通过SEC-UNet精准分割糖尿病视网膜病变眼底OCT图像脉络膜层
CSTR:
作者:
作者单位:

1) 佛山科学技术学院物理与光电工程学院,佛山 528225;2) 佛山科学技术学院粤港澳智能微纳光电技术联合实验室,佛山 528225;3) 佛山科学技术学院机电工程与自动化学院,佛山 528225;4) 南方医科大学南方医院眼科,广州 510515

作者简介:

WANG Xue-Hua. Tel: 86-18718560259, E-mail: xhwang10000@163.com

并列第一作者并列第一作者。

These authors contributed equally to this work.

韩定安 Tel:15118799767,E-mail:handingan@163.com

王雪花 Tel:18718560259,E-mail:xhwang10000@163.com 熊柯 Tel:13760811213,E-mail:shinco1223@163.com

通讯作者:

中图分类号:

基金项目:

广东省重点领域研究与发展计划(2020B1111040001),国家自然科学基金(61805038,62075042,61705036,61771139,61805039)和粤港澳智能微纳光电技术联合实验室研究基金(2020B1212030010)资助项目。


Precise Segmentation of Choroid Layer in Diabetic Retinopathy Fundus OCT Images by Using SEC-UNet
Author:
Affiliation:

1) School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China;2) Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic, Foshan University, Foshan 528225, China;3) School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China;4) Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Fund Project:

This work was supported by grants from Key-Area Research and Development Program of Guangdong Province (2020B1111040001), The National Natural Science Foundation of China (61805038, 62075042, 61705036, 61771139, 61805039), and Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (2020B1212030010).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 糖尿病视网膜病变(DR)是糖尿病的严重并发症,可导致患者视力下降甚至失明。脉络膜的早期检查在DR诊断中起着至关重要的作用。然而,由于DR患者的光学相干层析成像(OCT)中存在脉络膜和巩膜边界模糊、视网膜病变阴影等问题,导致大多数现有算法无法精准分割脉络膜层。本文目的在于提高DR患者OCT图像中脉络膜层分割的精准度。方法 本文提出了一种结合挤压激励连接(SEC)模块和UNet的网络,简称SEC-UNet,不仅增强Unet的局部细节目标关注能力,且能跳出局部最优来增强整体表达能力。结果 SEC-UNet模型的ROC曲线下面积(AUC)达到0.993 0,优于传统UNet模型和SE-UNet模型。这表明SEC-UNet能够获得准确、完整的脉络膜层分割结果。统计分析脉络膜参数变化发现,与正常眼相比,87.1%的DR患者脉络膜中央凹1 mm内体积增加,这证明了DR很可能导致脉络膜增厚。结论 该技术有望成为一种新的辅助诊断工具,帮助医生研究脉络膜在糖尿病眼病的预防、发病机制和预后中的作用。

    Abstract:

    Objective Diabetic retinopathy (DR) is a serious complication of diabetes that may cause vision loss or even blindness in patients. Early examination of the choroid plays an essential role in the diagnosis of DR. However, owing to the fuzzy choroid-sclera interface (CSI) and shadow of retinopathy in the optical coherence tomography (OCT) images of DR, most existing algorithms cannot segment the choroid layer precisely.Methods In this paper, we propose an optimized squeeze-excitation-connection (SEC) module integrated with the UNet, called the SEC-UNet, which not only focuses on the target but also jumps out of the local optimum to enhance the overall expressive ability. The present paper aims to improve the accuracy of choroid segmentation in DR OCT images.Results The experimental results show that the area under the ROC curve (AUC) of the SEC-UNet reaches up to 0.993 0, which outperforms that obtained for conventional UNet and SE-UNet models. It indicates that the SEC-UNet can obtain accurate and complete segmentation results of the choroid layer. Statistical analysis of choroid parameter changes indicated that compared with normal eyes, the 1 mm adjacent area of choroid fovea increased in 87.1% of DR patients. It proved that DR is likely to cause choroid layer thickening.Conclusion Our method may become a useful diagnostic tool for doctors to explore the function of the choroid in the prevention, pathogenesis, and prognosis of diabetic eye disease.

    参考文献
    相似文献
    引证文献
引用本文

许祥丛,陈俊彦,王雪花,李睿,熊红莲,王茗祎,钟俊平,谭海曙,郑毅旭,熊柯,韩定安.通过SEC-UNet精准分割糖尿病视网膜病变眼底OCT图像脉络膜层[J].生物化学与生物物理进展,2022,49(12):2450-2457

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-29
  • 最后修改日期:2022-11-01
  • 接受日期:2022-03-03
  • 在线发布日期: 2022-12-20
  • 出版日期: 2022-12-20