1.1)江苏大学农业工程学院,镇江 212013;2.2)中国科学院脑科学与智能技术卓越创新中心,上海 200031;3.3)上海师范大学生命科学学院,上海 200234
镇江市重点研发计划(NY2020024)资助项目.
1.1)School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;2.2)Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China;3.3)College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
This work was supported by a grant from Key R&D Plan of Zhenjiang City(NY2020024).
链霉菌是重要的工业微生物,能够合成众多具有生物活性的次级代谢产物,如抗生素、抗肿瘤药物以及免疫抑制剂等.次级代谢产物的合成受到多层次严格调控,深入开展相关机制研究将对工业菌株的高效育种提供重要理论指导. 链霉菌中存在的两类关键信号传导系统,包括双组分系统(two-component system,TCS)和胞质外功能σ因子(extracytoplasmic function σ,ECF-σ),它们在次级代谢过程中发挥着重要的调控功能,但至今对于它们如何协同调控次级代谢的分子机制知之甚少. 在前期研究工作中,我们在链霉菌模式菌株——天蓝色链霉菌中鉴定了一个参与抗生素生物合成调控的基因簇sigQ-afsQ1-4,其中sigQ编码ECF-σ因子(σQ),afsQ1/Q2编码一对TCS,afsQ3/Q4分别编码脂蛋白和跨膜蛋白. 研究证实,TCS AfsQ1/Q2为抗生素生物合成的激活因子,sigQ的转录受到AfsQ1/Q2的直接调控,但σQ的功能正好相反,参与抗生素合成的负调控,即σQ对AfsQ1/Q2的功能存在拮抗作用. 在前期工作基础上,本研究通过基因缺失突变体构建、转录分析等对sigQ/afsQ1-4基因簇内的基因功能及其相互作用关系进行了系统研究,并对σQ参与AfsQ1/Q2功能的拮抗机制进行了深入研究. 结果显示,sigQ的缺失可显著下调膜蛋白基因afsQ4的表达,而在sigQ缺失突变体(?sigQ)中导入afsQ4可以很好回补突变体表型,由此表明afsQ4是σQ 的下游调控靶点,σQ的调控功能可能一定程度上是通过AfsQ4来实现. 进一步体外磷酸化实验分析发现,组氨酸蛋白激酶AfsQ2的磷酸化水平在afsQ4的基因缺失突变体显著降低,表明σQ 可以借助膜蛋白AfsQ4拮抗AfsQ1/Q2的功能,最终协同调控抗生素的生物合成.
Based on the powerful secondary metabolism of Streptomyces, they have been used to synthesize many biologically active secondary metabolites, such as antibiotics, anti-tumor drugs and immunosuppressants. Due to the fact that the synthesis of these products is often strictly regulated at multiple levels, therefore, the study of the mechanism of secondary metabolism regulation of Streptomyces can not only deepen our understanding of the metabolic regulation network of Streptomyces, but also provide important reference and guidance for the construction of industrial producing strains from the perspective of metabolism. There are two key types of signal transduction system in Streptomyces: two-component system (TCS) and extracytoplasmic function σ (ECF-σ). Both of them play important regulatory functions in the process of antibiotic biosynthesis. Studies have shown that there are a large number of TCS and ECF-σ coding genes in the genome of Streptomyces coelicolor, a model Streptomyces strain. In our previous studies, we have showed that, under certain conditions, the sigQ-afsQs gene cluster in S. coelicolor is involved in the regulation of the biosynthesis of ACT (actinorhodin), RED (undecylprodigiosin) and CDA (calcium-dependent antibiotic) antibiotics. Based on the early stage research on the regulation function of the TCS system afsQ1/Q2, a detailed study of the upstream regulation mechanism toward afsQ1/Q2 was carried out in this work. Through gene function verification experiments, it was found that the loss of sigQ can significantly down-regulate the expression of the membrane protein gene afsQ4 in the sigQ-afsQs gene cluster, and at the same time complementation afsQ4 can restore the phenotype of the sigQ deletion mutant (?sigQ), which indicates that afsQ4 is the downstream regulatory target of sigQ. Further analysis of in vitro phosphorylation experiments showed that the phosphorylation level of the transmembrane kinase AfsQ2 of TCS was significantly reduced in afsQ4 gene deletion mutant, indicating that sigQ can negatively regulate the TCS afsQ1/Q2 through membrane protein AfsQ4, and finally coordinate antibiotic synthesis.
陈允亮,杨云鹏,李国权,毛雪芳,贾卫东,施爱平,芦银华.天蓝色链霉菌中抗生素合成相关双组分调控系统AfsQ1/Q2上游信号传导机制的研究[J].生物化学与生物物理进展,2021,48(4):450-464
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号