+Advanced Search

  • WANG Ru
    2025, 52(6): 2025,52(6):1319-1320
    DOI: 10.16476/j.pibb.2025.0288
    CSTR: 32369.14.pibb.20250288
    The Metabolic Effects of Physical Activities and Their Mechanisms in Health Promotion
    Citation
    WANG Ru.Editorial:The Metabolic Effects of Physical Activities and Their Mechanisms in Health Promotion[J].,2025,52(6):1319-1320.Export: BibTex EndNote
  • Exercise fatigue is a complex physiological and psychological phenomenon that includes peripheral fatigue in the muscles and central fatigue in the brain. Peripheral fatigue refers to the loss of force caused at the distal end of the neuromuscular junction, whereas central fatigue involves decreased motor output from the primary motor cortex, which is associated with modulations at anatomical sites proximal to nerves that innervate skeletal muscle. The central regulatory failure reflects a progressive decline in the central nervous system’s capacity to recruit motor units during sustained physical activity. Emerging evidence highlights the critical involvement of central neurochemical regulation in fatigue development, particularly through neurotransmitter-mediated modulation. Alterations in neurotransmitter release and receptor activity could influence excitatory and inhibitory signal pathways, thus modulating the perception of fatigue and exercise performance. Increased serotonin (5-HT) could increase perception of effort and lethargy, reduce motor drive to continue exercising, and contribute to exercise fatigue. Decreased dopamine (DA) and noradrenaline (NE) neurotransmission can negatively impact arousal, mood, motivation, and reward mechanisms and impair exercise performance. Furthermore, the serotonergic and dopaminergic systems interact with each other; a low 5-HT/DA ratio enhances motor motivation and improves performance, and a high 5-HT/DA ratio heightens fatigue perception and leads to decreased performance. The expression and activity of neurotransmitter receptors would be changed during prolonged exercise to fatigue, affecting the transmission of nerve signals. Prolonged high-intensity exercise causes excess 5-HT to overflow from the synaptic cleft to the axonal initial segment and activates the 5-HT1A receptor, thereby inhibiting the action potential of motor neurons and affecting the recruitment of motor units. During exercise to fatigue, the DA secretion is decreased, which blocks the binding of DA to D1 receptor in the caudate putamen and inhibits the activation of the direct pathway of the basal ganglia to suppress movement, meanwhile the binding of DA to D2 receptor is restrained in the caudate putamen, which activates the indirect pathway of the basal ganglia to influence motivation. Furthermore, other neurotransmitters and their receptors, such as adenosine (ADO), glutamic acid (Glu), and γ-aminobutyric acid (GABA) also play important roles in regulating neurotransmitter balance and fatigue. The occurrence of central fatigue is not the result of the action of a single neurotransmitter system, but a comprehensive manifestation of the interaction between multiple neurotransmitters. This review explores the important role of neurotransmitters and their receptors in central motor fatigue, reveals the dynamic changes of different neurotransmitters such as 5-HT, DA, NE, and ADO during exercise, and summarizes the mechanisms by which these neurotransmitters and their receptors regulate fatigue perception and exercise performance through complex interactions. Besides, this study presents pharmacological evidence that drugs such as agonists, antagonists, and reuptake inhibitors could affect exercise performance by regulating the metabolic changes of neurotransmitters. Recently, emerging interventions such as dietary bioactive components intake and transcranial electrical stimulation may provide new ideas and strategies for the prevention and alleviation of exercise fatigue by regulating neurotransmitter levels and receptor activity. Overall, this work offers new theoretical insights into the understanding of exercise central fatigue, and future research should further investigate the relationship between neurotransmitters and their receptors and exercise fatigue.
    Citation
    GUAN Lu-Lu, QI Bo-Te, FENG Du-Shuo, TAN Jing-Wang, CAO Meng, ZOU Yu.Review:The Mechanisms of Neurotransmitters and Their Receptors in Exercise Central Fatigue[J].,2025,52(6):1321-1336.Export: BibTex EndNote
  • Lactylation (Kla), a protein post-translational modification characterized by the covalent conjugation of lactyl groups to lysine residues in proteins, is widely present in living organisms. Since its discovery in 2019, it has attracted much attention for its role in regulating major pathological processes such as tumorigenesis, neurodegenerative diseases, and cardiovascular diseases. By mediating core biological processes such as signal transduction, epigenetic regulation, and metabolic homeostasis, lactylation contributes to disease progression. However, the lactylation donor lactyl-CoA has a low intracellular concentration, and the specific enzyme catalyzing lactylation is not yet clear, which has become an urgent issue in lactate research. A groundbreaking study in 2024 found that alanyl-transfer t-RNA synthetase 1/2 (AARS1/2), members of the aminoacyl-tRNA synthetase (aaRS) family, can act as protein lysine lactate transferases, modifying histones and metabolic enzymes directly with lactate as a substrate, without relying on the classical substrate lactyl-CoA, promoting a new stage in lactate research. Although exercise significantly increases lactate levels in the body and can induce changes in lactylation in multiple tissues and cells, the regulation of lactylation by exercise is not entirely consistent with lactate levels. Research has found that high-intensity exercise can induce upregulation of lactate at 37 lysine sites in 25 proteins of adipose tissue, while leading to downregulation of lactate at 27 lysine sites in 22 proteins. The level of lactate is not the only factor regulating lactylation through exercise. We speculate that the lactate transferase AARS1/2 play an important role in the process of lactylation regulated by exercise, and AARS1/2 should also be regulated by exercise. This review introduces the molecular biology characteristics, subcellular localization, and multifaceted biological functions of AARS, including its canonical roles in alanylation and editing, as well as its newly identified lactate transferase activity. We detail the discovery of AARS1/2 as lactylation catalysts and the specific process of them as lactate transferases catalyzing protein lactylation. Furthermore, we discuss the pathophysiological significance of AARS in tumorigenesis, immune dysregulation, and neuropathy, with a focus on exploring the expression regulation and possible mechanisms of AARS through exercise. The expression of AARS in skeletal muscle regulated by exercise is related to exercise time and muscle fiber type; the skeletal muscle AARS2 upregulated by long-term and high-intensity exercise catalyzes the lactylation of key metabolic enzymes such as pyruvate dehydrogenase E1 alpha subunit (PDHA1) and carnitine palmitoyltransferase 2 (CPT2), reducing exercise capacity and providing exercise protection; physiological hypoxia caused by exercise significantly reduces the ubiquitination degradation of AARS2 by inhibiting its hydroxylation, thereby maintaining high levels of AARS2 protein and exerting lactate transferase function; exercise induced lactate production can promote the translocation of AARS1 cytoplasm to the nucleus, exert lactate transferase function upon nuclear entry, regulate histone lactylation, and participate in gene expression regulation; exercise induced lactate production promotes direct interactions between AARS and star molecules such as p53 and cGAS, and is widely involved in the occurrence and development of tumors and immune diseases. Elucidating the regulatory mechanism of exercise on AARS can provide new ideas for improving metabolic diseases and promote health through exercise.
    Citation
    SUN Ying-Ying, XING Zheng, LI Feng-Yi, ZHANG Jing.Review:Lactate Transferase Function of Alanyl-transfer t-RNA Synthetase and Its Relationship With Exercise[J].,2025,52(6):1337-1348.Export: BibTex EndNote
  • Sarcopenia, an age-related degenerative skeletal muscle disorder characterized by progressive loss of muscle mass, diminished strength, and impaired physical function, poses substantial challenges to global healthy aging initiatives. The pathogenesis of this condition is fundamentally rooted in mitochondrial dysfunction, manifested through defective energy metabolism, disrupted redox equilibrium, imbalanced dynamics, and compromised organelle quality control. This comprehensive review elucidates the central role of exercise-induced mitochondrial hormesis as a critical adaptive mechanism counteracting sarcopenia. Mitohormesis represents an evolutionarily conserved stress response wherein sublethal mitochondrial perturbations, particularly transient low-dose reactive oxygen species (ROS) generated during muscle contraction, activate cytoprotective signaling cascades rather than inflicting macromolecular damage. The mechanistic foundation of this process involves ROS functioning as essential signaling molecules that activate the Keap1 nuclear factor erythroid 2 related factor 2 (Nrf2) antioxidant response element pathway. This activation drives transcriptional upregulation of phase II detoxifying enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GPx), thereby enhancing cellular redox buffering capacity. Crucially, Nrf2 engages in bidirectional molecular crosstalk with peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α), the principal regulator orchestrating mitochondrial biogenesis through coordinated induction of nuclear respiratory factors 1 and 2 (NRF1/2) along with mitochondrial transcription factor A (Tfam), collectively facilitating mitochondrial DNA replication and respiratory complex assembly. Concurrently, exercise-induced alterations in cellular energy status, specifically diminished ATP to AMP ratios, potently activate AMP activated protein kinase (AMPK). This energy-sensing kinase phosphorylates PGC-1α while concomitantly stimulating NAD dependent deacetylase sirtuin 1 (SIRT1) activity, which further potentiates PGC-1α function through post-translational deacetylation. The integrated AMPK/PGC-1α/SIRT1 axis coordinates mitochondrial biogenesis, optimizes network architecture through regulation of fusion proteins mitofusin 1 (Mfn1), mitofusin 2 (Mfn2) and optic atrophy protein 1 (OPA1), and enhances clearance of damaged organelles via selective activation of mitophagy receptors BCL2 interacting protein 3 (Bnip1) and FUN14 domain containing 1 (FNDC1). Exercise further stimulates the mitochondrial unfolded protein response (UPRmt), increasing molecular chaperones such as heat shock protein 60 (HSP60) and HSP10 to preserve proteostasis. Within the mitochondrial matrix, SIRT3 fine-tunes metabolic flux through deacetylation of electron transport chain components, improving phosphorylation efficiency while attenuating pathological ROS emission. Distinct exercise modalities differentially engage these pathways. Aerobic endurance training primarily activates AMPK/PGC-1α signaling and UPRmt to expand mitochondrial volume and oxidative capacity. Resistance training exploits mechanical tension to acutely stimulate mechanistic target of rapamycin complex 1 (mTORC1) mediated protein synthesis while modulating dynamin related protein 1 (Drp1) phosphorylation dynamics to support mitochondrial network reorganization. High intensity interval training generates potent metabolic oscillations that rapidly amplify AMPK/PGC-1α and Nrf2 activation, demonstrating particular efficacy in insulin-resistant phenotypes. Strategically designed concurrent training regimens synergistically integrate these adaptations. Mitochondrial-nuclear communication through tricarboxylic acid cycle metabolites and mitochondrially derived peptides such as mitochondrial open reading frame of 12s rRNA-c (MOTS-c) coordinates systemic metabolic reprogramming, with exercise-responsive myokines including fibroblast growth factor 21 (FGF-21) mediating inter-tissue signaling to reduce inflammation and enhance insulin sensitivity. This integrated framework provides the scientific foundation for precision exercise interventions targeting mitochondrial pathophysiology in sarcopenia, incorporating biomarker monitoring and exploring pharmacological potentiators including nicotinamide riboside and MOTS-c mimetics. Future investigations should delineate temporal dynamics of mitohormesis signaling and epigenetic regulation to optimize therapeutic approaches for age-related muscle decline.
    Citation
    ZHANG Zi-Yi, MA Mei, BO Hai, LIU Tao, ZHANG Yong.Review:Exercise-induced Mitohormesis in Counteracting Age-related Sarcopenia[J].,2025,52(6):1349-1361.Export: BibTex EndNote
  • Objective To explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway.Methods 60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp, 5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes.Results Group A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend.Conclusion The aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
    Citation
    ZHANG De-Man, WEI Chang-Ling, ZHANG Yuan-Ting, JIN Yu, HUANG Xiao-Han, ZHENG Min-Yan, LI Xue.Research:Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism[J].,2025,52(6):1362-1372.Export: BibTex EndNote
  • Objective To explore the role and potential mechanism of circulating glutamate in enhancing insulin sensitivity by aerobic exercise. This research may provide a novel strategy for preventing metabolic diseases through precise exercise interventions.Methods To investigate the effects of elevated circulating glutamate on insulin sensitivity and its potential mechanisms, 18 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into 3 groups: a control group (C), a group receiving 500 mg/kg glutamate supplementation (M), and a group receiving 1 000 mg/kg glutamate supplementation (H). The intervention lasted for 12 weeks, with treatments administered 6 d per week. Following the intervention, an insulin tolerance test (ITT) and a glucose tolerance test (GTT) were conducted. Circulating glutamate levels were measured using a commercial kit, and the activity of the skeletal muscle InsR/IRS1/PI3K/AKT signaling pathway was analyzed via Western blot. To further investigate the role of circulating glutamate in enhancing insulin sensitivity through aerobic exercise, 30 male C57BL/6 mice were randomly assigned to 3 groups: a control group (CS), an exercise intervention group (ES), and an exercise combined with glutamate supplementation group (EG). The ES group underwent treadmill-based aerobic exercise, while the EG group received glutamate supplementation at a dosage of 1 000 mg/kg in addition to aerobic exercise. The intervention lasted for 10 weeks, with sessions occurring 6 d per week, and the same procedures were followed afterward. To further elucidate the mechanism by which glutamate modulates the InsR/IRS1/PI3K/AKT signaling pathway, C2C12 myotubes were initially subjected to graded glutamate treatment (0, 0.5, 1, 3, 5, 10 mmol/L) to determine the optimal concentration for cellular intervention. Subsequently, the cells were divided into 3 groups: a control group (C), a glutamate intervention group (G), and a glutamate combined with MK801 (an NMDA receptor antagonist) intervention group (GK). The G group was treated with 5 mmol/L glutamate, while the GK group received 50 μmol/L MK801 in addition to 5 mmol/L glutamate. After 24 h of intervention, the activity of the InsR/IRS1/PI3K/AKT signaling pathway was analyzed using Western blot.Results Compared to the mice in group C, the circulating glutamate levels, the area under curve (AUC) of ITT, and the AUC of GTT in the mice of group H were significantly increased. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle were significantly downregulated. Compared to the mice in group CS, the circulating glutamate levels, the AUC of ITT, and the AUC of GTT in the mice of group ES were significantly reduced. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle of group ES mice were significantly upregulated. There were no significant changes observed in the mice of group EG. Compared to the cells in group 0 mmol/L, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in cells of group 5 mmol/L were significantly downregulated. Compared to the cells in group C, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in the cells of group G were significantly downregulated. No significant changes were observed in the cells of group GK.Conclusion Long-term aerobic exercise can improve insulin sensitivity by lowering circulating levels of glutamate. This effect may be associated with the upregulation of the InsR/IRS1/AKT signaling pathway activity in skeletal muscle. Furthermore, glutamate can weaken the activity of the InsR/IRS1/PI3K/AKT signaling pathway in skeletal muscle, potentially by binding to NMDAR expressed in skeletal muscle.
    Citation
    XING Xiao-Rui, SUN Qin, WANG Huan-Yu, FAN Ruo-Bing, WANG Ru.Research:The Role and Mechanism of Aerobic Exercise in Enhancing Insulin Sensitivity by Reducing Circulating Glutamate[J].,2025,52(6):1373-1385.Export: BibTex EndNote
  • Objective To explore the sequential effects of hypoxic exercising on miR-27/PPARγ and lipid metabolism target gene and protein expression levels in the obesity rats’ liver.Methods 13-week-old male diet-induced obesity rats were randomly divided into three groups (n=10): normal oxygen concentration quiet group (N), hypoxia quiet group (H), hypoxic exercise group (HE). Exercise training on the horizontal animal treadmill for 1 h/d, 5 d/week for a total of 4 week, and the intensity of horizontal treadmill training was 20 m/min (hypoxic concentration was 13.6%). Comparison of the weights of perirenal fat and epididymal fat in rats across different groups and calculation of Lee’s index based on body weight and body length of rats in each group were done. And the serum concentrations of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) levels were detected. RT-PCR and Western Blot were used to detect the levels of miR-27, PPARγ, CYP7A1 and CD36.Results Hypoxic exercise decreased the expression levels of miR-27 in the obese rats’ liver, however, the expression level of PPARγ was gradually increased. The expression levels of miR-27 in HE group were significantly lower than N group (P<0.05). The expression levels of PPARγ mRNA in N group were significantly lower than H group (P<0.05), especially lower than HE group (P<0.01). The protein expression of PPARγ protein in N group was significantly lower than that other groups (P<0.01). The expression of lipid metabolism-related genes and proteins increased in the obese rats’ liver. The expression of CYP7A1 mRNA in N group was significantly lower than H group (P<0.05), especially lower than HE group (P<0.01). The expression of CYP7A1 protein in the obese rats’ liver in N group was extremely lower than H group and HE group (P<0.01). The protein expression of CD36 in N group was significantly lower than that in HE group (P<0.05). Hypoxia exercise improved the related physiological and biochemical indexes of lipid metabolism disorder. The perirenal fat weight of obese rats in HE group was extremely lower than N group and H group (P<0.01), and the perirenal fat weight in N group was significantly higher than H group (P<0.05). The epididymal fat weight in N group was significantly higher than H group (P<0.05), and extremely higher than HE group (P<0.01). The Lee’s index in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of TC in obese rats in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of TG in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of LDL-C in N group was extremely higher than HE group (P<0.01). The serum concentration of HDL-C in N group was extremely lower than H group (P<0.01).Conclusion Hypoxia and hypoxia exercise may negatively regulate the levels of PPARγ by inhibiting miR-27 in the obese rats’ liver, thereby affecting the expression of downstream target genes CYP7A1 and CD36, and promoting cholesterol, fatty acid oxidation and HDL-C transport in the liver, and ultimately the lipid levels in obese rats were improved. The effect of hypoxia exercise on improving blood lipid is better than simple hypoxia intervention.
    Citation
    KONG Wei, SHAO Jie, ZHAI Teng, CHENG Qian, HAN Fang-Zheng, QU Yi, ZHU Lei.Research:Hypoxia Exercise Mediates The miR-27/PPARγ Pathway to Improve Lipid Metabolism in Obese Rats at Target Genes and Protein Levels[J].,2025,52(6):1386-1400.Export: BibTex EndNote
  • Central nervous system diseases (CNSDs) refer to a range of disorders resulting from structural or functional impairments of the brain and spinal cord, including stroke, Alzheimer’s disease (AD), Parkinson’s disease, spinal cord injury (SCI), and brain tumors. As a leading cause of disability and the second leading cause of death worldwide, CNSDs involve complex pathological mechanisms that profoundly affect patients’ physical and mental health as well as their quality of life. Therefore, identifying potential therapeutic targets and developing targeted intervention strategies for the prevention and treatment of CNSDs is of great significance. Recent studies have revealed that lactate can transmit energy between cells via the “lactate shuttle” mechanism and act as an endogenous signaling molecule, exerting diverse biological functions in CNSDs. Lactylation, a novel type of post-translational modification that uses lactate and lysine residues as substrates, plays a critical role in regulating gene transcription, immune responses, and cellular metabolism under both physiological and pathological conditions. Studies have confirmed that lactate participates in the onset and progression of CNSDs through both lactate metabolism and lactylation. In AD, lactate promotes Aβ plaque formation and impairs synaptic plasticity and cognitive function. Lactylation contributes to AD pathogenesis by regulating Aβ accumulation, Tau protein phosphorylation, neuroinflammation, pyroptosis, and ferroptosis. In ischemic stroke (IS), lactate suppresses neuroinflammation and alleviates ischemic injury. Lactylation is involved in the regulation of neuroinflammation, endothelial cell apoptosis, and neuronal ferroptosis, contributing to IS progression. In SCI, lactate promotes the phenotypic transition of astrocytes from the A1 to the A2 type, thereby mitigating neural injury. Lactylation alleviates neurological dysfunction by modulating neuroinflammation, axonal regeneration, mitochondrial function, and microglial proliferation. In glioblastoma (GBM), lactate promotes M2 polarization of microglia, facilitating tumor cell growth and dissemination. Lactylation further accelerates GBM progression by enhancing tumor cell migration, proliferation, immune evasion, and drug resistance. These findings suggest that lactate may serve as a potential therapeutic target for the prevention and treatment of CNSDs. However, its precise role in CNSDs remains unclear, and the specific mechanisms by which lactate metabolism and lactylation influence disease progression warrant further investigation. Moreover, studies have confirmed that exercise, as a key non-pharmacological intervention, holds great promise in the prevention, treatment, and rehabilitation of CNSDs. Specifically, exercise can regulate lactate metabolism and lactylation, which in turn suppresses neuroinflammation, enhances synaptic plasticity, promotes neurogenesis and angiogenesis, improves mitochondrial function in the hippocampus, and facilitates the release of neuroprotective factors, ultimately contributing to the improvement of CNSDs. This review summarizes the roles of lactate metabolism and lactylation in CNSDs, as well as the potential mechanisms by which exercise regulates lactate metabolism and lactylation to improve CNSDs, providing a theoretical basis for the benefits of exercise on brain health.
    Citation
    TANG Shao-Kai, CHEN Xiao-An.Review:Role and Mechanism of Lactate Metabolism/Lactylation in The Improvement of Central Nervous System Diseases by Exercise Intervention[J].,2025,52(6):1401-1417.Export: BibTex EndNote
  • Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
    Citation
    ZHANG Tong-Tong, ZHANG Hao-Zhuo, HE Li, LIU Jia-Wei, WU Jia-Zhen, SU Wen-Hua, DAN Ju-Hua.Targeting PPARα for The Treatment of Cardiovascular Diseases[J]..Export: BibTex EndNote
  • Objective The proteome of biological evidence contains rich genetic information, namely single amino acid polymorphisms (SAPs) in protein sequences. However, due to the lack of efficient and convenient analysis tools, the application of SAP in public security still faces many challenges. This paper aims to meet the application requirements of SAP analysis for forensic biological evidence"s proteome data.Methods The software is divided into three modules. First, based on a built-in database of common non-synonymous single nucleotide polymorphisms (nsSNPs) and SAPs in East Asian populations, the software integrates and annotates newly identified exonic nsSNPs as SAPs, thereby constructing a customized SAP protein sequence database. It then utilizes a pre-installed search engine—either pFind or MaxQuant—to perform analysis and output SAP typing results, identifying both reference and variant types, along with their corresponding imputed nsSNPs. Finally, SAPTyper compares the proteome-based typing results with the individual"s exome-derived nsSNP profile and outputs the comparison report.Results SAPTyper accepts proteomic DDA mass spectrometry raw data (DDA acquisition mode) and exome sequencing results of nsSNPs as input and outputs the report of SAPs result. The pFind and Maxquant search engines were used to test the proteome data of 2 hair shafts of 2 individuals, and both obtained SAP results. It was found that the results of the Maxquant search engine were slightly less than those of pFind. This result shows that SAPTyper can achieve SAP fingding function. Moreover, the pFind search engine was used to test the proteome data of 3 hair shafts from 1 European person and 1 African person in the literature. Among the sites fully matched by the literature method, sites detected by SAPTyper are also included; for semi-matching sites, that is, nsSNPs are heterozygous, both literature method and SAPTyper method had the risk of missing detection for one type of the allele. Comparing the analysis results of SAPTyper with the SAP test results reported in the literature, it was found that some imputed nsSNP sites identified by the literature method but not detected by SAPTyper had a MAF of less than 0.1% in East Asian populations, and therefore they were not included in the common nsSNP database of East Asian populations constructed by this software. Since the database construction of this software is based on the genetic variation information of East Asian populations, it is currently unable to effectively identify representative unique common variation sites in European or African populations, but it can still identify SAP sites shared by these populations and East Asian populations.Conclusion An automated SAP analysis algorithm was developed for East Asian populations, and the software named SAPTyper was developed. This software provides a convenient and efficient analysis tool for the research and application of forensic proteomic SAP and has important application prospects in individual identification and phenotypic inference based on SAP.
    Citation
    HU Feng, WANG Meng-Jiao, WU Jia-Lei, DING Dong-Sheng, YANG Zhi-Yuan, JI An-Quan, FENG Lei, YE Jian.Development of an Analytical Software for Forensic Proteomic SAP Typing[J]..Export: BibTex EndNote
  • Objective Fat infiltration has been shown to be closely related to muscle mass loss and a variety of muscle diseases. This study proposes a method based on phase-angle electrical impedance tomography (ΦEIT) to visualize the electrical characteristic response caused by muscle fat infiltration, aiming to provide a new technical means for early non-invasive detection of muscle mass deterioration.Methods This study was divided into two parts. First, a laboratory pork model was constructed to simulate different degrees of fat infiltration by injecting 1 ml or 2 ml of emulsified fat solution into different muscle compartments, and the phase angle images were reconstructed using ΦEIT. Second, a human experiment was conducted to recruit healthy subjects (n=8) from two age groups (20–25 years old and 26–30 years old). The fat content percentage ηfat of the left and right legs was measured by bioelectrical impedance analysis (BIA), and the phase angle images of the left and right calves were reconstructed using ΦEIT. The relationship between the global average phase angle ΦM and the spatial average phase angle ΦMi of each muscle compartment and fat infiltration was further analyzed.Results In the laboratory pork model, the grayscale value of the image increased with the increase of ηfat and ΦM showed a downward trend. The results of human experiments showed that at the same fat content percentage, the ΦM of the 26–30-year-old group was about 20%–35% lower than that of the 20–25-year-old group. The fat content percentage was significantly negatively correlated with ΦM. In addition, the M2 (soleus) compartment was most sensitive to fat infiltration, and the spatial average phase angles of the M2 (soleus), M3 (tibialis posterior and flexor digitorum longus), and M4 (tibialis anterior, extensor digitorum longus, and peroneus longus) compartments all showed significant inter-group differences.Conclusion ΦEIT imaging can effectively distinguish different degrees of fat infiltration, especially in deep, small or specially located muscles, showing high sensitivity, demonstrating the potential application of this method in local muscle mass monitoring and early non-invasive diagnosis.
    Citation
    XIAO Wu-Guang, ZHU Xiao-Peng, FENG Hui, SUN Bo, ZHAO Tong, YAO Jia-Feng.Study on The Detection Method of Fat Infiltration in Muscle Tissue Based on Phase Angle Electrical Impedance Tomography[J]..Export: BibTex EndNote
  • Lipid droplets (LDs) are dynamic organelles that are ubiquitous across most organisms, including animals, plants, protists, and microorganisms. Their core consists of neutral lipids, surrounded by a phospholipid monolayer adorned with a specific set of proteins. As critical intracellular hubs of metabolic regulation, lipid droplets play essential roles in maintaining physiological homeostasis and contributing to the progression of various pathological processes. They store neutral lipids for energy production during periods of starvation or for membrane biosynthesis, and they sequester fatty acids to mitigate lipotoxicity. Clinically, dysregulation of lipid droplet function is associated with a wide range of diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, type 2 diabetes mellitus (T2DM), neurodegenerative disorders, and cancer. Research into the biological functions of lipid droplets—as dynamic organelles and their links to multiple diseases—has emerged as a cutting-edge focus in cell biology. In recent years, significant advances have been made in understanding lipid droplet biogenesis. Researchers have developed a more refined framework that elucidates how LDs are assembled in the endoplasmic reticulum (ER). Triacylglycerols and sterol esters are synthesized between the inner and outer leaflets of the ER bilayer, and when they exceed the critical nucleation concentration (CNC), they coalesce to form neutral lipid lenses. These then bud from the ER under the coordinated action of key proteins such as Seipin, fat storage-inducing transmembrane protein 2 (FIT2), and the peroxisomal membrane protein Pex30. This budding process is driven by changes in membrane curvature and surface tension, induced by the asymmetric distribution of phospholipids. Nascent lipid droplets recruit lipid-synthesizing enzymes via ER-LD bridging structures, enabling localized lipid production and surface expansion, ultimately resulting in the formation of mature LDs. Biochemical and biophysical approaches have revealed important features of this process, underscoring the critical roles of ER membrane biophysical properties and specific phospholipids. Structural biology and proteomic studies have identified key regulators—particularly Seipin and FIT2—as central players in LD biogenesis. This review systematically summarizes recent advances in the molecular mechanisms of LD biogenesis. It delves into the processes of LD nucleation, membrane budding, and expansion in eukaryotic cells, with a special focus on how core factors such as Seipin and FIT2 dynamically regulate LD morphology. In addition, it examines the mechanisms and pathways by which class I and class II proteins are targeted to LDs, compares LD biogenesis involving different neutral lipid cores, and discusses the disease relevance of specific regulatory proteins.Finally, the review outlines critical unresolved questions in the field of LD biogenesis, offering clear directions for future research and providing a comprehensive framework for deepening our understanding of LD formation and its implications for disease intervention.
    Citation
    YU Yue, JI Wei-Ke, XIONG Juan.Lipid Droplet Biogenesis at the ER: Orchestrating Nucleation, Membrane Budding, and Expansion[J]..Export: BibTex EndNote
  • In recent years, the deep integration of artificial intelligence (AI) into medical education has created new opportunities for teaching Biochemistry and Molecular Biology, while also offering innovative solutions to the pedagogical challenges associated with protein structure and function. Focusing on the case of anaplastic lymphoma kinase (ALK) gene mutations in non-small-cell lung cancer (NSCLC), this study integrates AI into case-based learning (CBL) to develop an AI-CBL hybrid teaching model. This model features an intelligent case-generation system that dynamically constructs ALK mutation scenarios using real-world clinical data, closely linking molecular biology concepts with clinical applications. It incorporates AI-powered protein structure prediction tools to accurately visualize the three-dimensional structures of both wild-type and mutant ALK proteins, dynamically simulating functional abnormalities resulting from conformational changes. Additionally, a virtual simulation platform replicates the ALK gene detection workflow, bridging theoretical knowledge with practical skills. As a result, a multidimensional teaching system is established—driven by clinical cases and integrating molecular structural analysis with experimental validation. Teaching outcomes indicate that the three-dimensional visualization, dynamic interactivity, and intelligent analytical capabilities provided by AI significantly enhance students" understanding of molecular mechanisms, classroom engagement, and capacity for innovative research. This model establishes a coherent training pathway linking "fundamental theory-scientific research thinking-clinical practice," offering an effective approach to addressing teaching challenges and advancing the intelligent transformation of medical education.
    Citation
    HU Ying-Lu, LIN Yi-Chen, GUO Jun-Ming, MENG Xiao-Dan.Exploration and Practice of Artificial Intelligence Empowering Case-based Teaching in Biochemistry and Molecular Biology[J]..Export: BibTex EndNote
  • RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the "RNA modification interactome" or "RNA modification interaction network." The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as "writers," "erasers," and "readers." These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome.
    Citation
    FANG Jia-Wen, ZHE Chao, XU Ling-Ting, LI Lin-Hai, XIAO Bin.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment[J]..Export: BibTex EndNote
  • Alzheimer"s disease (AD), a progressive neurodegenerative disorder and the leading cause of dementia in the elderly, is characterized by severe cognitive decline, loss of daily living abilities, and neuropsychiatric symptoms. This condition imposes a substantial burden on patients, families, and society. Despite extensive research efforts, the complex pathogenesis of AD, particularly the early mechanisms underlying cognitive dysfunction, remains incompletely understood, posing significant challenges for timely diagnosis and effective therapeutic intervention. Among the various cellular components implicated in AD, GABAergic interneurons have emerged as critical players in the pathological cascade, playing a pivotal role in maintaining neural network integrity and function in key brain regions affected by the disease. GABAergic interneurons represent a heterogeneous population of inhibitory neurons essential for sustaining neural network homeostasis. They achieve this by precisely modulating rhythmic oscillatory activity (e.g., theta and gamma oscillations), which are crucial for cognitive processes such as learning and memory. These interneurons synthesize and release the inhibitory neurotransmitter GABA, exerting potent control over excitatory pyramidal neurons through intricate local circuits. Their primary mechanism involves synaptic inhibition, thereby modulating the excitability and synchrony of neural populations. Emerging evidence highlights the significant involvement of GABAergic interneuron dysfunction in AD pathogenesis. Contrary to earlier assumptions of their resistance to the disease, specific subtypes exhibit vulnerability or altered function early in the disease process. Critically, this impairment is not merely a consequence but appears to be a key driver of network hyperexcitability, a hallmark feature of AD models and potentially a core mechanism underlying cognitive deficits. For instance, parvalbumin-positive (PV+) interneurons display biphasic alterations in activity. Both suppressing early hyperactivity or enhancing late activity can rescue cognitive deficits, underscoring their causal role. Somatostatin-positive (SST+) neurons are highly sensitive to amyloid-beta (Aβ) dysfunction. Their functional impairment drives AD progression via a dual pathway: compensatory hyperexcitability promotes Aβ generation, while released SST-14 forms toxic oligomers with Aβ, collectively accelerating neuronal loss and amyloid deposition, forming a vicious cycle. Vasoactive intestinal peptide-positive (VIP+) neurons, although potentially spared in number early in the disease, exhibit altered firing properties (e.g., broader spikes, lower frequency), contributing to network dysfunction (e.g., in CA1). Furthermore, VIP release induced by 40 Hz sensory stimulation (GENUS) enhances glymphatic clearance of Aβ, demonstrating a direct link between VIP neuron function and modulation of amyloid pathology. Given their central role in network stability and their demonstrable dysfunction in AD, GABAergic interneurons represent promising therapeutic targets. Current research primarily explores three approaches: increasing interneuron numbers (e.g., improving cortical PV+ interneuron counts and behavior in APP/PS1 mice with the antidepressant citalopram; transplanting stem cells differentiated into functional GABAergic neurons to enhance cognition), enhancing neuronal activity (e.g., using low-dose levetiracetam or targeted activation of specific molecules to boost PV+ interneuron excitability, restoring neural network γ-oscillations and memory; non-invasive neuromodulation techniques like 40 Hz repetitive transcranial magnetic stimulation (rTMS), GENUS, and minimally invasive electroacupuncture to improve inhibitory regulation, promote memory, and reduce Aβ), and direct GABA system intervention (clinical and animal studies reveal reduced GABA levels in AD-affected brain regions; early GABA supplementation improves cognition in APP/PS1 mice, suggesting a therapeutic time window). Collectively, these findings establish GABAergic interneuron intervention as a foundational rationale and distinct pathway for AD therapy. In conclusion, GABAergic interneurons, particularly the PV+, SST+, and VIP+ subtypes, play critical and subtype-specific roles in the initiation and progression of AD pathology. Their dysfunction significantly contributes to network hyperexcitability, oscillatory deficits, and cognitive decline. Understanding the heterogeneity in their vulnerability and response mechanisms provides crucial insights into AD pathogenesis. Targeting these interneurons through pharmacological, neuromodulatory, or cellular approaches offers promising avenues for developing novel, potentially disease-modifying therapies.
    Citation
    CHEN Ke-Han, YANG Zheng-Jiang, GAO Zi-Xin, YAO Yuan, YAO De-Zhong, YANG Yin, CHEN Ke.The Critical Roles of GABAergic Interneurons in The Pathological Progression of Alzheimer’s Disease[J]..Export: BibTex EndNote
  • Objective This study proposes a novel single-cell protein localization method based on a class perception graph convolutional network (CP-GCN) to overcome several critical challenges in protein microscopic image analysis, including the scarcity of cell-level annotations, inadequate feature extraction, and the difficulty in achieving precise protein localization within individual cells. The methodology involves multiple innovative components designed to enhance both feature extraction and localization accuracy.Methods First, a class perception module (CPM) is developed to effectively capture and distinguish semantic features across different subcellular categories, enabling more discriminative feature representation. Building upon this, the CP-GCN network is designed to explore global features of subcellular proteins in multicellular environments. This network incorporates a category feature-aware module to extract protein semantic features aligned with label dimensions and establishes a subcellular relationship mining module to model correlations between different subcellular structures. By doing so, it generates co-occurrence embedding features that encode spatial and contextual relationships among subcellular locations, thereby improving feature representation. To further refine localization, a multi-scale feature analysis approach is employed using the K-means clustering algorithm, which classifies multi-scale features within each subcellular category and generates multi-cell class activation maps (CAMs). These CAMs highlight discriminative regions associated with specific subcellular locations, facilitating more accurate protein localization. Additionally, a pseudo-label generation strategy is introduced to address the lack of annotated single-cell data. This strategy segments multicellular images into single-cell images and assigns reliable pseudo-labels based on the CAM-predicted regions, ensuring high-quality training data for single-cell analysis. Under a transfer learning framework, the model is trained to achieve precise single-cell-level protein localization, leveraging both the extracted features and pseudo-labels for robust performance.Results Experimental validation on multiple single-cell test datasets demonstrates that the proposed method significantly outperforms existing approaches in terms of robustness and localization accuracy. Specifically, on the Kaggle 2021 dataset, the method achieves superior mean average precision (mAP) metrics across 18 subcellular categories, highlighting its effectiveness in diverse protein localization tasks. Visualization of the generated CAM results further confirms the model"s capability to accurately localize subcellular proteins within individual cells, even in complex multicellular environments.Conclusion The integration of the CP-GCN network with a pseudo-labeling strategy enables the proposed method to effectively capture heterogeneous cellular features in protein images and achieve precise single-cell protein localization. This advancement not only addresses key limitations in current protein image analysis but also provides a scalable and accurate solution for subcellular protein studies, with potential applications in biomedical research and diagnostic imaging. The success of this method underscores the importance of combining advanced deep learning architectures with innovative training strategies to overcome data scarcity and improve localization performance in biological image analysis. Future work could explore the extension of this framework to other types of microscopic imaging and its application in large-scale protein interaction studies.
    Citation
    TANG Hao-Yang, YAO Xin-Yue, WANG Meng-Meng, YANG Si-Cong.Single-cell Protein Localization Method Based on Class Perception Graph Convolutional Network[J]..Export: BibTex EndNote
  • Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body"s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing "gut-brain" axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of "exercise-BDNF-metaflammation" remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
    Citation
    DAI Yu-Xi, WANG Wei-Huan, HE Yu-Xiu.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF[J]..Export: BibTex EndNote
  • Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown etiology, primarily characterized by systemic inflammation and hyperactivation of both B and T lymphocytes. Key immunological features include increased consumption of complement components, sustained overproduction of type I interferons (IFN-I), and persistent production of a broad spectrum of autoantibodies, such as anti-dsDNA antibodies. However, the use of autoantibodies as biomarkers for the early detection of SLE is associated with a high false-positive rate, suggesting that antibody characteristics evolve during disease progression. N-glycosylation is a critical post-translational modification of antibodies that significantly influences their structure and receptor-binding properties, thereby modulating biological activities and functions. In particular, glycosylation patterns affect the antibody"s affinity for Fc gamma receptors (FcγRs), subsequently regulating various antibody-mediated immune responses. Numerous studies have investigated the impact of individual monosaccharides—such as sialic acid, fucose, and N-acetylglucosamine, which constitute N-glycans—on the immunological functions of antibodies. This review systematically summarizes the aberrant immunoglobulin G (IgG) N-glycosylation patterns observed in SLE patients, with a focus on correlations between disease progression or complications and quantitative alterations in individual glycan components. We first review how different types of N-glycosylation modifications affect the biological activity and functional properties of IgG, particularly regarding the effects of specific monosaccharides—such as sialic acid, fucose, and galactose—on FcγR binding affinity and the resulting downstream immune functions. We then summarize the differential expression of IgG N-glycans and glycosyltransferase genes between SLE patients and healthy controls, and outline the associations between glycosylation changes and SLE-related pathological responses. In response to the inconsistencies and limitations in current research, we propose potential explanations from the perspectives of study methodologies, participant characteristics, and variations in N-glycan structures, aiming to provide a constructive reference for future studies. Given the close relationship between antibody glycosylation and SLE, this review highlights the potential of IgG N-glycosylation patterns as promising biomarkers for early diagnosis and disease monitoring. In terms of therapy, we discuss how IgG glycosylation can enhance the efficacy of intravenous immunoglobulin (IVIG) treatment and introduce emerging therapeutic strategies that aim to modulate endogenous IgG N-glycans as a novel glycan-based approach for SLE management. In summary, N-glycans are essential structural components of antibodies that regulate immune responses by modulating antibody–receptor interactions. Aberrant glycosylation is closely associated with the pathogenesis of autoimmune diseases, including SLE. However, due to the structural diversity of N-glycans and the complexity of glycosylation processes, the precise roles of IgG N-glycosylation in SLE pathophysiology remain incompletely understood. Moreover, therapeutic strategies targeting IgG glycosylation are still in early development and have not yet reached clinical application. Continued progress in glycan analysis technologies and other biological tools, along with interdisciplinary collaboration, will be essential for advancing this field.
    Citation
    LIU Yao-Zhou, BIAN Zheng, HUANG Chun-Cui, LI Yan.N-Glycosylation Modifications of Immunoglobulins G in Systemic Lupus Erythematosus[J]..Export: BibTex EndNote
  • Parkinson"s disease (PD), the second most common neurodegenerative disease after Alzheimer"s disease, manifests a variety of motor symptoms, such as bradykinesia, resting tremor, rigidity, postural balance disorder, and also presents non-motor symptoms, including cognitive decline, depression, constipation, and sleep disorders. Currently, treatment for PD primarily encompasses pharmacological interventions, with levodopa being the first-line therapy, and non-pharmacological approaches such as deep brain stimulation (DBS). However, both approaches exhibit therapeutic limitations, with potential adverse reactions emerging from long-term use. Levodopa is associated with dyskinesia, while DBS may lead to mental confusion, cognitive decline, and depression. Exercise, as an effective adjuvant strategy for drug treatment of PD, can significantly improve PD motor disorders. Recently, studies have found that the mechanisms of exercise improving PD motor symptoms are associated with exerkines. Exerkine refers to signalling moieties secreted in response to acute and/or chronic exercise. This review mainly summarizes the improvement of PD motor disorders by various exerkines and the underlying mechanisms. Firstly, exercise can trigger the secretion of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in the substantia nigra (SN) and the striatum, potentially improving PD. Recent evidence has suggested that both BDNF and GDNF could improve motor symptoms of PD via restoring the number of dopaminergic neurons in the SN and striatum, increasing striatal dopamine contents, and reducing α-synuclein (α-syn) accumulation in the SN. In addition, BDNF also alleviates motor symptoms of PD by enhancing long-term potentiation and increasing the spine density of spiny projection neurons in the striatum, while GDNF by inhibiting neuroinflammation in the SN via suppressing the activation of microglia, reducing interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expressions, reducing the phosphorylation of inhibitor of nuclear factor kappa Bα (IκBα), and increasing the anti-inflammatory factors IL-10 and transforming growth factor-β (TGF-β). Secondly, exercise, a main trigger for irisin secretion from skeletal muscle, can improve PD motor symptoms by stimulating the irisin/adenosine monophosphate-activated protein kinase (AMPK)/Sirtuin-1 (SIRT1) pathway. Specifically, irisin alleviates motor symptoms in PD through multiple mechanisms, including inhibiting excessive mitochondrial fission by reducing the expressions of dynamin-related protein 1 (Drp1) and mitochondrial fission protein 1 (Fis1), and alleviating the apoptosis of dopaminergic neurons by increasing B-cell lymphoma 2 (Bcl-2) expression and reducing Bcl-2-associated X protein (Bax) and caspase 3 expressions, and restoring the number of dopaminergic neurons. Thirdly, new biomarkers of PD (cathepsin B and Fetuin-A) also play roles in PD development. Cathepsin B can promote the clearance of pathogenic α-syn in PD by enhancing the function of lysosomes, including strengthening the lysosomal degradation capacity, elevating the transport rate, and increasing the activity of lysosomal glucocerebrosidase (GCase). Fetuin-A has been demonstrated to improve PD by restoring the number and the morphology of Purkinje cells, which are the only efferent neurons in the cerebellar cortex and play an important role in maintaining motor coordination. This review aims to facilitate a deep understanding of the mechanism by which exercise improves PD motor symptoms and provide a theoretical basis for promotion of exercise in PD.
    Citation
    PENG Jin, LIU Yu, WANG Xiao-Hui.The Improvement of Motor Symptoms in Parkinson’s Disease by Exerkines and The Underlying Mechanisms[J]..Export: BibTex EndNote
  • Objective Traditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong"s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA"s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays.Methods This study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper, Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. Molecular dynamics (MD) simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control.Results The CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/Akt, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels.Conclusion It was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/Akt signaling pathway. These findings provide crucial evidence supporting PA"s development as a therapeutic candidate for NB.
    Citation
    LIU Hang, ZHU Yu-Xin, GUO Si-Lin, PAN Xin-Yun, XIE Yuan-Jie, LIAO Si-Cong, DAI Xin-Wen, SHEN Ping, XIAO Yu-Bo.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma[J]..Export: BibTex EndNote
  • Objective As the central hub of the classical visual pathway, the primary visual cortex not only encodes and processes visual information but also establishes dense neural circuit connections with higher-order cognitive brain regions. Numerous studies have shown that 40 Hz flicker stimulation can induce gamma oscillations in the brain and significantly improve learning and cognitive impairments in patients with neurodegenerative diseases. Moreover, flickering light phenomena naturally occur in daily environments. Given that the primary visual cortex serves as the brain"s first cortical hub for receiving visual input, it is essential to comprehensively understand how non-invasive light flicker stimulation modulates its information processing mechanisms. This study systematically investigates the effects of non-invasive light flicker stimulation at different frequencies on the functional properties of neurons in the primary visual cortex of adult mice, aiming to uncover how such stimulation modulates this region and, consequently, affects overall brain function.Methods Three groups of adult mice (approximately 12 weeks old) were exposed to light flicker stimulation at frequencies of 20 Hz, 40 Hz, and 60 Hz, respectively, for a duration of two months. A control group was exposed to the same light intensity without flickering. Following the stimulation period, in vivo multi-channel electrophysiological recordings were conducted. During these recordings, anesthetized mice were presented with various types of moving sinusoidal light gratings to assess the effects of different flicker frequencies on the functional properties of neurons in the primary visual cortex.Results The experimental results demonstrate that two months of light flicker stimulation at 20 Hz, 40 Hz, and 60 Hz enhances the orientation tuning capabilities of neurons in the primary visual cortex. Specifically, 40 Hz and 60 Hz stimulation improved contrast sensitivity, whereas 20 Hz had no significant effect. Further analysis revealed that all three frequencies reduced neuronal response variability (as measured by the Fano Factor), increased the signal-to-noise ratio, and decreased noise correlation (rsc) between neurons.Conclusion Non-invasive light flicker stimulation enhances orientation tuning (e.g., orientation bandwidth) and contrast sensitivity (e.g., contrast threshold and C50) in neurons of the primary visual cortex. This enhancement is likely due to improved information processing efficiency, characterized by reduced neuronal variability and increased signal-to-noise ratio. These findings suggest that the primary visual cortex can achieve precise and efficient information encoding in complex lighting environments by selectively adapting to different flicker frequencies and optimizing receptive field properties. This study provides new experimental evidence on how various types of light flicker influence visual perception and offers insights into the mechanisms through which specific frequencies enhance brain function.
    Citation
    LI Xue-Qi, ZHOU Yi-Feng, XU Guang-Wei.Effects of Non-invasive Light Flicker on Functional Properties of Primary Visual Cortex in Adult Mice[J]..Export: BibTex EndNote
  • Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K–AKT–mTOR, Ras–Raf–MEK–ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
    Citation
    ZHAO Mao, FENG Jin-Qiu, GAO Ze-Qi, WANG Ping, FU Jia.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy[J]..Export: BibTex EndNote
  • In recent years, the application of artificial intelligence (AI) technology in the field of biology has made rapid progress, with the most notable achievements emerging in protein structure prediction and design—recognized by the awarding of the Nobel Prize in Chemistry in 2024. It is foreseeable that the accurate prediction of various physicochemical properties of proteins will become a key direction for future development in the protein prediction field. Among these properties, protein thermodynamic stability holds great significance for advancing our understanding of life mechanisms, facilitating drug development, enabling disease diagnosis and treatment, and supporting the biotechnology industry in areas such as enzyme production, biosensor development, and protein drug formulation.The accurate prediction of protein thermodynamic stability using AI technologies can greatly enhance both research capabilities and industrial efficiency. This article reviews the development of protein thermodynamic stability prediction technologies, covering the evolution from biological experimental methods and traditional energy function-based approaches to modern machine learning techniques. The focus is on machine learning-based prediction models, particularly recent breakthroughs involving deep neural networks, graph neural networks, and attention mechanisms. Core challenges in mutation stability prediction—such as dataset quality-quantity imbalance, model overfitting, and the incorporation of protein dynamics—are discussed in depth. This paper aims to provide researchers with a comprehensive reference framework to advance the development of mutation-based protein thermodynamic stability prediction technologies.
    Citation
    TAO Lin-Jie, XU Fan-Ding, GUO Yu, LONG Jian-Gang, LU Zhuo-Yang.Prediction of Protein Thermodynamic Stability Based on Artificial Intelligence[J]..Export: BibTex EndNote
  • The Golgi apparatus (GA) is a key membranous organelle in eukaryotic cells, acting as a central component of the endomembrane system. It plays an irreplaceable role in the processing, sorting, trafficking, and modification of proteins and lipids. Under normal conditions, the GA cooperates with other organelles, including the endoplasmic reticulum (ER), lysosomes, mitochondria, and others, to achieve the precise processing and targeted transport of nearly one-third of intracellular proteins, thereby ensuring normal cellular physiological functions and adaptability to environmental changes. This function relies on Golgi protein quality control (PQC) mechanisms, which recognize and handle misfolded or aberrantly modified proteins by retrograde transport to the ER, proteasomal degradation, or lysosomal clearance, thus preventing the accumulation of toxic proteins. In addition, Golgi-specific autophagy (Golgiphagy), as a selective autophagy mechanism, is also crucial for removing damaged or excess Golgi components and maintaining its structural and functional homeostasis. Under pathological conditions such as oxidative stress and infection, the Golgi apparatus suffers damage and stress, and its homeostatic regulatory network may be disrupted, leading to the accumulation of misfolded proteins, membrane disorganization, and trafficking dysfunction. When the capacity and function of the Golgi fail to meet cellular demands, cells activate a series of adaptive signaling pathways to alleviate Golgi stress and enhance Golgi function. This process reflects the dynamic regulation of Golgi capacity to meet physiological needs. To date, 7 signaling pathways related to the Golgi stress response have been identified in mammalian cells. Although these pathways have different mechanisms, they all help restore Golgi homeostasis and function and are vital for maintaining overall cellular homeostasis. It is noteworthy that the regulation of Golgi homeostasis is closely related to multiple programmed cell death pathways, including apoptosis, ferroptosis, and pyroptosis. Once Golgi function is disrupted, these signaling pathways may induce cell death, ultimately participating in the occurrence and progression of diseases. Studies have shown that Golgi homeostatic imbalance plays an important pathological role in various major diseases. For example, in Alzheimer’s disease (AD) and Parkinson’s disease (PD), Golgi fragmentation and dysfunction aggravate the abnormal processing of amyloid β-protein (Aβ) and tau protein, promoting neuronal loss and advancing neurodegenerative processes. In cancer, Golgi homeostatic imbalance is closely associated with increased genomic instability, enhanced tumor cell proliferation, migration, invasion, and increased resistance to cell death, which are important factors in tumor initiation and progression. In infectious diseases, pathogens such as viruses and bacteria hijack the Golgi trafficking system to promote their replication while inducing host defensive cell death responses. This process is also a key mechanism in host-pathogen interactions. This review focuses on the role of the Golgi apparatus in cell death and major diseases, systematically summarizing the Golgi stress response, regulatory mechanisms, and the role of Golgi-specific autophagy in maintaining homeostasis. It emphasizes the signaling regulatory role of the Golgi apparatus in apoptosis, ferroptosis, and pyroptosis. By integrating the latest research progress, it further clarifies the pathological significance of Golgi homeostatic disruption in neurodegenerative diseases, cancer, and infectious diseases, and reveals its potential mechanisms in cellular signal regulation.
    Citation
    CHENG Xin-Yue, YAO Feng-Hua, ZHANG Hui, YAO Yong-Ming.The Significance of Golgi Apparatus Homeostasis in Signal Regulation of Programmed Cell Death and Major Diseases[J]..Export: BibTex EndNote
  • Objective Repetitive transcranial magnetic stimulation (rTMS) has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease (AD), but the neurobiological mechanisms linking synaptic pathology, neural oscillatory dynamics, and brain network reorganization remain unclear. This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments, molecular profiling, and neurophysiological monitoring.Methods In this prospective double-blind trial, 12 AD patients underwent a 14-day protocol of 20 Hz rTMS, with comprehensive multimodal assessments performed pre- and post-intervention. Cognitive functioning was quantified using the mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA), while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living (ADL) scale and combined neuropsychiatric inventory (NPI)-Hamilton depression rating scale (HAMD). Peripheral blood biomarkers, specifically Aβ1-40 and phosphorylated tau (p-tau181), were analyzed to investigate the effects of TMS on molecular metabolism. Spectral power analysis was employed to investigate TMS-induced modulations of neural rhythms in AD patients, while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization. Furthermore, systematic assessment of correlations between cognitive scale scores, blood biomarkers, and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically, MMSE and MoCA scores improved significantly (P<0.05). Biomarker showed that Aβ1-40 level increased (P<0.05), contrasting with p-tau181 reduction (P<0.05). Moreover, the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores. Significant post-intervention alterations were observed in oscillatory power, with marked reductions in delta (P<0.05) and theta bands (P<0.05), contrasted by gamma band power elevation (P<0.05). No significant changes were observed in alpha and beta band EEG powers (P>0.05). Network analysis revealed frequency-specific reorganization: clustering coefficients were significantly enhanced in delta, theta, and alpha bands (P<0.05), while global efficiency improvement was exclusively detected in the delta band (P<0.05). The alpha band demonstrated concurrent increases in average nodal degree (P<0.05) and characteristic path length reduction (P<0.05). Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181. Additionally, the changes in the clinical scales MMSE and MoCA scores are negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band. However, the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex (DLPFC) significantly improves cognitive function and enhances the metabolic clearance of β-amyloid and tau proteins in AD patients. This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation, which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks. These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales, blood biomarkers, and EEG-in understanding and monitoring the progression of AD. This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment.
    Citation
    XU Gui-Zhi, LIN Lin, GUO Miao-Miao, WANG Tian, GAO Jiao-Jiao, JI Yong, WANG Pan.rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease[J]..Export: BibTex EndNote
  • As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: that understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
    Citation
    YANG Xin, LI Ke, LIU Ran, ZHAO Xu-Dong, WANG Hua-Lin, MAO Lan-Qun, HOU Li-Juan.Investigating The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity[J]..Export: BibTex EndNote
  • Objective Based on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective.Methods According to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with TD into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity.Results Compared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2.Conclusion Children with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
    Citation
    ZONG Wen-Hao, LIANG Qi, YANG Shi-Yu, WANG Feng-Jiao, WEI Meng-Zhao, LEI Hong, DONG Gui-Jun, LI Ke-Feng.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology[J]..Export: BibTex EndNote
  • Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared region II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
    Citation
    LI Zhen-Hua, MA Hui-Zhen, WANG Hao, LIU Chang-Long, ZHANG Xiao-Dong.The Near-infrared-II Emission of Gold Clusters and Their Applications in Biomedicine[J]..Export: BibTex EndNote
  • The subcortical visual pathway is generally thought to be involved in dangerous information processing, such as fear processing and defensive behavior. A recent study, published in Human Brain Mapping, shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception. Rapid object processing is a critical function of visual system. Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property (TP). However, the mechanism of rapid TP processing remains unclear. The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation (TMS). They find that a subcortical magnocellular pathway is responsible for the early processing of TP, and this subcortical processing of TP accelerates object recognition. Based on their findings, we propose a novel training approach called subcortical magnocellular pathway training (SMPT), aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.
    Citation
    MA Hao-Yun, WEI Yu-Yin, HU Li-Ping.Fast Object Perception in The Subcortical Pathway: a Commentary on Wang et al.’s Paper in Human Brain Mapping (2023)[J]..Export: BibTex EndNote
  • In recent years, with the large-scale use of plastic products, the degree of plastic pollution has increased, becoming a serious global problem. Microplastics and nanoplastics (MNPs), as emerging environmental pollutants, are widely found in organisms and the environment. These plastic particles enter the human body through 3 exposure pathways: breathing, the food chain’s bioaccumulation and transfer, and skin contact, thereby exerting toxic effects. The physical attributes of MNPs, including their shape, size, and surface characteristics, are not static but rather undergo dynamic transformations in response to changing environmental conditions. These changes can significantly influence their behavior and interactions within different ecosystems. When considering MNPs as carriers of chemicals, two primary mechanisms can be distinguished. (1) MNPs have the capacity to adsorb pollutants from their surrounding environment. These pollutants may encompass a wide range of substances, such as heavy metals, organic compounds, and other contaminants that are commonly found in water, soil, or air. (2) MNPs may also carry chemical agents that are artificially introduced during their commercial production process. For example, flame retardants and pigments are often added to plastics to enhance their performance or appearance. These artificially added chemicals can remain associated with MNPs throughout their lifecycle and may contribute to their overall toxicological impact. Cardiovascular diseases (CVDs) are a general term for diseases of the heart, arteries, veins, and capillaries, and are one of the main causes of disability and death. CVDs have higher incidence, mortality, and recurrence rates, and more complications, which reduce the quality of life and happiness of patients, the phenomenon is gradually showing a trend of early onset, therefore early-stage prevention for CVDs is of critical importance. This article reviews the properties of MNPs and their potential threats to the cardiovascular system, aiming to explore how MNPs cause CVDs through certain physiological effects, toxicity mechanisms, and related pathways. Our review primarily focus on elucidating several critical mechanisms through which MNPs exert their adverse effects. Specifically, the review examines how the enhancement of oxidative stress can trigger the expression of pro-inflammatory factors, which in turn leads to the formation of a chronic inflammatory microenvironment within biological systems. Additionally, MNPs possess the capacity to adsorb toxic metals and organic substances from their surroundings. Furthermore, the review summarizes that sewage irrigation and atmospheric deposition are significant factors contributing to the co-pollution of heavy metals with MNPs in environmental settings. The interaction between heavy metals and MNPs has been shown to have detrimental effects on agricultural productivity, as it can inhibit crop growth and simultaneously increase the absorption rate of heavy metals in plants. When these contaminated plants enter the food chain, the accumulated heavy metals can ultimately be ingested by humans. This process poses a potential risk for inducing acute coronary syndrome and other CVDs, thereby underscoring the importance of understanding and mitigating the impact of MNPs on human health. In addition, our review also gives examples of the long-term effects of MNPs on cardiovascular function and the adverse consequences such as arrhythmia and atherosclerosis, the limitations of the current studies of MNPs affecting cardiovascular system health and future directions are also explored.
    Citation
    GAO Fan, YANG Ming, CHEN Zhong.A New Risk of Cardiovascular Disease —— Micro-nanoplastics[J]..Export: BibTex EndNote
  • Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.
    Citation
    LI Pei-Yang, LI Feng-Qi, HOU Xiao-Jun, LI Xue-Ren, MU Xin, LIU Hui-Min, PENG Shou-Chun.Immunotherapy for Lung Cancer[J]..Export: BibTex EndNote
  • Tumor immunotherapy has emerged as the fourth major therapeutic modality, following surgery, radiotherapy, and chemotherapy. Unlike traditional treatments that primarily target tumor cells directly, immunotherapy harnesses the body’s immune system to recognize and eliminate cancer cells. Over the past decade, various immunotherapeutic strategies have been developed, including immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) T cell therapy, cancer vaccines, and cytokine-based therapies. However, the immunosuppressive tumor microenvironment (TME) poses a significant obstacle to the effectiveness of these treatments. Polyamines—including putrescine, spermidine, and spermine—are polycationic metabolites that often accumulate abnormally in the TME and act as critical immunoregulatory molecules. T cells play a central role in antitumor immunity, yet their function is frequently influenced by immunoregulatory factors within the TME. Elevated polyamine levels in the TME have been implicated in dampening antitumor T cell responses, thereby facilitating tumor immune evasion. Polyamines in the TME originate from both tumor cells and tumor-associated immune cells. Tumor cells often overexpress the oncogene Myc, which drives the upregulation of polyamine biosynthetic enzymes, resulting in excessive intracellular polyamine production. Additionally, M2-polarized tumor-associated macrophages (M2-TAMs) contribute to polyamine accumulation by upregulating arginase-I (Arg-I), an enzyme that catalyzes the conversion of arginine into ornithine—a key precursor in the polyamine biosynthetic pathway. These combined sources lead to sustained polyamine enrichment in the TME, contributing to immune dysfunction and supporting tumor progression. Moreover, polyamines indirectly affect T cell activity by modulating macrophage polarization and directly suppress tumor cell apoptosis, further promoting an immunosuppressive environment. This review highlights the multifaceted roles of polyamines in modulating tumor-infiltrating T cell function, with a particular focus on their influence on CD4+ T cell differentiation, CD8+ T cell cytotoxicity, and immune checkpoint molecule expression. Recent studies suggest that polyamines suppress CD4+ T cell activation and differentiation by modulating the MAPK/ERK signaling pathway. Additionally, polyamines can impair T cell receptor (TCR) signaling and promote immune evasion through the upregulation of PD-L1 expression on tumor cells. These effects collectively contribute to weakened antitumor T cell responses. Polyamine blocking therapy (PBT), which primarily targets polyamine biosynthesis and transport, has emerged as a novel adjunctive immunotherapeutic strategy in cancer treatment. By reducing polyamine levels in the TME, PBT restores T cell effector functions and alleviates immunosuppression. Notably, studies have demonstrated that combining PBT with ICIs produces synergistic antitumor effects and may overcome resistance to ICI monotherapy. Although research has revealed the inhibitory effects of polyamines on T cell immune function, the underlying regulatory mechanisms remain to be fully elucidated. Moreover, due to compensatory mechanisms employed by tumor cells to maintain polyamine homeostasis, multi-targeted approaches may be necessary to achieve safe and effective therapeutic outcomes. Future PBT strategies may benefit from the integration of multi-omics technologies and the development of nanocarrier-based drug delivery systems, which could collectively enhance their specificity, efficacy, and applicability in cancer immunotherapy. This review systematically elucidates the immunomodulatory effects of polyamines on T cell function within the TME and provides theoretical support and novel insights for the advancement of tumor immunotherapeutic strategies.
    Citation
    AI Yuan-Bao, HUANG Xue-Mei, LIU Sen.Tumor Microenvironment Polyamines Inhibit T Cell Antitumor Activity[J]..Export: BibTex EndNote
  • Alzheimer’s disease (AD) is a chronic, progressive, and irreversible neurodegenerative disorder that typically begins with a subtle onset and progresses slowly. Pathologically, it is characterized by two hallmark features: the extracellular accumulation of amyloid β-protein (Aβ), forming senile plaques, and the intracellular hyperphosphorylation of tau protein, resulting in neurofibrillary tangles (NFTs). These pathological changes are accompanied by substantial neuronal and synaptic loss, particularly in critical brain regions such as the cerebral cortex and hippocampus. Clinically, AD presents as a gradual decline in memory, language abilities, and spatial orientation, significantly impairing the quality of life of affected individuals. With the aging population steadily increasing in China, the incidence of AD is rising, making it a major public health concern that requires urgent attention. The growing societal and economic burden of AD underscores the pressing need to identify effective diagnostic biomarkers and develop novel therapeutic strategies. Among the various molecular signaling pathways involved in neurological disorders, the Notch signaling pathway is especially noteworthy due to its evolutionary conservation and regulatory roles in cell proliferation, differentiation, development, and apoptosis. In the central nervous system, Notch signaling is essential for neurodevelopment and synaptic plasticity and has been implicated in several neurodegenerative processes. Although some studies suggest that Notch signaling may influence AD-related pathology, its precise role in AD remains poorly understood. In particular, the interaction between Notch signaling and non-coding RNAs (ncRNAs)—key regulators of gene expression—has received limited attention. NcRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are known to exert extensive regulatory functions at both transcriptional and post-transcriptional levels. Dysregulation of these molecules has been widely associated with various diseases, including cancers, cardiovascular conditions, and neurodegenerative disorders. Notably, interactions between ncRNAs and major signaling pathways such as Notch can produce widespread biological effects. While such interactions have been increasingly reported in several disease models, comprehensive studies investigating the regulatory relationship between Notch signaling and ncRNAs in the context of AD remain scarce. Given the capacity of ncRNAs to modulate signaling cascades and form complex regulatory networks, a deeper understanding of their crosstalk with the Notch pathway could provide novel insights into AD pathogenesis and reveal potential targets for diagnosis and treatment. In this study, we investigated the regulatory landscape involving the Notch signaling pathway and associated ncRNAs in AD using bioinformatics approaches. By integrating data from multiple public databases, we systematically identified significantly dysregulated Notch pathway-related genes and their interacting ncRNAs in AD. Based on this analysis, we constructed a lncRNA-miRNA-mRNA regulatory network to elucidate the potential mechanisms linking Notch signaling to ncRNA-mediated gene regulation in AD pathogenesis. Furthermore, we explored the internal relationships and molecular mechanisms within this network and assessed the feasibility and clinical relevance of these molecules as early diagnostic biomarkers and potential therapeutic targets for AD. This study aims to deepen our understanding of the molecular basis of AD and offer novel strategies for its diagnosis and treatment.
    Citation
    Lü Meng-Lin, LIU Xing-Ran, KOU Xian-Juan.Prediction of Potential Regulatory Pathways Involving The Notch Signaling Pathway and Its Associated Non-coding RNAs in Alzheimer’s Disease Based on Database Analysis[J]..Export: BibTex EndNote
  • Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
    Citation
    ZHAO Yi-Ge, JIANG Zhao-Hong, ZHOU Qian-Yi, CHEN Zhi-Ming.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques[J]..Export: BibTex EndNote
  • Objective Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, offers a non-pharmacological therapeutic option for the management of Alzheimer"s disease (AD). Studies have demonstrated that ferroptosis plays a pivotal role in the pathological onset and progression of AD, and the inhibition of neuronal ferroptosis can significantly ameliorate cognitive impairments associated with AD. The imbalance of calcium ion (Ca2+) homeostasis is intimately associated with the pathology of AD and serves as a catalyst for the induction of ferroptosis through various pathways. This study is designed to investigate whether rTMS can ameliorate AD by inhibiting neuronal ferroptosis or maintaining calcium homeostasis, ultimately establishing a theoretical and experimental framework for the utilization of rTMS in AD treatment.Methods APP/PS1 AD mice were subjected to both 0.5 Hz low-frequency and 20 Hz high-frequency rTMS treatments, and the efficacy of these treatments was evaluated using novel object recognition and Morris water maze tests. ELISA was employed to quantify the levels of glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), Fe2+ within the hippocampi of mice from each group. HT-22 cells were induced to undergo ferroptosis via Erastin treatment, and subsequent to high- and low-frequency magnetic stimulation, cell viability was assessed using CCK-8 assay, while intracellular calcium ion concentration fluctuations were monitored using Fluo-4 AM.Results The findings revealed that, when compared to normal mice, AD mice displayed a notable decline in cognitive function, accompanied by a substantial increase in ferroptosis levels and intracellular calcium ion concentrations. Both high-frequency and low-frequency applications of rTMS were found to significantly ameliorate cognitive impairments in AD mice, while also effectively mitigating the abnormal augmentation of neuronal ferroptosis and intracellular calcium ion levels.Conclusion The present study underscores that both high-frequency and low-frequency rTMS exhibit efficacy in alleviating cognitive dysfunction in AD mice, potentially through the modulation of ferroptosis and intracellular calcium ion homeostasis.
    Citation
    ZHAO Meng, ZHANG Ze, FU Rui, REN Zi-Hao, DING Chong.Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Dysfunction in Alzheimer’s Disease Mice by Inhibiting Ferroptosis and Maintaining Cytoplasmic Calcium Homeostasis[J]..Export: BibTex EndNote
  • Background: Primary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue, ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound (CEUS), face limitations in applicability and objectivity. Objective: The primary objective of this study was to develop an advanced, light-weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. Methods: This retrospective study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), K-nearest neighbor (KNN), and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics: Area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity (SE), and specificity (SP). Results: The evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84. Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification. Conclusion: The 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists' diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.
    Citation
    CHEN Ying-Ying, JIANG Shang-Lin, HUANG Liang-Hui, ZENG Ya-Guang, WANG Xue-Hua, ZHENG Wei.Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images[J]..Export: BibTex EndNote
  • Age-related sarcopenia is a progressive, systemic skeletal muscle disorder associated with aging. It is primarily characterized by a significant decline in muscle mass, strength, and physical function, rather than being an inevitable consequence of normal aging. Despite ongoing research, there is still no globally unified consensus among physicians regarding the diagnostic criteria and clinical indicators of this condition. Nonetheless, regardless of the diagnostic standards applied, the prevalence of age-related sarcopenia remains alarmingly high. With the global population aging at an accelerating rate, its incidence is expected to rise further, posing a significant public health challenge. Age-related sarcopenia not only markedly increases the risk of physical disability but also profoundly affects patients’ quality of life, independence, and overall survival. As such, the development of effective prevention and treatment strategies to mitigate its dual burden on both societal and individual health has become an urgent and critical priority. Skeletal muscle regeneration, a vital physiological process for maintaining muscle health, is significantly impaired in age-related sarcopenia and is considered one of its primary underlying causes. Skeletal muscle satellite cells (MSCs), also known as muscle stem cells, play a pivotal role in generating new muscle fibers and maintaining muscle mass and function. A decline in both the number and functionality of MSCs is closely linked to the onset and progression of sarcopenia. This dysfunction is driven by alterations in intrinsic MSC mechanisms—such as Notch, Wnt/β-Catenin, and mTOR signaling pathways—as well as changes in transcription factors and epigenetic modifications. Additionally, the MSC microenvironment, including both the direct niche formed by skeletal muscle fibers and their secreted cytokines, and the indirect niche composed of extracellular matrix proteins and various cell types, undergoes age-related changes. Mitochondrial dysfunction and chronic inflammation further contribute to MSC impairment, ultimately leading to the development of sarcopenia. Currently, there are no approved pharmacological treatments for age-related sarcopenia. Nutritional intervention and exercise remain the cornerstone of therapeutic strategies. Adequate protein intake, coupled with sufficient energy provision, is fundamental to both the prevention and treatment of this condition. Adjuvant therapies, such as dietary supplements and caloric restriction, offer additional therapeutic potential. Exercise promotes muscle regeneration and ameliorates sarcopenia by acting on MSCs through various mechanisms, including mechanical stress, myokine secretion, distant cytokine signaling, immune modulation, and epigenetic regulation. When combined with a structured exercise regimen, adequate protein intake has been shown to be particularly effective in preventing age-related sarcopenia. However, traditional interventions may be inadequate for patients with limited mobility, poor overall health, or advanced sarcopenia. Emerging therapeutic strategies—such as miRNA mimics or inhibitors, gut microbiota transplantation, and stem cell therapy—present promising new directions for MSC-based interventions. This review comprehensively examines recent advances in MSC-mediated muscle regeneration in age-related sarcopenia and systematically discusses therapeutic strategies targeting MSC regulation to enhance muscle mass and strength. The goal is to provide a theoretical foundation and identify future research directions for the prevention and treatment of this increasingly prevalent condition.
    Citation
    JI Wei-Xiu, Lü Jia-Lin, MA Yi-Fan, ZHAO Yun-Gang.The Role of Skeletal Muscle Satellite Cells-mediated Muscle Regeneration in The Treatment of Age-related Sarcopenia[J]..Export: BibTex EndNote
  • Modified electro-convulsive therapy (MECT) is one of the most potent treatments for major depressive disorder (MDD). However, it remains a second-line option due to significant side effects, such as transient memory loss. The relationship between therapeutic efficacy and cognitive impairment warrants further investigation to develop improved treatment regimens. In this review, we examine recent evidence from magnetic resonance imaging (MRI) studies aiming to identify structural and functional brain changes specifically associated with both the antidepressant effects and the amnesic outcomes of MECT. MECT induces widespread alterations across multiple brain systems. Increases in gray matter volume (GMV) have been observed in the prefrontal, temporal, and parietal cortices, as well as in subcortical regions such as the hippocampus (HP), amygdala, and striatum. Strengthening of myelination has also been reported along the dorsolateral prefrontal-limbic pathways. Functional changes include increased spontaneous neural activity in prefrontal areas, reorganization of intrinsic connectivity within the default mode network (DMN), and altered functional connectivity (FC) among the DMN, salience network (SN), and central executive network (CEN). Correlational studies have identified structural and functional alterations linked to antidepressant efficacy, including right hippocampal volume enlargement, prefrontal cortical thickening, reduced iron deposition in the striatum, decreased FC within certain DMN nodes, and enhanced effective connectivity from the dorsolateral prefrontal cortex (DLPFC) to the right angular gyrus. In contrast, the amnesic effects have been associated with increased volumes in the left hippocampus and bilateral dentate gyrus; enhanced FC in the left angular gyrus and left posterior cingulate cortex (PCC); increased FC between the right ventral anterior insula and DLPFC; and reduced FC in the left thalamus and bilateral precuneus. Changes in the hippocampus appear to correlate with both antidepressant efficacy and memory impairment. Clinical studies have found no significant correlation between the severity of memory impairment and the reduction in depressive symptoms, suggesting that the therapeutic and adverse effects may arise from distinct regional or subregional mechanisms. Supporting this hypothesis, recent findings show that increased right hippocampal volume is significantly associated with reduced depression scores, whereas increased volume in the left dentate gyrus correlates with declines in delayed recall performance. Additionally, enhanced connectivity between the anterior hippocampus and middle occipital gyrus (MOG) has been linked to mood improvement, while decreased FC between the mid-hippocampus and angular gyrus has been associated with impairments in memory integration. In conclusion, current evidence suggests that the antidepressant and memory-impairing effects of MECT may localize to distinct hippocampal subregions. These effects likely result from differential modulation of local neural activity and functional connectivity, leading to divergent behavioral outcomes. Given that both effects may originate in deep and spatially constrained structures such as the hippocampus, small-sample studies and conventional methodologies may fail to differentiate them effectively. Future research should employ large-scale, longitudinal designs utilizing high-field MRI and multimodal neuroimaging to characterize MECT-induced structure-function coupling in the hippocampus and its integration at the network level. Additionally, multiscale analyses spanning molecular, circuit, and network dimensions would be beneficial.
    Citation
    SHEN Ruo-Bing, SHEN Wen-Wen, GAO Shu-Gui.Neuroimaging Mechanism of The Modified Electro-convulsive Therapy on The Anti-depressive Effects and Cognitive Impairment[J]..Export: BibTex EndNote
  • Objective This paper proposes a novel real-time bedside pulmonary ventilation monitoring method for the diagnosis of chronic obstructive pulmonary disease (COPD), based on electrical impedance tomography (EIT). Four indicators—center of ventilation (CoV), global inhomogeneity index (GI), regional ventilation delay inhomogeneity (RVDI), and the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC)—are calculated to enable the spatiotemporal assessment of COPD.Methods A simulation of the respiratory cycles of COPD patients was first conducted, revealing significant differences in certain indicators compared to healthy individuals. The effectiveness of these indicators was then validated through experiments. A total of 93 subjects underwent multiple pulmonary function tests (PFTs) alongside simultaneous EIT measurements. Ventilation heterogeneity under different breathing patterns—including forced exhalation, forced inhalation, and quiet tidal breathing—was compared. EIT images and related indicators were analyzed to distinguish healthy individuals across different age groups from COPD patients.Results Simulation results demonstrated significant differences in CoV, GI, FEV1/FVC, and RVDI between COPD patients and healthy individuals. Experimental findings indicated that, in terms of spatial heterogeneity, the GI values of COPD patients were significantly higher than those of the other two groups, while no significant differences were observed among healthy individuals. Regarding temporal heterogeneity, COPD patients exhibited significantly higher RVDI values than the other groups during both quiet breathing and forced inhalation. Moreover, during forced exhalation, the distribution of FEV1/FVC values further highlighted the temporal delay heterogeneity of regional lung function in COPD patients, distinguishing them from healthy individuals of various ages.Conclusion EIT technology effectively reveals the spatiotemporal heterogeneity of regional lung function, which holds great promise for the diagnosis and management of COPD.
    Citation
    LI Fang, CHEN Bai, WU Yang, LIU Kai, ZHOU Tong, YAO Jia-Feng.Research on a COPD Diagnosis Method Based on Electrical Impedance Tomography Ventilation Imaging[J]..Export: BibTex EndNote
  • Objective This study investigates the regulatory role of pescadillo ribosomal biogenesis factor 1 (PES1) in cellular senescence and elucidates its underlying molecular mechanisms.Methods Using replicative senescence models of mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescence in human hepatocellular carcinoma HepG2 cells, we first quantified PES1 expression dynamics through immunoblotting. Subsequently, siRNA-mediated PES1 knockdown in HepG2 or other cells was employed to assess senescence phenotypes via β-galactosidase staining and immunodetection of senescence-associated markers. Mechanistic exploration involved Northern blot for pre-rRNA processing analysis and fluorescence microscopy for nucleolar morphology observation.Results PES1 expression was significantly downregulated in both replicatively senescent MEFs and doxorubicin-induced senescent HepG2 cells. siRNA-mediated PES1 depletion triggered premature senescence characterized by increased SA-β-gal positivity and upregulated p53/p21 signaling, while Rb pathway components remained unaltered. Notably, PES1 deficiency impaired 28S rRNA biogenesis and induced nucleolar fragmentation, indicative of nucleolar stress.Conclusion Inhibition of PES1 expression can induce nucleolar stress and activate p53-dependent rather than Rb-dependent senescence signals within cells.
    Citation
    ZHANG Chang-Jian, LI Yu-Fang, WU Feng-Yun, JIN Rui, NIU Chang, YE Qi-Nong, CHENG Long.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation[J]..Export: BibTex EndNote
  • Brain organoids are three-dimensional (3D) neural cultures that self-organize from pluripotent stem cells (PSCs) cultured in vitro. Compared with traditional two-dimensional (2D) neural cell culture systems, brain organoids demonstrate a significantly enhanced capacity to faithfully replicate key aspects of the human brain, including cellular diversity, 3D tissue architecture, and functional neural network activity. Importantly, they also overcome the inherent limitations of animal models, which often differ from human biology in terms of genetic background and brain structure. Owing to these advantages, brain organoids have emerged as a powerful tool for recapitulating human-specific developmental processes, disease mechanisms, and pharmacological responses, thereby providing an indispensable model for advancing our understanding of human brain development and neurological disorders. Despite their considerable potential, conventional brain organoids face a critical limitation: the absence of a functional vascular system. This deficiency results in inadequate oxygen and nutrient delivery to the core regions of the organoid, ultimately constraining long-term viability and functional maturation. Moreover, the lack of early neurovascular interactions prevents these models from fully recapitulating the human brain microenvironment. In recent years, the introduction of vascularization strategies has significantly enhanced the physiological relevance of brain organoid models. Researchers have successfully developed various vascularized brain organoid models through multiple innovative approaches. Biological methods, for example, involve co-culturing brain organoids with endothelial cells to induce the formation of static vascular networks. Alternatively, co-differentiation strategies direct both mesodermal and ectodermal lineages to generate vascularized tissues, while fusion techniques combine pre-formed vascular organoids with brain organoids. Beyond biological approaches, tissue engineering techniques have played a pivotal role in promoting vascularization. Microfluidic systems enable the creation of dynamic, perfusable vascular networks that mimic blood flow, while 3D printing technologies allow for the precise fabrication of artificial vascular scaffolds tailored to the organoid’s architecture. Additionally, in vivo transplantation strategies facilitate the formation of functional, blood-perfused vascular networks through host-derived vascular infiltration. The incorporation of vascularization has yielded multiple benefits for brain organoid models. It alleviates hypoxia within the organoid core, thereby improving cell survival and supporting long-term culture and maturation. Furthermore, vascularized organoids recapitulate critical features of the neurovascular unit, including the early structural and functional characteristics of the blood-brain barrier. These advancements have established vascularized brain organoids as a highly relevant platform for studying neurovascular disorders, drug screening, and other applications. However, achieving sustained, long-term functional perfusion while preserving vascular structural integrity and promoting vascular maturation remains a major challenge in the field. In this review, we systematically outline the key stages of human neurovascular development and provide a comprehensive analysis of the various strategies employed to construct vascularized brain organoids. We further present a detailed comparative assessment of different vascularization techniques, highlighting their respective strengths and limitations. Additionally, we summarize the principal challenges currently faced in brain organoid vascularization and discuss the specific technical obstacles that persist. Finally, in the outlook section, we elaborate on the promising applications of vascularized brain organoids in disease modeling and drug testing, address the main controversies and unresolved questions in the field, and propose potential directions for future research.
    Citation
    CHEN Meng-Meng, HU Nan, BAO Shuang-Qing, LI Xiao-Hong.Construction Strategies and Challenges of Vascularized Brain Organoids[J]..Export: BibTex EndNote
  • Objective This study proposes a fatigue detection method for police extreme training based on electrical impedance imaging technology to prevent muscle damage caused by overstrain during intense physical training.Methods First, based on the mechanism of human anaerobic exercise, lactic acid was identified as a key indicator of muscle fatigue, demonstrating that measuring muscle lactic acid effectively reflects localized fatigue. Second, a numerical simulation model of the human calf was established, and the internal tissue structure of the calf was analyzed to determine the stages of lactic acid diffusion and change. Then, the reconstruction performance of electrical impedance tomography (EIT) in visualizing lactic acid diffusion was compared under three different regularization algorithms, and the most suitable regularization method for subsequent experiments was selected. Finally, a controlled experiment simulating lactate diffusion was conducted to verify the imaging capability of the TK-Noser regularization algorithm in complex imaging fields.Results Simulation results indicate that both the TK-Noser and TV regularization algorithms achieve superior imaging performance, effectively suppressing artifacts in the visualization of lactic acid diffusion inside muscle tissue. The average ICC/RMSE values reached 0.754/0.303 and 0.772/0.320, respectively, while the average SSIM/PSNR values were 0.677/61 dB and 0.488/60 dB, respectively. In the lactate diffusion experiment, the average ICC/SSIM of the EIT reconstruction results based on the TK-Noser regularization algorithm reached 0.701 and 0.572, respectively. Additionally, compared with the TV regularization algorithm, the TK-Noser algorithm better preserved the shape and structural integrity of the imaging target, with an SSIM value 21.2% higher than that of the TV regularization results. This enhancement ensures the stability of the experimental results and significantly improves the capability of electrical impedance imaging technology in monitoring lactate diffusion within complex fields.Conclusion The proposed method offers real-time convenience and non-invasiveness, making it a promising approach for dynamic monitoring of muscle lactate levels in police officers during extreme physical training.
    Citation
    LIU Tao, SHI Shu-Sheng, LIU Jun-Feng, LIU Kai, YAO Jia-Feng.A Muscle Fatigue Assessment Method of Electrical Impedance Tomography for Police Extreme Training Based on TK-Noser Regularization Algorithm[J]..Export: BibTex EndNote
  • Quantum dots (QDs), nanoscale semiconductor crystals, have emerged as a revolutionary class of nanomaterials with unique optical and electrochemical properties, making them highly promising for applications in disease diagnosis and treatment. Their tunable emission spectra, long-term photostability, high quantum yield, and excellent charge carrier mobility enable precise control over light emission and efficient charge utilization, which are critical for biomedical applications. This article provides a comprehensive review of recent advancements in the use of quantum dots for disease diagnosis and therapy, highlighting their potential and the challenges involved in clinical translation. Quantum dots can be classified based on their elemental composition and structural configuration. For instance, IB-IIIA-VIA group quantum dots and core-shell structured quantum dots are among the most widely studied types. These classifications are essential for understanding their diverse functionalities and applications. In disease diagnosis, quantum dots have demonstrated remarkable potential due to their high brightness, photostability, and ability to provide precise biomarker detection. They are extensively used in bioimaging technologies, enabling high-resolution imaging of cells, tissues, and even individual biomolecules. As fluorescent markers, quantum dots facilitate cell tracking, biosensing, and the detection of diseases such as cancer, bacterial and viral infections, and immune-related disorders. Their ability to provide real-time, in vivo tracking of cellular processes has opened new avenues for early and accurate disease detection. In the realm of disease treatment, quantum dots serve as versatile nanocarriers for targeted drug delivery. Their nanoscale size and surface modifiability allow them to transport therapeutic agents to specific sites, improving drug bioavailability and reducing off-target effects. Additionally, quantum dots have shown promise as photosensitizers in photodynamic therapy (PDT). When exposed to specific wavelengths of light, quantum dots interact with oxygen molecules to generate reactive oxygen species (ROS), which can selectively destroy malignant cells, vascular lesions, and microbial infections. This targeted approach minimizes damage to healthy tissues, making PDT a promising strategy for treating complex diseases. Despite these advancements, the translation of quantum dots from research to clinical application faces significant challenges. Issues such as toxicity, stability, and scalability in industrial production remain major obstacles. The potential toxicity of quantum dots, particularly to vital organs, has raised concerns about their long-term safety. Researchers are actively exploring strategies to mitigate these risks, including surface modification, coating, and encapsulation techniques, which can enhance biocompatibility and reduce toxicity. Furthermore, improving the stability of quantum dots under physiological conditions is crucial for their effective use in biomedical applications. Advances in surface engineering and the development of novel encapsulation methods have shown promise in addressing these stability concerns. Industrial production of quantum dots also presents challenges, particularly in achieving consistent quality and scalability. Recent innovations in synthesis techniques and manufacturing processes are paving the way for large-scale production, which is essential for their widespread adoption in clinical settings. This article provides an in-depth analysis of the latest research progress in quantum dot applications, including drug delivery, bioimaging, biosensing, photodynamic therapy, and pathogen detection. It also discusses the multiple barriers hindering their clinical use and explores potential solutions to overcome these challenges. The review concludes with a forward-looking perspective on the future directions of quantum dot research, emphasizing the need for further studies on toxicity mitigation, stability enhancement, and scalable production. By addressing these critical issues, quantum dots can realize their full potential as transformative tools in disease diagnosis and treatment, ultimately improving patient outcomes and advancing biomedical science.
    Citation
    SHEN Ji-Sheng, QI Li-Li, WANG Jin-Bo, KE Zhi-Jian, WANG Qi-Chao.The Application of Quantum Dots in Disease Diagnosis and Treatment[J]..Export: BibTex EndNote
  • Interferon stimulating factor (STING), a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body"s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells" capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.
    Citation
    LI Jin-Ru, DUAN Yu, DAI Xin-Gui, YAO Yong-Ming.Interplay Between Interferon Stimulatory Pathways and Organellar Dynamics[J]..Export: BibTex EndNote
  • Eukaryotic translation initiation factor 5A (eIF5A) is the only known protein in eukaryotes that contains a hydroxyputrescine lysine modification. Only the modified form of eIF5A is biologically active and is widely involved in protein translation, mRNA degradation, autophagy, and other intracellular processes. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal phenotype cells through a highly regulated program. It plays a key role in embryonic development, tissue regeneration, and wound healing. Based on its biological functions, EMT can be classified into three types: I, II, and III. Type III EMT is the core mechanism underlying malignant tumor cell invasion and metastasis. This EMT mechanism involves the canonical pathway induced by transforming growth factor-β (TGF-β) and is regulated by various growth factors (TRAF6, EGF, IGF, HGF, VEGF), transcription factors (Twist, Slug, NF-κB, E12/E47, SIP1, ZEB1, etc.), and signaling pathways such as Wnt/β-catenin and PEAK1. eIF5A can influence tumor cell proliferation, invasion, and metastasis by regulating EMT-related signaling pathways. The known signaling pathways through which eIF5A regulates EMT include the canonical Smad signaling pathway and non-canonical pathways such as Rho/Rac1, Twist, STAT3, and MAT1. Additionally, certain miRNA family members, such as miR-30b, miR-599, and miR-203, can bind to the 3"-UTR of eIF5A2, inhibiting its expression and subsequently suppressing the EMT process in cancer cells, including gastric cancer and colorectal cancer. GC7, an inhibitor targeting the key enzyme DHPS involved in eIF5A modification, has been shown to reverse the EMT mechanism in oral squamous cell carcinoma, lung cancer, and breast cancer by regulating cytokine-mediated signaling pathways, including HIF-1α, STAT3/c-MYC, and Twist. However, to date, no inhibitors directly targeting eIF5A have been developed. In recent years, the mechanism of eIF5A activation catalyzed by DHPS and DOHH has become increasingly clear. As the only protein involved in lysine deoxyhydroxymethylation, DHPS may play a more critical role than eIF5A in the overall signal transduction process. Through in-depth analysis of the DHPS protein structure and its active site, researchers have shifted their approach to DHPS inhibitor development from substrate analog inhibitors (such as GC7, CNI-1493, DHSI-15, etc.) to allosteric inhibitors (11g, 26d, 8m, GL-1, etc.). GC7 is not suitable for clinical trials due to its lack of specificity and low bioavailability, and the therapeutic potential of novel allosteric inhibitors has yet to be clarified. Therefore, there is a significant gap in the development of covalent drugs targeting DHPS for cancer treatment in clinical settings. This paper reviews the research progress on eIF5A in regulating EMT, focusing on the molecular mechanisms by which eIF5A influences tumor cell invasion and migration. It also discusses the characteristics and current limitations of inhibitors targeting the hypusine pathway, aiming to provide insights for studying tumor metastasis mechanisms and drug discovery.
    Citation
    PENG Can-Ming, WANG Juan-Ping, LIU Sen.Regulation Mechanism of Eukaryotic Translation Initiation Factor 5A in Epithelial-mesenchymal Transition[J]..Export: BibTex EndNote
  • Aquatic organisms can secrete biomacromolecules through specialized organs, tissues, or structures, enabling adhesion to underwater material surfaces and leading to severe biofouling issues. This phenomenon adversely impacts aquatic ecosystem health and human activities. Biofouling has emerged as an emerging global environmental challenge. Adhesion serves as the foundation of biofouling, representing a critical step toward a comprehensive understanding of the adhesion mechanisms of aquatic organisms. Biomacromolecules, including proteins, lipids, and carbohydrates, are the primary functional components in the adhesive substances of aquatic fouling organisms. Research indicates that these biomacromolecules exhibit diversity in types and characteristics across different aquatic organisms, yet their adhesion mechanisms show unifying features. Despite significant progress, there remains a lack of comprehensive reviews on the adhesion mechanisms mediated by biomacromolecules in aquatic fouling organisms, particularly on the roles of lipids and carbohydrates. Through a comprehensive analysis of existing literature, this review systematically summarizes the mechanistic roles of three classes of macromolecules in aquatic biofouling adhesion processes. Proteins demonstrate central functionality in interfacial adhesion and cohesion through specialized functional amino acids, conserved structural domains, and post-translational modifications. Lipids enhance structural stability via hydrophobic barrier formation and antioxidative protection mechanisms. Carbohydrates contribute to adhesion persistence through cohesive reinforcement and enzymatic resistance of adhesive matrices. Building upon these mechanisms, this review proposes four prospective research directions: optimization of protein-mediated adhesion functionality, elucidation of lipid participation in adhesion dynamics, systematic characterization of carbohydrate adhesion modalities, and investigation of macromolecular synergy in composite adhesive systems. The synthesized knowledge provides critical insights into underwater adhesion mechanisms of aquatic fouling organisms and establishes a theoretical foundation for developing mechanism-driven antifouling strategies. This work advances fundamental understanding of bioadhesion phenomena while offering practical guidance for next-generation antifouling technology development.
    Citation
    HE Dan, LI Shi-Guo, ZHAN Ai-Bin.Adhesion Mechanisms of Aquatic Fouling Organisms Mediated by Biomacromolecules[J]..Export: BibTex EndNote
  • Pancreatic cancers (PCs) is a common malignant tumor with poor prognosis in the digestive system. Its main treatment methods include surgery, radiotherapy, chemotherapy, and targeted therapy. The early diagnosis rate of hidden onset of PCs is low, and most patients have already lost the opportunity to undergo surgery when diagnosed with PCs. Chemotherapy is still the main treatment for advanced PCs, but the use of chemotherapy drugs in PCs can easily lead to drug resistance. The most significant feature that distinguishes PCs from other tumors is its rich and dense matrix, which not only hinders drug penetration but also impedes the infiltration of immune cells. The above reasons have led to a very low survival rate of PCs patients. Therefore, drug delivery systems are very important in the diagnosis and treatment of PCs. They can improve drug delivery, enhance biological barrier penetration, reduce side effects, and combine multiple treatment methods. Therefore, the treatment prospects of PCs are very broad. Currently, drug delivery systems widely applied in PCs primarily include nanodrug delivery systems, tumor microenvironment-targeted drug delivery system, immunotherapy drug delivery system, gene therapy drug delivery system, and combination therapy drug delivery system that synergize multiple therapeutic modalities. Emerging drug delivery systems (DDSs) have revolutionized PCs treatment by addressing these challenges through multiple mechanisms. Nanoformulations improve drug solubility, prolong circulation time, and reduce systemic toxicity via passive/active targeting. Smart DDSs responsive to PCs-specific stimuli enable extracellular matrix degradation, tumor-associated fibroblasts reprogramming, and vascular normalization to enhance drug accessibility. Last but not least, carrier systems loaded with myeloid-derived suppressor cell inhibitors or T-cell activators can reverse immunosuppression and potentiate immunotherapy efficacy. Advanced platforms co-deliver chemotherapeutics with immunomodulators, gene-editing tools, or sonodynamic agents to achieve synergistic antitumor effects. These platforms aim to address critical challenges in PCs treatment, such as enhancing drug bioavailability, overcoming stromal barriers, reprogramming immunosuppressive niches, and achieving multi-mechanistic antitumor effects. This article provides a systematic summary and prospective analysis of the current development status, latest cutting-edge advances, opportunities, and challenges of the above-mentioned drug delivery systems in the field of PCs therapy.
    Citation
    SHI Wan-Rui, CUI Li-Gang, LIANG Xiao-Long.Drug Delivery Systems for Pancreatic Cancers Treatment[J]..Export: BibTex EndNote
  • In the central nervous system (CNS), the myelin sheath, a specialized membrane structure that wraps around axons, is formed by oligodendrocytes through a highly coordinated spatiotemporal developmental program. The process begins with the directed differentiation of neural precursor cells into oligodendrocyte precursor cells (OPCs), followed by their migration, proliferation, differentiation, and maturation, ultimately leading to the formation of a multi-segmental myelin sheath structure. Recent single-cell sequencing research has revealed that this process involves the temporal regulation of over 200 key genes, with a regulatory network composed of transcription factors such as Sox10 and Olig2 playing a central role. The primary function of the myelin sheath is to accelerate nerve signal transmission and protect nerve fibers from damage. Its insulating properties not only increase nerve conduction speed by 50-100 times but also ensure the long-term functional integrity of the nervous system by maintaining axonal metabolic homeostasis and providing mechanical protection. The pathological effects of myelin sheath injury exhibit a cascade amplification pattern: acute demyelination leads to action potential conduction block, while chronic lesions may cause axonal damage and neuronal death in severe or long-term cases, ultimately resulting in irreversible neurological dysfunction with neurodegenerative characteristics. Multiple sclerosis (MS) is a neurodegenerative disease characterized by chronic inflammatory demyelination of the CNS. Clinically, the distribution of lesions in MS exhibits spatial heterogeneity, which is closely related to differences in the regenerative capacity of oligodendrocytes within the local microenvironment. Emerging evidence suggests that astrocytes form a dynamic “neural-immune-metabolic interface” and play a multidimensional regulatory role in myelin development and regeneration by forming heterogeneous populations composed of different subtypes. During embryonic development, astrocytes induce the targeted differentiation of OPCs in the ventricular region through the Wnt/β-catenin pathway. In the mature stage, they secrete platelet-derived growth factor AA (PDGF-AA) to establish a chemical gradient that guides the precise migration of OPCs along axonal bundles. Notably, astrocytes also provide crucial metabolic support by supplying energy substrates for high-energy myelin formation through the lactate shuttle mechanism. In addition, astrocytes play a dual role in myelin regulation. During the acute injury phase, reactive astrocytes establish a triple defense system within 72 h: upregulating glial fibrillary acidic protein (GFAP) to form scars that isolate lesions, activating the JAK-STAT3 regeneration pathway in oligodendrocytes via leukemia inhibitory factor (LIF), and releasing tumor necrosis factor-stimulated gene-6 (TSG-6) to inhibit excessive microglial activation. However, in chronic neurodegenerative diseases, the phenotypic transformation of astrocytes contributes to microenvironmental deterioration. The secretion of chondroitin sulfate proteoglycans (CSPGs) inhibits OPC migration via the RhoA/ROCK pathway, while the persistent release of reactive oxygen species (ROS) leads to mitochondrial dysfunction and the upregulation of complement C3-mediated synaptic pruning. This article reviews the mechanisms by which astrocytes regulate the development and regeneration of myelin sheaths in the CNS, with a focus on analyzing the multifaceted roles of astrocytes in this process. It emphasizes that astrocytes serve as central hubs in maintaining myelin homeostasis by establishing a metabolic microenvironment and signaling network, aiming to provide new therapeutic strategies for neurodegenerative diseases such as multiple sclerosis.
    Citation
    XING Wen-Xiao, LUO Fu-Cheng, Lü Tao.Astrocytes in The Central Nervous System Regulate Myelination and Remyelination Through Multiple Mechanisms[J]..Export: BibTex EndNote
  • Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. MitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases.
    Citation
    WANG Peng-Xiao, CHEN Le-Rong, WANG Zhen, LONG Jian-Gang, PENG Yun-Hua.Mitochondial-located miRNAs in The Regulation of mtDNA Expression[J]..Export: BibTex EndNote
  • Objective Functional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported .This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients.Methods A cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The Lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity.Results The data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode.Conclusion Both dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
    Citation
    FU Ling-Di, DOU Jia-Xuan, YING Ting-Ting, YIN Li-Yong, TANG Min, LIANG Zhen-Hu.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy[J]..Export: BibTex EndNote
  • Self-face is a unique and highly distinctive stimulus, not shared with others, and serves as a reliable marker of self-awareness. Compared to other faces, self-face processing exhibits several advantages, including the self-face recognition advantage, self-face attention advantage, and self-face positive processing advantage. The self-face recognition advantage manifests as faster and more accurate identification across different orientations and spatial frequency components, supported by enhanced early event-related potential (ERP) components, such as N170. Attentional biases toward self-face are evident in target detection during spatial tasks and the attentional blink effect in temporal paradigms. However, measurement sensitivity, perceptual load, and task demands contribute to some mixed findings. Positive biases further characterize the self-face processing advantage, with individuals perceiving their faces as more attractive or trustworthy than objective representations. These biases even extend to self-similar others, influencing social behaviors such as trust and voting preferences. Self-face processing advantages have been observed at an unconscious level and are regulated by several factors, including self-esteem, cultural differences, and multisensory integration. Cultural and individual differences play a crucial role in shaping self-face advantages. Individuals from Western cultures, which emphasize independent self-construal, exhibit stronger self-face biases compared to those from East Asian collectivist contexts. Self-esteem also modulates self-face advantages: high-self-esteem individuals generally maintain their self-face recognition advantage despite interference, exhibit attentional prioritization of self-faces, and demonstrate enhanced positive associations with subliminal self-faces. In contrast, low-self-esteem individuals display recognition vulnerabilities to social cues, show context-dependent attentional divergence (prioritizing others’ faces in task-oriented settings while prioritizing self-face in free-viewing tasks), and exhibit reversed positive associations with subliminal self-faces. Multisensory integration, such as synchronized visual-tactile cues, enhances self-face advantages and induces perceptual plasticity. This phenomenon is exemplified by the enfacement illusion, in which synchronous visual and tactile inputs update the mental representation of the self-face, leading to assimilation with another face. Neuroanatomically, self-face processing is predominantly lateralized to the right hemisphere and involves a network of brain regions, including the occipital lobe, temporal lobe, frontal lobe, insula, and cingulate gyrus. Disruptions in these networks are linked to self-face processing deficits in socio-cognitive disorders. For instance, autism spectrum disorder (ASD) and schizophrenia are associated with attenuated self-face advantages and abnormal neural activity in regions such as the right inferior frontal gyrus, insula, and posterior cingulate cortex. These findings suggest that self-face processing could serve as a potential biomarker for the early diagnosis and intervention of such disorders. In recent years, researchers have proposed various theoretical explanations for self-face processing and its advantage effects. However, some studies have reported no significant behavioral or neural advantages of self-faces over familiar faces, leaving the specificity of self-face a subject of debate. Further elucidation of self-face specificity requires the adoption of a face association paradigm, which controls for facial familiarity and helps determine whether qualitative differences exist between self-faces and familiar faces. Given the close relationship between self-face processing advantages and socio-cognitive disorders (e.g., ASD, schizophrenia), a deeper understanding of self-face specificity has the potential to provide critical insights into the early identification, classification, and intervention of these disorders. This research holds both theoretical significance and substantial social value.
    Citation
    TANG Xiao-Xia, ZHANG Shu-Jia, ZHANG Ying, WANG Li.Self-face Advantage Processing and Its Mechanisms[J]..Export: BibTex EndNote
  • Mitochondria, the primary energy-producing organelles of the cell, also serve as signaling hubs and participate in diverse physiological and pathological processes, including apoptosis, inflammation, oxidative stress, neurodegeneration, and tumorigenesis. As semi-autonomous organelles, mitochondrial functionality relies on nuclear support, with mitochondrial biogenesis and homeostasis being stringently regulated by the nuclear genome. This interdependency forms a bidirectional signaling network that coordinates cellular energy metabolism, gene expression, and functional states. During mitochondrial damage or dysfunction, retrograde signals are transmitted to the nucleus, activating adaptive transcriptional programs that modulate nuclear transcription factors, reshape nuclear gene expression, and reprogram cellular metabolism. This mitochondrion-to-nucleus communication, termed “mitochondrial retrograde signaling”, fundamentally represents a mitochondrial “request” to the nucleus to maintain organellar health, rooted in the semi-autonomous nature of mitochondria. Despite possessing their own genome, the “fragmented” mitochondrial genome necessitates reliance on nuclear regulation. This genomic incompleteness enables mitochondria to sense and respond to cellular and environmental stressors, generating signals that modulate the functions of other organelles, including the nucleus. Evolutionary transfer of mitochondrial genes to the nuclear genome has established mitochondrial control over nuclear activities via retrograde communication. When mitochondrial dysfunction or environmental stress compromises cellular demands, mitochondria issue retrograde signals to solicit nuclear support. Studies demonstrate that mitochondrial retrograde signaling pathways operate in pathological contexts such as oxidative stress, electron transport chain (ETC) impairment, apoptosis, autophagy, vascular tension, and inflammatory responses. Mitochondria-related diseases exhibit marked heterogeneity but invariably result in energy deficits, preferentially affecting high-energy-demand tissues like muscles and the nervous system. Consequently, mitochondrial dysfunction underlies myopathies, neurodegenerative disorders, metabolic diseases, and malignancies. Dysregulated retrograde signaling triggers proliferative and metabolic reprogramming, driving pathological cascades. Mitochondrial retrograde signaling critically influences tumorigenesis and progression. Tumor cells with mitochondrial dysfunction exhibit compensatory upregulation of mitochondrial biogenesis, excessive superoxide production, and ETC overload, collectively promoting metastatic tumor development. Recent studies reveal that mitochondrial retrograde signaling—mediated by altered metabolite levels or stress signals—induces epigenetic modifications and is intricately linked to tumor initiation, malignant progression, and therapeutic resistance. For instance, mitochondrial dysfunction promotes oncogenesis through mechanisms such as epigenetic dysregulation, accumulation of mitochondrial metabolic intermediates, and mitochondrial DNA (mtDNA) release, which activates the cytosolic cGAS-STING signaling pathway. In normal cells, miR-663 mediates mitochondrion-to-nucleus retrograde signaling under reactive oxygen species (ROS) regulation. Mitochondria modulate miR-663 promoter methylation, which governs the expression and supercomplex stability of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and assembly factors. However, dysfunctional mitochondria induce oxidative stress, elevate methyltransferase activity, and cause miR-663 promoter hypermethylation, suppressing miR-663 expression. Mitochondrial dysfunction also triggers retrograde signaling in primary mitochondrial diseases and contributes to neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Current therapeutic strategies targeting mitochondria in neurological diseases focus on 5 main approaches: alleviating oxidative stress, inhibiting mitochondrial fission, enhancing mitochondrial biogenesis, mitochondrial protection, and insulin sensitization. In AD patients, mitochondrial morphological abnormalities and enzymatic defects, such as reduced pyruvate dehydrogenase and α-ketoglutarate dehydrogenase activity, are observed. Platelets and brains of AD patients exhibit diminished cytochrome c oxidase (COX) activity, correlating with mitochondrial dysfunction. To model AD-associated mitochondrial pathology, researchers employ cybrid technology, transferring mtDNA from AD patients into enucleated cells. These cybrids recapitulate AD-related mitochondrial phenotypes, including reduced COX activity, elevated ROS production, oxidative stress markers, disrupted calcium homeostasis, activated stress signaling pathways, diminished mitochondrial membrane potential, apoptotic pathway activation, and increased Aβ42 levels. Furthermore, studies indicate that Aβ aggregates in AD and α-synuclein aggregates in PD trigger mtDNA release from damaged microglial mitochondria, activating the cGAS-STING pathway. This induces a reactive microglial transcriptional state, exacerbating neurodegeneration and cognitive decline. Targeting the cGAS-STING pathway may yield novel therapeutics for neurodegenerative diseases like AD, though translation from bench to bedside remains challenging. Such research not only deepens our understanding of disease mechanisms but also informs future therapeutic strategies. Investigating the triggers, core molecular pathways, and regulatory networks of mitochondrial retrograde signaling advances our comprehension of intracellular communication and unveils novel pathogenic mechanisms underlying malignancies, neurodegenerative diseases, and type 2 diabetes mellitus. This review summarizes established mitochondrial-nuclear retrograde signaling axes, their roles in interorganellar crosstalk, and pathological consequences of dysregulated communication. Targeted modulation of key molecules and proteins within these signaling networks may provide innovative therapeutic avenues for these diseases.
    Citation
    ZHANG Wen-Long, QUAN Lei, ZHAO Yun-Gang.Communication Between Mitochondria and Nucleus With Retrograde Signals[J]..Export: BibTex EndNote
  • Radiation-induced injury is a key factor in determining the prognosis of patients undergoing radiotherapy, highlighting the significant clinical importance of developing drugs for radiation prevention and treatment. Especially in oncology, radiation-induced injury remains a pivotal determinant of therapeutic outcomes, because of its direct correlation with normal tissue damage during radiotherapy. Efforts to mitigate or treat such injury are thus paramount in enhancing the overall safety and efficacy of cancer treatment. Novel nanomedicines with prolonged systemic circulation, versatile drug-loading capacities, enhanced tissue retention, and stimuli responsiveness exhibit unique advantages in the treatment and prevention of radiation-induced diseases, as they can be designed based on the specific microenvironment of radiation-damaged tissues, which offers innovative solutions to address the limitations of conventional radioprotectors such as short half-life, poor tissue targeting, and systemic side effects. This review thus aims to provide an overview of recent advance in the design and application of nanomaterials for radiation prevention and treatment. Generally, ionizing radiation damages cells either by inducing DNA double-strand breaks or through the generation of reactive oxygen species (ROS). The resulting oxidative stress would disrupt the structural integrity of cell membranes, proteins, and nucleic acids, leading to apoptosis, chronic inflammation, and systemic effects across multiple systems, including hematopoietic system, gastrointestinal tract, skin, lungs, brain, and heart. Radiation protection strategies focus on scavenging ROS, stimulating cellular repair and regeneration, inducing tissue hypoxia, and inhibiting apoptotic pathways. Recent advances in nanomedicine have introduced novel approaches for targeted and efficient radiation protection and treatment. For radiation-induced hematopoietic injury, nanoparticles can been designed to promote red and white blood cell regeneration while reducing oxidative stress. To address radiation-induced gastrointestinal injuries, nanomaterials enable localized antioxidant delivery and extended intestinal retention, effectively relieving radiation enteritis by scavenging ROS and modulating gut microbiota. For radiation-induced skin injuries, self-assembling peptide hydrogels that mimic the extracellular matrix can serve as effective scaffolds for wound healing. These hydrogels exhibit excellent antioxidant properties, stimulating angiogenesis, and accelerating the recovery of radiation dermatitis. In cases of radiation-induced brain damage, nanoparticles were designed to cross the blood-brain barrier to rescue neuronal damage and protect cognitive function. This review provides an in-depth insight into the mechanisms underlying radiation-induced injuries and highlights how nanomaterial were construtced according to the specific injury. Therefore, nanotechnology endowers durgs with transformative potential for preventing and treating radiation-induced injuries. Despite significant progress in nanomedicine, there are still challenges in long-term biocompatibility, precise targeting of damaged tissues, and scalable manufacturing. In addition, an in-depth understanding of the interactions between nanomaterials and biological systems remains to be covered. Future efforts should focus on optimizing design strategies, enhancing clinical translatability, and ensuring long-term safety, ultimately improving patient outcomes. Besides, expanding research into other radiation-induced diseases, such as radiation-induced ophthalmic disorders and hepatic injuries, may diversify therapeutic options.
    Citation
    WANG Qing-Qing, LIU Ya, LIU Wei, LONG Wei.Application of Nanomaterials in The Prevention and Treatment of Radiation-induced Injury[J]..Export: BibTex EndNote
  • The liver, skeletal muscle, and adipose tissue are central energy-metabolizing organs and insulin-sensitive tissues, playing a crucial role in maintaining glucose homeostasis. As the powerhouse of the cell, mitochondria not only regulate insulin secretion but also oversee the oxidative phosphorylation and β-oxidation of fatty acids, processes vital for the metabolism of carbohydrates and fats, as well as the synthesis of ATP. The mitochondrial quality control system is of paramount importance for sustaining mitochondrial homeostasis, achieved through mechanisms such as protein homeostasis, mitochondrial dynamics, mitophagy, and biogenesis. Evidence suggests that dysfunctional mitochondria may significantly contribute to insulin resistance and ectopic fat storage in the liver, offering new insights into the strong correlation between mitochondrial dysfunction and the development of obesity, diabetes mellitus type 2 (T2DM), and non-alcoholic fatty liver disease (NAFLD). This manuscript aims to delve into the precise mechanisms by which imbalances in mitochondrial quality control lead to metabolic disorders in the liver, skeletal muscle, and adipose tissue, the 3 major insulin-sensitive organs. In the liver, mitochondrial dysfunction can lead to disturbances in glucose and lipid metabolism, resulting in insulin resistance and fat accumulation—a key factor in the development of NAFLD. In skeletal muscle, reduced mitochondrial function can decrease ATP production, weakening the muscle’s ability to uptake glucose, thereby exacerbating insulin resistance. In adipose tissue, mitochondrial dysfunction can impair adipocyte function, leading to lipotoxicity and inflammatory responses,which further contribute to insulin resistance and the onset of metabolic syndrome. Moreover, the interorgan crosstalk among these 3 tissues is essential for overall metabolic homeostasis. For instance, hepatic gluconeogenesis and glucose utilization in skeletal muscle are both influenced by the health status of their respective mitochondrial populations. The conversion between different types of adipose tissue and the ability to store lipids depend on normal mitochondrial function to avert ectopic fat accumulation in other organs. In summary, this manuscript emphasizes the critical role of mitochondrial quality control in maintaining the metabolic stability of the liver, skeletal muscle, and adipose tissue. It elucidates the specific mechanisms by which mitochondrial dysfunction in these organs contributes to the development of metabolic diseases, providing a foundation for future research and the development of therapeutic strategies targeting mitochondrial dysfunction.
    Citation
    FENG Jia-Jia, GUO Meng, OU YANG Zheng, Lü Bin.The Role of Mitochondrial Quality Control in Glycolipid Metabolism and Metabolic Diseases[J]..Export: BibTex EndNote
  • Mitochondria play a pivotal role in spermatogenesis and sperm activation in Caenorhabditis elegans, serving as the primary ATP supplier for cell division and differentiation while also acting as a key regulator of zinc ion homeostasis, membrane dynamics, and apoptotic signaling. This review systematically summarizes the essential mitochondrial mechanisms at different stages of sperm development, highlighting their multifaceted contributions beyond energy metabolism. Mitochondria are crucial for maintaining the health and stability of the gonads by regulating key apoptotic execution proteins that facilitate the proper elimination of damaged or unnecessary germ cells. Additionally, mitochondria dynamically adjust their energy supply to meet the metabolic demands of different stages of germline development. During early spermatogenesis, mitochondria provide ATP to fuel mitotic and meiotic divisions, support cellular differentiation, and regulate H+ and Zn2+ exchange to maintain cytoplasmic homeostasis, thereby ensuring the proper maturation and functionality of sperm cells. As spermatogenesis progresses, mitochondria participate in processing and sorting essential sperm proteins, such as major sperm protein (MSP), and contribute to the formation of membranous organelles (MOs), which are critical for subsequent activation events. During sperm activation, mitochondria play a dual role in ensuring a successful transition from immotile spermatids to fully functional spermatozoa. First, they provide ATP to facilitate pseudopod formation, MO fusion, and ion channel regulation, all of which are essential for sperm motility and fertilization potential. Second, mitochondria regulate the quality and quantity of functional mitochondria within sperm cells through mitopherogenesis—a recently discovered process in which mitochondrial vesicles are selectively released, ensuring that only healthy mitochondria are retained. This quality-control mechanism optimizes mitochondrial function, which is crucial for sustaining sperm motility and longevity. Beyond their traditional role in energy metabolism, mitochondria may also contribute to protein synthesis during spermatogenesis and activation. Recent evidence suggests that mitochondrial ribosomes actively translate specific proteins required for sperm function, challenging the long-standing belief that spermatozoa do not engage in de novo protein synthesis after differentiation. This emerging perspective raises important questions about the role of mitochondria in regulating sperm activation at the molecular level, particularly in modulating oxidative phosphorylation (OXPHOS) protein composition to optimize ATP production. In summary, mitochondria serve as both the central energy hub and a crucial regulatory factor in sperm activation, metabolic homeostasis, and reproductive success. Their involvement extends beyond ATP generation to include apoptotic regulation, ion homeostasis, vesicle-mediated mitochondrial quality control, and potential contributions to protein synthesis. Understanding these mitochondrial functions in C. elegans not only deepens our knowledge of nematode reproductive biology, but also provides valuable insights into broader mechanisms governing mitochondrial regulation in germline cells across species. These findings open new avenues for future research into the interplay between mitochondria, energy metabolism, and sperm function, with potential implications for reproductive health and fertility studies.
    Citation
    CHANG Zhan-Xin, MIAO Long, WANG Peng.Mitochondrial Function and Regulation in Spermatogenesis and Activation of Caenorhabditis elegans[J]..Export: BibTex EndNote
  • Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR"s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
    Citation
    GUO Xing-Chen, XIE Yan, WEI Xin-Shuo, LI Wen-Fen, SUN Ying-Yu.The Mesencephalic Locomotor Region for Locomotion Control[J]..Export: BibTex EndNote
  • Objective The aim of this study was to investigate the prophylactic effects of caloric restriction (CR) on lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) and to elucidate the mechanisms underlying the cardioprotective actions of CR. This research aims to provide innovative strategies and theoretical support for the prevention of SCM.Methods A total of forty-eight 8-week-old male C57BL/6 mice, weighing between 20-25 g, were randomly assigned to 4 distinct groups, each consisting of 12 mice. The groups were designated as follows: CON (control), LPS, CR, and CR+LPS. Prior to the initiation of the CR protocol, the CR and CR+LPS groups underwent a 2-week acclimatization period during which individual food consumption was measured. The initial week of CR intervention was set at 80% of the baseline intake, followed by a reduction to 60% for the subsequent 5 weeks. After 6-week CR intervention, all 4 groups received an intraperitoneal injection of either normal saline or LPS (10 mg/kg). Twelve hours post-injection, heart function was assessed, and subsequently, heart and blood samples were collected. Serum inflammatory markers were quantified using enzyme-linked immunosorbent assay (ELISA). The serum myocardial enzyme spectrum was analyzed using an automated biochemical instrument. Myocardial tissue sections underwent hematoxylin and eosin (HE) staining and immunofluorescence (IF) staining. Western blot analysis was used to detect the expression of protein in myocardial tissue, including inflammatory markers (TNF-α, IL-9, IL-18), oxidative stress markers (iNOS, SOD2), pro-apoptotic markers (Bax/Bcl-2 ratio, CASP3), and SIRT3/SIRT6.Results 12 hours after LPS injection, there was a significant decrease in ejection fraction (EF) and fractional shortening (FS) ratios, along with a notable increase in left ventricular end-systolic diameter (LVESD). Morphological and serum indicators (AST, LDH, CK, and CK-MB) indicated that LPS injection could induce myocardial structural disorders and myocardial injury. Furthermore, 6-week CR effectively prevented the myocardial injury. LPS injection also significantly increased the circulating inflammatory levels (IL-1β, TNF-α) in mice. IF and Western blot analyses revealed that LPS injection significantly up-regulating the expression of inflammatory-related proteins (TNF-α, IL-9, IL-18), oxidative stress-related proteins (iNOS, SOD2) and apoptotic proteins (Bax/Bcl-2 ratio, CASP3) in myocardial tissue. 6-week CR intervention significantly reduced circulating inflammatory levels and downregulated the expression of inflammatory, oxidative stress-related proteins and pro-apoptotic level in myocardial tissue. Additionally, LPS injection significantly downregulated the expression of SIRT3 and SIRT6 proteins in myocardial tissue, and CR intervention could restore the expression of SIRT3 proteins.Conclusion A 6-week CR could prevent LPS-induced septic cardiomyopathy, including cardiac function decline, myocardial structural damage, inflammation, oxidative stress, and apoptosis. The mechanism may be associated with the regulation of SIRT3 expression in myocardial tissue.
    Citation
    ZHANG Ming-Chen, ZHANG Hui, LI Ting-Ting, CHEN Ming-Hua, WANG Xiao-Wen, SUN Zhong-Guang.6-Week Caloric Restriction Improves Lipopolysaccharide-induced Septic Cardiomyopathy by Modulating SIRT3[J]..Export: BibTex EndNote
Journal Information
Sponsored by:Institute of Biophysics, The Chinese Academy of Sciences; Biophysical Society of China Edited by: Editorial Office of Progress in Biochemistry and Biophysics Published by:Editorial Office of PIBB Editor-in-Chief:HE Rong-Qiao Adress:15 Datun Road, Chaoyang District,Beijing 100101,China Telephone:86-10-64888459 Email:prog@ibp.ac.cn Journal inclusion:SCI, CA, Scopus, AJ ISSN    1000-3282 CN    11-2161/Q Current Issue
External Links
Chinese Academy of SciencesInstitute of Biophysics, Chinese Academy of SciencesBiophysical Society of China