高等学校博士学科点专项科研基金项目(20050610050).
This work was supported by a grant from Specialized Research Fund for The Doctoral Program of Higher Education, China (20050610050).
高同型半胱氨酸血症是引起动脉粥样硬化一个重要独立的危险因子,可以引起基因DNA甲基化表型改变和蛋白质表达失调,但是基因甲基化表型改变的特点和动脉粥样硬化是否有关及其机制,到目前为止还没有研究清楚. 在平滑肌细胞培养的基础上研究高同型半胱氨酸血症对DNA甲基化的影响,高半胱氨酸诱导DNA甲基化表型改变的特征及潜在的机制. 高半胱氨酸加入人脐静脉平滑肌培养24 h后,高效液相检测SAM和SAH的浓度,实时RT-PCR和蛋白质印迹检测SAH水解酶mRNA和蛋白质表达. 通过内源性DNA甲基转移酶活性变化、基因组DNA接受甲基的能力、甲基化限制性内切酶分析检测DNA甲基化水平的变化. 结果显示,随着高半胱氨酸浓度的增加,SAH水平增加,SAM和 SAM/SAH比率下降,SAH水解酶水平下降,但DNA甲基转移酶活性增加,用不同甲基化限制性内切酶分析发现C↓CGG序列更容易甲基化. 由此可以推测,不同剂量的高半胱氨酸引起细胞损害效应的机制也不同,在低、中度高同型半胱氨酸血症,高半胱氨酸主要通过干扰高同型半胱氨酸的代谢途径影响基因表达表型修饰,在高度高同型半胱氨酸血症可能氧化应激、凋亡、炎症等发挥了更重要的作用.
Hyperhomocysteinemia, which is an independent risk factor for atherosclerosis, may cause aberrant methylation and dysregulation of gene expression, but the characteristics of the aberrant methylation and its key links involved in its pathogenic mechanisms are still poorly understood. The effect of hyperhomocysteine on DNA methylation in vascular smooth muscle cells, its characteristics and the underlying mechanism of Hcy-induced changing in DNA methylation patterns were investigated. Clinical relevant concentrations of homocysteine was added into the cultured vascular smooth muscle cells of the Homo sapien umbilical vein for 24 h. The level of SAM and SAH was detected by HPLC. The activity of SAH Hydrolase was detected by real-time quantitative reverse transcription-PCR and Western blotting analysis. The level and patterns of DNA methylation were measured by endogenous C-5 DNA methyltransferase(C-5 MT-ase) activity and capacity of genomic DNA to accept methy1 groups and methylation-dependent restriction analysis. The results indicated that an increased Hcy concentration induced elevated SAH, declined SAM and the ratio of SAM/SAH, reduced expression of SAH Hydrolase, but increased activity of C-5MT-ase. The methylation status of gDNA analyzed by methyl-accepting capacity of gDNA uncovered a demethylation process in gDNA, or homocysteine-caused hypomethylation in gDNA. With different methylation-dependent restriction endonucleases, the aberrant demethylation was found to prefer C↓CGG sequences to CpG islands. The impacts of different dosage of Hcy showed that the varied detrimental effects of Hcy could be attributed to different concentrations via different mechanisms. In mild and moderate hyperhomocysteinemia, the Hcy may primarily influence the epigenetic regulation of gene expression through the interference of transferring methyl-group metabolism, while in more higher Hcy concentration, the notorious impacts may be more directly caused via oxidative stress, apoptosis, inflammation etc.
姜怡邓,张建中,黄 英,苏 娟,张敬各,王丽珍,韩晓群,王树人.高半胱氨酸在平滑肌细胞中介导DNA甲基化及机制的研究[J].生物化学与生物物理进展,2007,34(5):479-489
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号