E, et al. The effects of transcranial alternating current stimulation on memory performance in healthy adults: a systematic review. Cortex, 2022, 147: 112-139

  • [21]

    Mosilhy E A, Alshial E E, Eltaras M M, et al. Non-invasive transcranial brain modulation for neurological disorders treatment: a narrative review. Life Sci, 2022, 307: 120869

  • [22]

    Guleyupoglu B, Schestatsky P, Edwards D J, et al. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Meth, 2013, 219: 297-311

  • [23]

    Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci, 2023, 27(2): 189-205

  • [24]

    Reinhart R M G. Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proc Natl Acad Sci USA, 2017, 114(43): 11542-11547

  • [25]

    Reinhart R M G. Synchronizing neural rhythms. Science, 2022, 377(6606): 588-589

  • [26]

    Zhang D W, Moraidis A, Klingberg T. Individually tuned theta HD-tACS improves spatial performance. Brain Stimul, 2022, 15(6): 1439-1447

  • [27]

    Wu L, Liu T, Wang J. Improving the effect of transcranial alternating current stimulation (tACS): a systematic review. Front Hum Neurosci, 2021, 15: 652393

  • [28]

    Reinhart R M G, Cosman J D, Fukuda K, et al. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys, 2017, 79(1): 3-23

  • [29]

    Grover S, Nguyen J A, Viswanathan V, et al. High-frequency neuromodulation improves obsessive-compulsive behavior. Nat Med, 2021, 27(2): 232-238

  • [30]

    Grossman N, Bono D, Dedic N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 2017, 169(6): 1029-1041.e1016

  • [31]

    Guo W, Yuchen H, Zhang W, et al. A novel non-invasive brain stimulation technique: “temporally interfering electrical stimulation”. Front Neurosci, 2023, 17: 1092539

  • [32]

    Cuellar J M, Alataris K, Walker A, et al. Effect of high-frequency alternating current on spinal afferent nociceptive transmission. Neuromodulation, 2013, 16(4): 318-327

  • [33]

    Kilgore K L, Bhadra N. Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation, 2014, 17(3): 242-255

  • [34]

    Rampersad S, Roig-Solvas B, Yarossi M, et al. Prospects for transcranial temporal interference stimulation in humans: a computational study. Neuroimage, 2019, 202: 116124

  • [35]

    Hutcheon B, Resonance Yarom Y., oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci, 2000, 23(5): 216-222

  • [36]

    Bikson M, Inoue M, Akiyama H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol, 2004, 557(1): 175-190

  • [37]

    Howell B, Mcintyre C C. Feasibility of interferential and pulsed transcranial electrical stimulation for neuromodulation at the human scale. Neuromodulation, 2021, 24(5): 843-853

  • [38]

    Mirzakhalili E, Barra B, Capogrosso M, et al. Biophysics of temporal interference stimulation. Cell Syst, 2020, 11(6): 557-572.e555

  • [39]

    Dmochowski J, Bikson M. Noninvasive neuromodulation goes deep. Cell, 2017, 169(6): 977-978

  • [40]

    Cao J, Doiron B, Goswami C, et al. The mechanics of temporal interference stimulation. bioRxiv, 2020. doi: 10.1101/2020.04. 23.051870

  • [41]

    Huang Y, Parra L C. Can transcranial electric stimulation with multiple electrodes reach deep targets?. Brain Stimul, 2019, 12(1): 30-40

  • [42]

    Huang Y, Datta A, Parra L C. Optimization of interferential stimulation of the human brain with electrode arrays. J Neural Eng, 2020, 17(3): 036023

  • [43]

    Lee S, Lee C, Park J, et al. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: a simulation study with different head models. Sci Rep, 2020, 10(1): 11730

  • [44]

    Esmaeilpour Z, Kronberg G, Reato D, et al. Temporal interference stimulation targets deep brain regions by modulating neural oscillations. Brain Stimul, 2021, 14(1): 55-65

  • [45]

    Tavakoli A V, Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front Cell Neurosci, 2017, 11: 214

  • [46]

    Clements-Cortés A, Ahonen H, Evans M, et al. Short-term effects of rhythmic sensory stimulation in Alzheimer’s disease: an exploratory pilot study. J Alzheimers Dis, 2016, 52(2): 651-660

  • [47]

    Ismail R, Hansen A, Parbo P, et al. The effect of 40-Hz light therapy on amyloid load in patients with prodromal and clinical Alzheimer''''s disease. Int J Alzheimers Dis, 2018, 2018: 6852303

  • [48]

    Sahin L, Figueiro M G. Flickering red-light stimulus for promoting coherent 40 Hz neural oscillation: a feasibility study. J Alzheimers Dis, 2020, 75: 911-921

  • [49]

    Agger M P, Carstensen M S, Henney M A, et al. Novel invisible spectral flicker induces 40 Hz neural entrainment with similar spatial distribution as 40 Hz stroboscopic light. J Alzheimers Dis, 2022, 88: 335-344

  • [50]

    Agger M P, Danielsen E R, Carstensen M S, et al. Safety, feasibility, and potential clinical efficacy of 40 Hz invisible spectral flicker versus placebo in patients with mild-to-moderate Alzheimer’s disease: a randomized, placebo-controlled, double-blinded, pilot study. J Alzheimers Dis, 2023, 92: 653-665

  • [51]

    Voicikas A, Niciute I, Ruksenas O, et al. Effect of attention on 40 Hz auditory steady-state response depends on the stimulation type: flutter amplitude modulated tones versus clicks. Neurosci Lett, 2016, 629: 215-220

  • [52]

    Griskova-Bulanova I, Dapsys K, Melynyte S, et al. 40Hz auditory steady-state response in schizophrenia: sensitivity to stimulation type (clicks versus flutter amplitude-modulated tones). Neurosci Lett, 2018, 662: 152-157

  • [53]

    Chan D, Suk H J, Jackson B, et al. 40Hz sensory stimulation induces gamma entrainment and affects brain structure, sleep and cognition in patients with Alzheimer’s dementia. medRxiv, 2021. doi: 10.1101/2021.03.01.21252717

  • [54]

    Chan D, Suk H J, Jackson B L, et al. Gamma frequency sensory stimulation in mild probable Alzheimer’s dementia patients: results of feasibility and pilot studies. PLoS One, 2022, 17(12): e0278412

  • [55]

    Suk H-J, Chan D, Jackson B, et al. Sensory gamma frequency stimulation in cognitively healthy and AD individuals safely induces highly coordinated 40 hz neural oscillation: a preliminary study of non-invasive sensory stimulation for treating Alzheimer’s disease. Alzheimers Dement, 2020, 16(S7): e041146

  • [56]

    He Q, Colon-Motas K M, Pybus A F, et al. A feasibility trial of gamma sensory flicker for patients with prodromal Alzheimer’s disease. Alzheimer Dement (N Y), 2021, 7(1): e12178

  • [57]

    Cimenser A, Hempel E, Travers T, et al. Sensory-evoked 40-Hz gamma oscillation improves sleep and daily living activities in Alzheimer’s disease patients. Front Syst Neurosci, 2021, 15: 746859

  • [58]

    Herrmann C S. Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res, 2001, 137(3): 346-353

  • [59]

    Chen X, Shi X, Wu Y, et al. Gamma oscillations and application of 40-Hz audiovisual stimulation to improve brain function. Brain Behav, 2022, 12(12): e2811

  • [60]

    Ferretti A, Rogers-Healion K, Fotros A. The therapeutic potential of restoring gamma oscillations in Alzheimer’s disease. Behav Res Ther, 2022, 2(1): 47-55

  • [61]

    Picton T W, John M S, Dimitrijevic A, et al. Human auditory steady-state responses. Int J Audiol, 2003, 42(4): 177-219

  • [62]

    Pastor M A, Artieda J, Arbizu J, et al. Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. J Neurosci, 2002, 22: 10501-10506

  • [63]

    O’donnell B F, Hetrick W P, Vohs J L, et al. Neural synchronization deficits to auditory stimulation in bipolar disorder. Neuroreport, 2004, 15: 1369-1372

  • [64]

    Krishnan G P, Hetrick W P, Brenner C A, et al. Steady state and induced auditory gamma deficits in schizophrenia. Neuroimage, 2009, 47(4): 1711-1719

  • [65]

    Galambo? R, Makeig S, Talmachoff P. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA, 1981, 78(4): 2643-2647

  • [66]

    O''''donnell B F, Vohs J L, Krishnan G P, et al. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Suppl Clin Neurophysiol, 2013, 62: 101-112

  • [67]

    Herdman A T, Lins O, Van Roon P, et al. Intracerebral sources of human auditory steady-state responses. Brain Topogr, 2002, 15(2): 69-86

  • [68]

    Korczak P A, Smart J L, Delgado R E, et al. Auditory steady-state responses. J Am Acad Audiol, 2012, 23(3): 146-170

  • [69]

    Smith R G, Cheng K, Schoen W R, et al. A nonpeptidyl growth hormone secretagogue. Science, 1993, 260(5114): 1640-1643

  • [70]

    Ross B, Picton T W, Pantev C. Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res, 2002, 165(1-2): 68-84

  • [71]

    Elberling C, Don M, Cebulla M, et al. Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delaya). J Acoust Soc Am, 2007, 122(5): 2772-2785

  • [72]

    Uhlhaas P J, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 2010, 11(2): 100-113

  • [73]

    Rürup L, Mathes B, Schmiedt-Fehr C, et al. Altered gamma and theta oscillations during multistable perception in schizophrenia. Int J Psychophysiol, 2020, 155: 127-139

  • [74]

    Shanbhag V, Sreeraj S V, Bose A, et al. Effect of tACS on working memory and processing speed in schizophrenia: an open label study. Brain Stimul, 2019, 12(2): 520

  • [75]

    Phillips K G, Uhlhaas P J. Neural oscillations as a translational tool in schizophrenia research: rationale, paradigms and challenges. J Psychopharmacol, 2015, 29(2): 155-168

  • [76]

    Sreeraj V S, Shanbhag V, Nawani H, et al. Feasibility of online neuromodulation using transcranial alternating current stimulation in schizophrenia. Indian J Psychol Med, 2017, 39(1): 92-95

  • [77]

    Kallel L, Mondino M, Brunelin J. Effects of theta-rhythm transcranial alternating current stimulation (4.5 Hz-tACS) in patients with clozapine-resistant negative symptoms of schizophrenia: a case series. J Neural Transm, 2016, 123(10): 1213-1217

  • [78]

    Ahn S, Mellin J M, Alagapan S, et al. Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. NeuroImage, 2019, 186: 126-136

  • [79]

    Mellin J M, Alagapan S, Lustenberger C, et al. Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia. Eur Psychiatry, 2018, 51: 25-33

  • [80]

    Zhang M, Force R B, Walker C, et al. Alpha transcranial alternating current stimulation reduces depressive symptoms in people with schizophrenia and auditory hallucinations: a double-blind, randomized pilot clinical trial. Schizophrenia, 2022, 8(1): 114

  • [81]

    Schwab B, Misselhorn J, Engel A. Modulation of interhemispheric alpha-band connectivity by transcranial alternating current stimulation. Brain Stimul, 2019, 12(2): 423

  • [82]

    Riddle J, Alexander M L, Schiller C E, et al. Reduction in left frontal alpha oscillations by transcranial alternating current stimulation in major depressive disorder is context dependent in a randomized clinical trial. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(3): 302-311

  • [83]

    Force R B, Riddle J, Jarskog L F, et al. A case study of the feasibility of weekly tACS for the treatment of auditory hallucinations in schizophrenia. Brain Stimul, 2021, 14(2): 361-363

  • [84]

    Hoy K E, Whitty D, Bailey N, et al. Preliminary investigation of the effects of γ-tACS on working memory in schizophrenia. J Neural Transm, 2016, 123(10): 1205-1212

  • [85]

    Wang S Y, Lin I M, Fan S Y, et al. The effects of alpha asymmetry and high-beta down-training neurofeedback for patients with the major depressive disorder and anxiety symptoms. J Affect Disord, 2019, 257: 287-296

  • [86]

    Leuchter A F, Cook I A, Hunter A M, et al. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS One, 2012, 7(2): e32508

  • [87]

    Henriques J B, Davidson R J. Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. J Abnorm Psychol, 1990, 99(1): 22

  • [88]

    Alexander M L, Alagapan S, Lugo C E, et al. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl Psychiatry, 2019, 9(1): 106

  • [89]

    Riddle J, Rubinow D R, Frohlich F. A case study of weekly tACS for the treatment of major depressive disorder. Brain Stimul, 2020, 13(3): 576-577

  • [90]

    Palm U, Baumgartner C, Hoffmann L, et al. Single session gamma transcranial alternating stimulation does not modulate working memory in depressed patients and healthy controls. Neurophysiol Clin, 2022, 52(2): 128-136

  • [91]

    Haller N, Senner F, Brunoni A R, et al. Gamma transcranial alternating current stimulation improves mood and cognition in patients with major depression. J Psychiatr Res, 2020, 130: 31-34

  • [92]

    Wilkening A, Kurzeck A, Dechantsreiter E, et al. Transcranial alternating current stimulation for the treatment of major depression during pregnancy. Psychiatry Res, 2019, 279: 399-400

  • [93]

    Kehler L, Francisco C O, Uehara M A, et al. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. Annu Int Conf IEEE Eng Med Biol Soc (EMBC), 2020, 2020: 3649-3653

  • [94]

    Vosskuhl J, Struber D, Herrmann C S. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci, 2018, 12: 211

  • [95]

    Mably A J, Gereke B J, Jones D T, et al. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer’s disease. Hippocampus, 2017, 27(4): 378-392

  • [96]

    Klein A, Donoso J, Kempter R, et al. Early cortical changes in gamma oscillations in Alzheimer’s disease. Front Syst Neurosci, 2016, 10: 83

  • [97]

    Verret L, Mann E O, Hang G B, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 2012, 149(3): 708-721

  • [98]

    Mourtzouchos K, Riga M, Cebulla M, et al. Comparison of click auditory brainstem response and chirp auditory steady-state response thresholds in children. Int J Pediatr Otorhinolaryngol, 2018, 112: 91-96

  • [99]

    Benussi A, Cantoni V, Cotelli M S, et al. Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimul, 2021, 14(3): 531-540

  • [100]

    Benussi A, Cantoni V, Grassi M, et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann Neurol, 2022, 92(2): 322-334

  • [101]

    Cavanna A E, Trimble M R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 2006, 129(3): 564-583

  • [102]

    Kim J, Kim H, Jeong H, et al. tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: a direct comparison between tACS and tDCS. J Psychiatr Res, 2021, 141: 248-256

  • [103]

    Sprugnoli G, Munsch F, Cappon D, et al. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer’s disease. Alzheimers Res Ther, 2021, 13(1): 203

  • [104]

    Dhaynaut M, Sprugnoli G, Cappon D, et al. Impact of 40 Hz transcranial alternating current stimulation on cerebral Tau burden in patients with Alzheimer’s disease: a case series. J Alzheimers Dis, 2022, 85(4): 1667-1676

  • [105]

    Bréchet L, Yu W, Biagi M C, et al. Patient-tailored, home-based non-invasive brain stimulation for memory deficits in dementia due to Alzheimer’s Disease. Front Neurol, 2021, 12: 598135

  • [106]

    Zhou D, Li A, Li X, et al. Effects of 40 Hz transcranial alternating current stimulation (tACS) on cognitive functions of patients with Alzheimer''''s disease: a randomised, double-blind, sham-controlled clinical trial. J Neurol Neurosurg Psychiatry, 2022, 93(5): 568

  • [107]

    Markewitz R, Engel S, Langguth B, et al. Effects of acoustic paired associative stimulation on late auditory evoked potentials. Brain Topogr, 2019, 32(3): 343-353

  • [108]

    Conlon B, Langguth B, Hamilton C, et al. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med, 2020, 12(564): eabb2830

  • [109]

    Liu Y, Tang C, Wei K, et al. Transcranial alternating current stimulation combined with sound stimulation improves the cognitive function of patients with Alzheimer’s disease: a case report and literature review. Front Neurol, 2022, 13: 962684

  • [110]

    Liu Y, Liu S, Tang C, et al. Transcranial alternating current stimulation combined with sound stimulation improves cognitive function in patients with Alzheimer’s disease: study protocol for a randomized controlled trial. Front Aging Neurosci, 2023, 14: 1068175

  • [111]

    Klimke A, Nitsche M A, Maurer K, et al. Case report: successful treatment of therapy-resistant OCD with application of transcranial alternating current stimulation (tACS). Brain Stimul, 2016, 9(3): 463-465

  • [112]

    Nakao T, Okada K, Kanba S. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci, 2014, 68(8): 587-605

  • [113]

    Voss U, Holzmann R, Hobson A, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci, 2014, 17(6): 810-812

  • [114]

    Frohlich F, Riddle J, Abramowitz J. Transcranial alternating current stimulation for the treatment of obsessive-compulsive disorder?. Brain Stimul, 2021, 14(4): 1048-1050

  • [115]

    Ma R, Xia X, Zhang W, et al. High gamma and beta temporal interference stimulation in the human motor cortex improves motor functions. Front Neurosci, 2022, 15: 800436

  • [116]

    Wessel M J, Beanato E, Popa T, et al. Evidence for temporal interference (TI) stimulation effects on motor striatum. Brain Stimul, 2021, 14(6): 1684

  • [117]

    Zhang Y, Zhou Z, Zhou J, et al. Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals. Front Hum Neurosci, 2022, 16: 918470

  • [118]

    Zhu Z, Xiong Y, Chen Y, et al. Temporal interference (TI) stimulation boosts functional connectivity in human motor cortex: a comparison study with transcranial direct current stimulation (tDCS). Neural Plast, 2022, 2022: 7605046

  • [119]

    Clements-Cortes A, Bartel L. Long-term multi-sensory gamma stimulation of dementia patients: a case series report. Int J Environ Res Public Health, 2022, 19(23): 15553

  • [120]

    Davis M, O`Connell T, Johnson S, et al. Estimating Alzheimer’s disease progression rates from normal cognition through mild cognitive impairment and stages of dementia. Curr Alzheimer Res, 2018, 15(8): 777-778

  • [121]

    Lee K, Park Y, Suh S W, et al. Optimal flickering light stimulation for entraining gamma waves in the human brain. Sci Rep, 2021, 11(1): 16206

  • [122]

    Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol, 2017, 128(9): 1774-1809