en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
KnappM, MangaloreR, SimonJ. The global costs of schizophrenia. Schizophrenia Bulletin, 2004, 30(2): 279-293
参考文献 2
SilversteinS M, KeaneB P. Vision science and schizophrenia research: toward a re-view of the disorder. Editors' introduction to special section. Schizophrenia Bulletin, 2011, 37(4): 681-689
参考文献 3
WatersF, CollertonD, FfytcheD H, et al. Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease. Schizophrenia Bulletin, 2014, 40(Suppl 4): S233-245
参考文献 4
PhillipsonO T, HarrisJ P. Perceptual changes in schizophrenia: a questionnaire survey. Psychological Medicine, 1985, 15(4): 859-866
参考文献 5
KelemenO, KovacsT, S. ContrastKeri, motion, integrationperceptual, and neurocognition in schizophrenia: the role of fragile-X related mechanisms. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2013, 46: 92-97
参考文献 6
RoinishviliM, CappeC, ShaqiriA, et al. Crowding, grouping, and gain control in schizophrenia. Psychiatry Research, 2015, 226(2-3): 441-445
参考文献 7
ChenY. Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophrenia Bulletin, 2011, 37(4): 709-715
参考文献 8
GreenM F, HellemannG, HoranW P, et al. From perception to functional outcome in schizophrenia: modeling the role of ability and motivation. Archives of General Psychiatry, 2012, 69(12): 1216-1224
参考文献 9
ButlerP D, SilversteinS M, DakinS C. Visual perception and its impairment in schizophrenia. Biological Psychiatry, 2008, 64(1): 40-47
参考文献 10
ButlerP D, AbelesI Y, WeiskopfN G, et al. Sensory contributions to impaired emotion processing in schizophrenia. Schizophrenia Bulletin, 2009, 35(6): 1095-1107
参考文献 11
ChenY, LevyD L, SheremataS, et al. Bipolar and schizophrenic patients differ in patterns of visual motion discrimination. Schizophr Res, 2006, 88(1-3): 208-216
参考文献 12
YoonJ H, SheremataS L, RokemA, et al. Windows to the soul: vision science as a tool for studying biological mechanisms of information processing deficits in schizophrenia. Frontiers in Psychology, 2013, 4: 681
参考文献 13
SilversteinS M, ThompsonJ L. A vision science perspective on schizophrenia. Schizophrenia Research Cognition, 2015, 2(2): 39-41
参考文献 14
HemsleyD R. The schizophrenic experience: taken out of context?. Schizophrenia Bulletin, 2005, 31(1): 43-53
参考文献 15
PhillipsW A, SilversteinS M. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. The Behavioral and Brain Sciences, 2003, 26(1): 65-82; discussion82-137
参考文献 16
SilversteinS M. Information processing, social cognition, and psychiatric rehabilitation in schizophrenia. Psychiatry, 1997, 60(4): 327-340
参考文献 17
JonesH E, GrieveK L, WangW, et al. Surround suppression in primate V1. Journal of Neurophysiology, 2001, 86(4): 2011-2028
参考文献 18
NassiJ J, LomberS G, BornR T. Corticocortical feedback contributes to surround suppression in V1 of the alert primate. The Journal of Neuroscience, 2013, 33(19): 8504-8517
参考文献 19
AlbrightT D, StonerG R. Contextual influences on visual processing. Annual Review of Neuroscience, 2002, 25: 339-379
参考文献 20
VaiceliunaiteA, EriskenS, FranzenF, et al. Spatial integration in mouse primary visual cortex. Journal of Neurophysiology, 2013, 110(4): 964-972
参考文献 21
SelfM W, LorteijeJ A, VangeneugdenJ, et al. Orientation-tuned surround suppression in mouse visual cortex. The Journal of Neuroscience, 2014, 34(28): 9290-9304
参考文献 22
LiZ. Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proc Natl Acad Sci USA, 1999, 96(18): 10530-10535
参考文献 23
KnierimJ J, Van EssenD C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 1992, 67(4): 961-980
参考文献 24
NothdurftH C, GallantJ L, Van EssenD C. Response modulation by texture surround in primate area V1: correlates of "popout" under anesthesia. Visual Neuroscience, 1999, 16(1): 15-34
参考文献 25
WalkerG A, OhzawaI, FreemanR D. Asymmetric suppression outside the classical receptive field of the visual cortex. The Journal of Neuroscience, 1999, 19(23): 10536-10553
参考文献 26
PetrovY, MckeeS P. The effect of spatial configuration on surround suppression of contrast sensitivity. Journal of Vision, 2006, 6(3): 224-238
参考文献 27
MacevoyS P, ParadisoM A. Lightness constancy in primary visual cortex. Proc Natl Acad Sci USA, 2001, 98(15): 8827-8831
参考文献 28
DakinS, CarlinP, HemsleyD. Weak suppression of visual context in chronic schizophrenia. Current Biology : CB, 2005, 15(20): R822-824
参考文献 29
TadinD, KimJ, DoopM L, et al. Weakened center-surround interactions in visual motion processing in schizophrenia. The Journal of Neuroscience, 2006, 26(44): 11403-11412
参考文献 30
YangE, TadinD, GlasserD M, et al. Visual context processing in schizophrenia. Clinical Psychological Science, 2013, 1(1): 5-15
参考文献 31
YoonJ H, RokemA S, SilverM A, et al. Diminished orientation-specific surround suppression of visual processing in schizophrenia. Schizophrenia Bulletin, 2009, 35(6): 1078-1084
参考文献 32
YoonJ H, MaddockR J, RokemA, et al. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. The Journal of Neuroscience, 2010, 30(10): 3777-3781
参考文献 33
TibberM S, AndersonE J, BobinT, et al. Visual surround suppression in schizophrenia. Frontiers in Psychology, 2013, 4: 88
参考文献 34
Serrano-PedrazaI, Romero-FerreiroV, ReadJ C, et al. Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. Frontiers in Psychology, 2014, 5: 1431
参考文献 35
WangZ, YaoZ, YuanN, et al. Declined contrast sensitivity of neurons along the visual pathway in aging cats. Frontiers in Aging Neuroscience, 2014, 6: 163
参考文献 36
EjimaY, TakahashiS. Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Research, 1985, 25(9): 1223-1232
参考文献 37
ChubbC, SperlingG, SolomonJ A. Texture interactions determine perceived contrast. Proc Natl Acad Sci USA, 1989, 86(23): 9631-9635
参考文献 38
CannonM W, FullenkampS C. Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Research, 1991, 31(11): 1985-1998
参考文献 39
CannonM W, FullenkampS C. Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects. Vision Research, 1993, 33(12): 1685-1695
参考文献 40
BarchD M, CarterC S, DakinS C, et al. The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophrenia Bulletin, 2012, 38(1): 135-143
参考文献 41
ChenY, NortonD, OngurD. Altered center-surround motion inhibition in schizophrenia. Biological Psychiatry, 2008, 64(1): 74-77
参考文献 42
UhlhaasP J, SilversteinS M, PhillipsW A, et al. Evidence for impaired visual context processing in schizotypy with thought disorder. Schizophr Res, 2004, 68(2-3): 249-260
参考文献 43
UhlhaasP J, PhillipsW A, MitchellG, et al. Perceptual grouping in disorganized schizophrenia. Psychiatry Research, 2006, 145(2-3): 105-117
参考文献 44
SilversteinS M, KeaneB P, WangY, et al. Effects of short-term inpatient treatment on sensitivity to a size contrast illusion in first-episode psychosis and multiple-episode schizophrenia. Frontiers in Psychology, 2013, 4: 466
参考文献 45
GibsonJ J. Adaptation, after-effect, and contrast in the perception of tilted lines. II. Simultaneous contrast and the areal restriction of the after-effect. Journal of Experimental Psychology, 1937, 20: 553-569
参考文献 46
OverR, BroerseJ, CrassiniB. Orientation illusion and masking in central and peripheral vision. J Exp Psychol, 1972, 96(1): 25-31
参考文献 47
WenderothP, JohnstoneS. The different mechanisms of the direct and indirect tilt illusions. Vision Research, 1988, 28(2): 301-312
参考文献 48
SchallmoM P, SponheimS R, OlmanC A. Abnormal contextual modulation of visual contour detection in patients with schizophrenia. Plos One, 2013, 8(6): e68090
参考文献 49
TzvetanovT. A single theoretical framework for circular features processing in humans: orientation and direction of motion compared. Frontiers in Computational Neuroscience, 2012, 6: 28
参考文献 50
WangZ, YuS, FuY, et al. Aging potentiates lateral but not local inhibition of orientation processing in primary visual cortex. Frontiers in Aging Neuroscience, 2018, 10: 14
参考文献 51
Zenger-LandoltB, HeegerD J. Response suppression in v1 agrees with psychophysics of surround masking. The Journal of Neuroscience, 2003, 23(17): 6884-6893
参考文献 52
HaynesJ D, RothG, StadlerM, et al. Neuromagnetic correlates of perceived contrast in primary visual cortex. Journal of Neurophysiology, 2003, 89(5): 2655-2666
参考文献 53
HollmannM, HeinemannS. Cloned glutamate receptors. Annual Review of Neuroscience, 1994, 17: 31-108
参考文献 54
DawN W, SteinP S, FoxK. The role of NMDA receptors in information processing. Annual Review of Neuroscience, 1993, 16: 207-222
参考文献 55
KwonY H, NelsonS B, TothL J, et al. Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. Journal of Neurophysiology, 1992, 68(1): 182-196
参考文献 56
FoxK, SatoH, DawN. The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. Journal of Neurophysiology, 1990, 64(5): 1413-1428
参考文献 57
MartinL F, FreedmanR. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. International Review of Neurobiology, 2007, 78: 225-246
参考文献 58
Bodis-WollnerI. Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients. Trends in Neurosciences, 1990, 13(7): 296-302
参考文献 59
MangelS C, DowlingJ E. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science, 1985, 229(4718): 1107-1109
参考文献 60
DisneyA A, AokiC, HawkenM J. Gain modulation by nicotine in macaque v1. Neuron, 2007, 56(4): 701-713
目录 contents

    摘要

    精神分裂症患者普遍存在视觉信息处理异常,这些视知觉功能紊乱涉及视通路的高级以及低级视区,表明在部分精神分裂症患者中,视觉系统早期或晚期的不同信息处理阶段均可能存在损伤. 阐明这些感知觉信息处理紊乱的神经机制对理解精神分裂症神经病理生理学机制有重大意义. 视觉周边抑制(surround suppression)是一种广泛存在的视觉现象,指在神经生理水平或视知觉水平上外周对中央视觉目标的抑制作用. 精神分裂症的视觉周边抑制发生异常改变,然而其损伤状况并不完全一致,且其具体神经机制目前仍不清楚. 本文以周边抑制为对象,从精神分裂症周边抑制改变状况及其神经机制两个层面简述了国内外精神分裂症视觉周边抑制的研究进展. 未来研究方向需要系统全面地调查精神分裂症周边抑制损伤状况,综合脑科学研究技术共同探究精神分裂症患者周边抑制异常的具体神经环路.

    Abstract

    Specific visual processing abnormalities in patients with schizophrenia are well documented and involve high-level and low-level stages in the visual pathway. It is indicated that a portion of patients with schizophrenia may undergo visual processing anomalies that affect either early or late visual information processing or both. These sensory information processing disorders are considered to be associated with advanced cognitive dysfunction and their mechanisms are of great importance to the elucidation of several neuropathophysiological mechanisms underlying schizophrenia. Surround suppression is a well-known visual phenomenon, which refers to the inhibition of surround stimuli to center ones, physiologically or perceptually. In this paper, we reviewed the advances in schizophrenia studies on visual surround suppression in behavioral and neural levels. Extensive research on surround suppression in patients with schizophrenia revealed abnormal surround suppression in patients with schizophrenia. However, the results are not consistent, and the neural mechanisms underlying the impaired surround suppression have yet to be identified. Therefore, a systematic and comprehensive investigation combined with multiple neuroscientific technologies is required to further understand the mechanisms underlying these deficits.

    周东升. Tel:13957826345, E-mail: wyzhouds@sina.com

    关键词 精神分裂症,感知觉,视觉,周边抑制

    精神分裂症(schizophrenia,SZ)是中枢神经系统疾病中最复杂和最重要的谜团之一,终身患病率高达1%. 精神分裂症病程迁延反复,通常导致患者社会功能障碍及生活质量下[1]. 精神分裂症不仅伴有高级认知功能(higher-order cognition functions)损伤,譬如注意、记忆以及执行功能紊乱等,也存在基本感知觉信息处理(sensory and perceptual processes)异常,如视觉信息处理障碍等. 尽管早在1903年,德国精神病理学家Kraepelin已观察到了精神分裂症的视觉感知障碍,但在之后的几十年里,有关精神分裂症视觉感知觉方面的研究鲜有报[2]. 然而,近年来的研究报告显示,精神分裂症患者中普遍存在视觉信息处理障碍. 大约25%~30%的精神分裂症患者具有视觉幻[3],而存在视觉扭曲(亮度、运动、形式和颜色)的患者数量是这个数字的两[4]. 由于视觉系统是脑功能的典型感知觉系统之一,相关研究不仅加深了人们对精神分裂症患者周边抑制信息处理功能障碍及机制的了解,也有助于对精神分裂症患者的视觉系统甚至是其他认知系统功能改变普遍规律的研究. 目前已知精神分裂症视觉信息处理障碍包括异常对比敏感[5]、视觉遮[6]、视觉运动知[7]以及形状识[8]等,并认为与高级认知功能紊乱有[9,10]. 这些感知觉水平上的异常在疾病初期阶段就已经有明显表[9],可能对患者的临床症状以及生活质量产生负性影响. 值得注意的是,与精神分裂症直系亲属或双相情感障碍(bipolar)患者比较,某些视觉感知障碍在精神分裂症患者中更为突出,譬如视觉运动信息处理障[11]. 因此,精神分裂症视觉系统研究被认为是探索精神分裂症脑功能障碍机制的一个潜在的重要突破[12,13].

    有理论认为,与精神分裂症相关的认知缺陷可能是由于患者使用信息(周围环境)编码刺激的能力受[14,15,16]. 这种中央目标与周边环境信息整合的信息处理方式在视觉系统中广泛存在. 譬如,在初级视觉皮层中,有90%的细胞活动会受到周边细胞活动的抑[17,18]. 因此,研究患者视觉周边抑制发生了怎样的变化及其机制对理解精神分裂症病因学、病理生理学具有重要意义. 正常视觉信息加工处理过程中,视觉目标的亮度、方位、方向和大小的感知会受到目标所在的周围环境的影响. 视觉周边抑制指周围环境刺激引起的对目标刺激感知或神经响应的抑制作[19]. 神经电生理研究表明,啮齿类动物以及猫、猴等哺乳动物的初级视皮层(primary visual cortex,V1)细胞放电活动普遍受到周边刺激的调[17,20,21],呈现中央刺激被相似的周围刺激抑制的电生理现象,从而削弱了视觉系统对均匀的、统一的或类同的视觉图形的反应,但与周围环境明显不同的图形得以突显(saliency). 因此,周边抑制可能是视觉系统快速检测特异视觉图形的神经基[22]. 譬如,在视觉搜索任务中,被试可以快速准确地检测到与干扰图形差别很大的目标图形. 细胞电活动研究结果支持了这一假说. 研究表明 V1 神经元对“pop-out”的视觉刺激的确具有更强的反[23,24]. 另外,周边抑制被认为在场景分割中起着重要的功能作[25],与凸显特征处理的增[26]以及感知恒常性的产生有[27].

    现实场景中的物体几乎均被各种视觉环境包绕,这种视觉感知受周围环境影响的效应普遍存在于人们的日常生活中,而异常的周边抑制可能造成对物体的视觉感知混[28]. 因此,研究精神分裂症的视觉周边抑制异常机制,在一定程度上有望帮助患者恢复社会功能与提高生活质量. 另外,不少研究者从精神分裂症患者的视觉周边抑制损伤特点出发结合脑成像等技术,尝试阐明视觉周边抑制异常的神经机制,进一步了解了精神分裂症的病理生理机制. 可见,研究精神分裂症的周边抑制异常机制,对精神分裂症的诊断和治疗具有重要意义.

    目前,国内外专家对精神分裂症的周边抑制进行了大量研究,本文分别从精神分裂症周边抑制改变状况及其神经机制两个层面对这一问题进行综述.

  • 1 精神分裂症周边抑制改变的状况

    一些研究通过不同视觉特征定义的中心-周边刺激实验范式发现精神分裂症患者存在不同程度的周边抑制缺[2,28,29,30,31,32,33,34]. 然而,不同视觉特征(对比度、运动方向、亮度、刺激大小和刺激方位等)定义的周边抑制改变状况并不完全一致.

  • 1.1 对比度定义的周边抑制

    对比度指的是一个视觉刺激图片中明暗区域最亮的区域和最暗的区域之间不同亮度层级的差异,对比度越大代表差异范围越大,对比度越小代表差异范围越小. 譬如,一个黑白条纹的光栅,其对比度通常为白条纹与黑条纹中心亮度之差与两者之和的比值(Michelson contrast[35]. 目标图片被高于其对比度的外周图案包绕时,中央目标图片对比度的主观感知会被抑制. 也就是说,当一个中央图片嵌入一个高对比度的图片时,中央图片的对比度显得被削弱了(图1). 这种对比度定义的周边抑制的知觉现象于1985 年首先被日本科学家 Ejima 和 Takahashi发[36]. 自此之后,来自其他实验室的科学家重复并进一步研究了这种知觉现[37,38,39].

    图1
                            对比度定义的周边抑制刺激范式

    图1 对比度定义的周边抑制刺激范式

    Fig. 1 The contrast defined surround suppression paradigm

    注:(a)中心-周边噪音纹理对比度实验范式(图片来自Dakin[28]);(b)光栅纹理对比度辨别实验范式(图片来自Yoon[31]).

    心理物理学实验过程中测量这种抑制强度的方式是量化出被试所感知到的对比度. 如,给被试呈现两个图片(图1a),其中某个图片被外周图片包围(图1a右侧,被包绕的中央图片为测试刺激,有周边抑制),另一个图片单独呈现(图1a左侧,此图片为参照刺激,无周边抑制),被试比较测试和参照刺激的对比度高低. 当测试和参照刺激具有相同的物理对比度时,由于周边抑制的作用,被试通常判断测试刺激的对比度更低. 通过调节参照刺激对比度,使被试认为测试刺激与参照刺激看起来具有相同对比度,参照刺激这时的对比度被定义为测试刺激的主观对比度(perceptual contrast).实验所用视觉刺激图片的纹理可以是噪音(图1a)或者是光栅(图1b). 受周边抑制影响,测试刺激主观对比度相对于其实际对比度的下降程度被用于衡量周边抑制的强度.

    一些精神分裂症患者在对比度定义的周边抑制中表现出某种程度的周边抑制减低. Dakin[28]采用噪音纹理(noise pattern)的对比度实验范式发现,与健康的参与者相比,在周边刺激高对比度调制下,精神分裂症患者的周边抑制显著变弱. 表现为患者更不容易受周边刺激对比度的影响,因而“善于”判断中央刺激的对比度. 值得注意的是,精神分裂症的这种更“准确”的感知觉恰恰表明其视觉信息处理缺陷,即调制视觉感知的抑制机制的弱[9]. 另有几项研究也报道了精神分裂症患者的对比度定义的周边抑制损[30,33,40]. 光栅纹理(sine-wave grating pattern)对比度辨别范式可以探究对比度周边抑制是否与光栅刺激的方位有关. 实验中,受试者的任务仍然是判断目标图片的对比度与参考图片对比度的大小. 当目标图片光栅与周围环绕图片的光栅方位(或者称朝向)一致时,受试者对目标图片对比度的感知会受周围环绕图片对比度的影响,而当目标图片与周围环绕图片的光栅方位(或者称朝向)垂直时,受试者对目标图片对比度的感知几乎不受周围环绕图片对比度的影响. 研究者将这种与方位相关的对比度定义的周边抑制,称为方位特异的周边抑制(orientation-specific surround suppression,OSSS)(图1b). Yoon[31]使用光栅纹理对比度辨别范式发现,与对照被试相比,在中央和周边刺激条纹方位平行的条件下精神分裂症患者的周边抑制与健康对照组相比显著降低,而在中央和周边刺激条纹方位垂直的条件下精神分裂症患者的周边抑制与健康对照组相比无显著差异. 此外,近年来的两项研[30,33]考虑了多维度的视觉特征定义的周边抑制,均发现了对比度定义的周边抑制损伤.

    值得注意的是,尽管Barch和他的同[40](2012)的一项大样本量的研究也发现了精神分裂症患者的对比度周边抑制减弱,但其效应量(effect size)比Dakin[28]要小得多. 此外,当抹除患者注意力障碍的影响后,两组周边抑制不再有显著性差异. 这表明患者注意力损伤可能影响了周边抑制结果,精神分裂症周边抑制损伤的性质仍然有待进一步研究.

  • 1.2 运动定义的周边抑制

    运动定义的中心-周边实验范式即运动方向辨别范式,是由一个小圆孔内的运动刺激和周围环绕着另一种运动刺激组成(图2). 刺激纹理为移动的正弦光栅(drifting sine-wave)(图2a)、随机点(random dots)(图2b)、或噪音纹理(图2c). 受试者的任务是判断中心圆内图片的运动方向相对于垂直方向是顺时针还是逆时针,中央圆片内图片的运动方向根据受试者的回答而改变. 用以检测被试的主观运动方向(perceptual direction).

    图2
                            运动方向定义的周边抑制刺激范式

    图2 运动方向定义的周边抑制刺激范式

    Fig. 2 The motion direction defined surround suppression paradigm

    注:(a)涵盖中心以及中心与周边的运动光栅刺激实验范式(图片来自Tadin[29]);(b)中心周边运动的随机点纹理刺激实验范式(图片来自Chen[41]);(c)中心周边噪音纹理运动实验范式(图片来自Yang[30]).

    Tadin[29]发现精神分裂症患者在运动辨别任务中表现出周边抑制降低. 正常情况下,中心-周边的拮抗效应导致被试感知高对比度刺激图片运动的能力随着刺激的增大而下降,而精神分裂症患者并没有表现出这种运动知觉的下降. 精神分裂症患者在刺激运动定义的中心-周边运动排斥效应中表现出周边抑制降低. 然而,Chen[41]研究结果发现精神分裂症患者运动定义的周边抑制增强. 也有报道称没有发现精神分裂症患者运动定义的环境调制损[30]. 可见,精神分裂症患者在运动方向定义的周边抑制中的研究结果并不统一.

  • 1.3 亮度强度定义的周边抑制

    亮度对比度与亮度强度定义的周边抑制区别在于视觉刺激的特性不一样,前者是亮度对比度(视觉刺激图片中明暗区域最亮的区域和最暗的区域之间不同亮度层级的差异),后者是亮度强度(指 视觉图片的明亮程度,单位是坎德拉每平方米(cd/m2),这两者均是图片的不同视觉信息. 亮度定义的周边抑制范式由某一亮度的中心圆和包绕圆环组成(图3). 若环绕圆的亮度较高,则被试对中心圆的亮度感知会被抑制,即主观感知的亮度会低于中心圆的物理亮度. 测量在某个周边圆环亮度下,被试对中央圆的亮度感知. 通过调整目标圆的亮度,以匹配参考圆的亮度,用以测量被试的主观亮度(perceptual illumination). 主观亮度与圆的实际亮度之间的差值表征亮度周边抑制. 实验范式为噪音纹理(图3a)或者均匀亮度(图3b)的视觉刺激.

    图3
                            亮度强度定义的周边抑制

    图3 亮度强度定义的周边抑制

    Fig. 3 The luminance defined surround suppression paradigm

    注:(a)噪音填充的中心周边亮度实验范式(图片来自Tibber[33]);(b)均匀亮度定义的中心周边实验范式(图片来自Yang[30]).

    精神分裂症患者在亮度定义的周边抑制中表现出与健康对照相似的周边抑制. Tibber[33]和Yang[30]的研究发现,精神分裂症患者在亮度定义的周边抑制中,与对照组并无差异.

  • 1.4 刺激大小(size)定义的周边抑制

    刺激大小定义的周边抑制范式是埃宾斯豪斯错觉(Ebbinghaus size illusion)的变式(图4). 刺激由一个小圆(测试刺激)和周围环绕的数个均匀间隔的大圆圈组成,另一单独呈现的圆为参考刺激. 测试和参考刺激同时呈现在屏幕上,被试通过按键判断两个圆中哪个更[42,43,44].

    图4
                            刺激大小定义的周边抑制

    图4 刺激大小定义的周边抑制

    Fig. 4 The stimulus size defined surround suppression paradigm

    注:Ebbinghaus错觉的变式,是一种对实际大小主观知觉上的错觉. 两个完全相同大小的圆放置在一张图上,其中一个围绕较大的圆,围绕大圆的圆看起来会比单独存在的圆小(图片来自Yang[30]).

    精神分裂症患者在刺激大小定义的周边抑制中的研究结果并不完全一致. Uhlhaas[42,43]的研究表明精神分裂症患者不易受埃宾斯豪斯大小的错觉的影响. 表现为即便有周围圆圈的干扰,与正常对照组相比,患者具有更精确的刺激大小感知,表明精神分裂症患者刺激大小定义的周边抑制变弱. Tibber[33]的研究结果也表明精神分裂症患者刺激大小定义的周边抑制变弱. 然而,Yang[30]的研究发现,精神分裂症患者在刺激大小定义的周边抑制中,与对照组并无差异.

  • 1.5 刺激方位定义的周边抑制

    刺激方位定义的周边抑制最典型的实验范式为倾斜错觉(tilt illusion). 早在 1937年 Gibson描述了视觉倾斜错觉效[45]. 一个倾斜的周边刺激(诱导刺激)的存在会使同时呈现的被包绕的目标(测试刺激)的方位感知出现偏差(图5). 这种方位错觉强度的诱导与测试刺激之间的夹角相关(图5). 测试刺激(0°,垂直)的错觉感知与诱导刺激的函数关系总结如下:诱导与测试刺激之间的夹角在0°~50°之间时,测试方位对抗诱导刺激方位而出现排斥效应,最强的排斥效应发生在10°~20°之间(直接效应). 诱导与测试刺激之间的夹角更大时,测试方位偏向诱导刺激方位而出现一个较小的吸引效应(间接效应). 最强烈的吸引效应发生在75°~80°之[46,47]. 被试的任务是判断中心圆片中的光栅是顺时针偏转还是逆时针偏转,被试主观方位与实际方位之间的差值是方位周边抑制的强度指标.

    图5
                            刺激方位定义的周边抑制

    图5 刺激方位定义的周边抑制

    Fig. 5 The orientation defined surround suppression paradigm

    注:同样竖直朝向的光栅,在被朝左或朝右的背景光栅所包围后,会被错误的知觉为朝背景光栅相反的方向倾斜. 一般认为,在中央和外周较小角度差下,这种周边环境对主观知觉的影响主要表现在排斥效应,而较大角度差会表现为吸引效应. 这种倾斜错觉通常被认为源于初级视觉皮层中,朝向特异神经元之间的侧抑制:偏好背景光栅朝向的神经元会抑制其他神经元对这一朝向的反应,使偏好中央光栅朝向的神经元在与背景光栅相同的方向受到更强的抑制,导致人类对中央光栅朝向的知觉偏向了与背景光栅相反的方向.

    Schallmo[48]采用flanker包绕目标刺激的范式发现,与健康对照组相比,精神分裂症患者的平行抑制变弱. Yang [30]的研究发现,精神分裂症患者在方位定义的周边抑制中表现出效应增强,虽然这种增强的方位定义的周边抑制没有统计学差异,但这种较强的周边抑制与较严重的临床症状和社会功能紊乱相关. 另一方面,Tibber[33]的研究发现,精神分裂症患者在刺激方位定义的周边抑制中与对照组相比并无差异. 精神分裂症患者对其方位定义的周边抑制的研究结果并不统[30,33,48],精神分裂症患者方位定义的周边抑制状况需要进一步研究.

    作者采用经典的倾斜错觉范式,在同一实验范式中涵盖了倾斜排斥(repulsion)与倾斜吸引(attraction)效应. 发现精神分裂症患者组和对照组的感知方位均受到周边方位的调制,在±15°和±30°出现显著的倾斜排斥效应,在±75°出现小幅的倾斜吸引效应(文章在评审中). 但是和对照组相比,患者组的倾斜排斥与吸引效应均无显著性改变. 我们同时考察了被试在执行任务时的注意力指标,发现与对照组相比,患者组的注意力显著下降.

  • 2 精神分裂症周边抑制改变的神经机制

    得益于视觉信息处理系统详细而精确的研究方法和较详实的理论基础,通过精神分裂症患者的视觉信息处理紊乱的特性可以推演出某些可能的视觉系统的损伤机制. 亮度定义的周边抑制在视网膜信息处理中就已经出现,亮度定义的周边抑制的改变情况反映了皮层下视觉信息处理的改变情况;刺激大小、朝向定义的周边抑制处理中枢被认为位于初级视觉皮层;视觉运动信息被认为主要由纹外皮层加工处理. 因此,视觉信息处理特征可以间接反映出周边抑制损伤的位点. 有研究组采用了一系列的视觉特征定义的周边抑制,发现精神分裂症患者亮度定义的周边抑制未损伤而其他视觉特征定义的周边抑制受损,因此,推测患者周边抑制损伤可能起始于大脑皮质水[33]. 不同视觉特征定义的周边抑制在患者中发生不同程度的改变,提示精神分裂症不同视觉特征定义的周边抑制异常的神经机制可能并不完全一致. 此外,心理物理学与其他脑科学研究技术的结合为阐明精神分裂症视觉周边抑制异常现象提供更详细和具体的神经环路机制.

  • 2.1 神经计算模型分析方法

    根据V1区细胞对刺激方位的调谐特性进行建模,研究者实现了在同一个实验模式中,同时考察行为学现象对应的不同层次生理水平上抑制系统的变[49]. 这种神经计算模型技术在老年视觉衰退机制中得到成功应[50]. 譬如,我们采用倾斜排斥效应范式的神经计算模型,将皮层抑制系统进一步分为侧抑制(lateral inhibition)和局部抑制(local inhibition),发现自然老化导致V1侧抑制升高,而局部抑制降低或不[50]. 目前并不清楚不同水平的抑制系统在精神分裂症患者的视皮层中究竟发生了怎样的变化. 尽管先前的研究发现精神分裂症患者周边抑制损伤和皮层抑制下降有关,但是国内外尚无应用倾斜排斥计算模型研究其周边抑制损伤的神经环路机制的报道.

  • 2.2 脑影像学研究方法

    功能磁共振成像(functional magnetic resonance imaging,fMRI[51]、脑磁图(magnetoencephalography, MEG)和脑电图(electroencephalogram, EEG[52]的相关研究表明,人类V1区和周边抑制显著相关. 此外,神经计算模型和fMRI周边抑制数据联合分析表明,与高级脑区相比,V1区神经元活动为行为结果提供了更好的定量描[51]. 因此,在精神分裂症患者中观察到的对比度周边抑制降低,表明V1区信息处理的紊乱. Yoon[32]利用行为学实验结合非侵入性磁共振波谱成像(magnetic resonance spectrum, MRS)测量技术,发现精神分裂症方位特异的周边抑制损伤和视皮层γ- aminobutyric acid(GABA)水平减低相关,为精神分裂症患者周边抑制降低提供了一个直接的生理水平的抑制受损机制. 当前研究结果显示,精神分裂症周边抑制损伤发生在皮层水平. 也有研究表明精神分裂症患者皮层下外侧膝状体核(lateral geniculate nucleus,LGN)的大细胞(magnocellular pathway,也称M通路)和小细胞(parvocellular pathway,也称P通路)通道均有对比敏感度损[9].

  • 2.3 生物化学与分子生物学方法

    有研究揭示谷氨酸神经递质系统的缺陷在精神分裂症病理机制中起着非常重要的作用,通过N-甲基-D-天门冬氨酸(N-methyl-D-aspartate,NMDA)受体的谷氨酸递质系统异常,造成谷氨酸和/或谷氨酸盐酯异常,可能导致了精神分裂症的种种表[53],并且谷氨酸系统的多个环节被认为是未来抗精神病药可能的作用靶点. 视觉系统的兴奋性神经递质主要为谷氨酸,而NMDA在增益控制(gain control)中起着核心作用. 例如,NMDA受体放大对孤立刺激的反应,并增强侧抑制的效果(增加中心感受野-周边拮抗作用[54]. 因此,NMDA的不足会导致反应放大降低和侧抑制减少. 研究发现NMDA的拮抗剂导致低对比度条件下较弱的增益和较低的平台,这表明信号放大被降低[55,56].

    其他与精神分裂症有关的神经递质,也调节视觉信息处[57]. 例如,多巴胺缺乏与对比度的感知及其电生理反应损伤有关,包括在中心-周边范[58,59]中出现的信号. 最近的一项神经生理学研究表明,尼古丁会增加视皮层的增益控[60]. 这项研究结果有助于理解精神分裂症患者用吸烟进行的“自我治疗”现象,并支持了精神分裂症的增益控制变弱的假说. 阐明不同类型的神经递质如何参与到视觉感知无疑有助于对精神分裂症视功能紊乱机制的理解.

  • 3 小结与展望

    为了控制患者存在的认知功能损伤的干扰,精神分裂症周边抑制改变的规律需要更系统的调查. 使用多种视觉刺激范式、多个测试指标全方位研究精神分裂症周边抑制状况,观察周边抑制损伤随精神分裂症病程的动态改变状况. 进一步测试不同病程的精神分裂症及其亲属的周边抑制改变情况,比较并分析受试者组间差异,全面评估精神分裂症患者周边抑制的变化状况. 采用首发期未服药精神分裂症患者可以排除药物对实验结果的影响;不同病程的患者结果之间的比较,可以调查周边抑制改变与病程之间的关系;与直系亲属的结果比较,可以调查周边抑制改变是否具有遗传倾向;与其他精神疾病患者结果的比较,可以调查周边抑制改变是否为精神分裂症所特有. 另外,研究视觉损伤指标和患者视幻觉等临床症状的相关情况,将进一步回答视觉损伤和精神分裂症临床症状的关系. 在同一实验环境和参数条件下调查精神分裂症周边抑制状况,排除了病人资源不匹配、实验参数不统一等因素可能对结果造成的干扰.

    精神分裂症周边抑制损伤的神经机制需要多学科交叉研究. 测量不同视觉特征定义的周边抑制在精神分裂症中的改变情况,一定程度上可以推测周边抑制损伤位点. 然而,皮层下是否有周边抑制损伤,及对皮层上周边抑制异常的贡献目前并不清楚. 心理物理学与人类功能磁共振技术的联合使用,无疑会更直接地证实精神分裂症周边抑制发生的起始位点和脑区之间的联系. 充分阐明精神分裂症周边抑制改变的神经机制,需要心理物理测量、功能成像、神经电生理以及神经计算模型等多学科技术相结合.

    ZHOU Dong-Sheng. Tel:13957826345, E-mail: wyzhouds@sina.com

  • 参 考 文 献

    • 1

      Knapp M, Mangalore R, Simon J. The global costs of schizophrenia. Schizophrenia Bulletin, 2004, 30(2): 279-293

    • 2

      Silverstein S M, Keane B P. Vision science and schizophrenia research: toward a re-view of the disorder. Editors' introduction to special section. Schizophrenia Bulletin, 2011, 37(4): 681-689

    • 3

      Waters F, Collerton D, Ffytche D H, et al. Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease. Schizophrenia Bulletin, 2014, 40(Suppl 4): S233-245

    • 4

      Phillipson O T, Harris J P. Perceptual changes in schizophrenia: a questionnaire survey. Psychological Medicine, 1985, 15(4): 859-866

    • 5

      Kelemen O, Kovacs T, Keri S. Contrast, motion, perceptual integration, and neurocognition in schizophrenia: the role of fragile-X related mechanisms. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2013, 46: 92-97

    • 6

      Roinishvili M, Cappe C, Shaqiri A, et al. Crowding, grouping, and gain control in schizophrenia. Psychiatry Research, 2015, 226(2-3): 441-445

    • 7

      Chen Y. Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophrenia Bulletin, 2011, 37(4): 709-715

    • 8

      Green M F, Hellemann G, Horan W P, et al. From perception to functional outcome in schizophrenia: modeling the role of ability and motivation. Archives of General Psychiatry, 2012, 69(12): 1216-1224

    • 9

      Butler P D, Silverstein S M, Dakin S C. Visual perception and its impairment in schizophrenia. Biological Psychiatry, 2008, 64(1): 40-47

    • 10

      Butler P D, Abeles I Y, Weiskopf N G, et al. Sensory contributions to impaired emotion processing in schizophrenia. Schizophrenia Bulletin, 2009, 35(6): 1095-1107

    • 11

      Chen Y, Levy D L, Sheremata S, et al. Bipolar and schizophrenic patients differ in patterns of visual motion discrimination. Schizophr Res, 2006, 88(1-3): 208-216

    • 12

      Yoon J H, Sheremata S L, Rokem A, et al. Windows to the soul: vision science as a tool for studying biological mechanisms of information processing deficits in schizophrenia. Frontiers in Psychology, 2013, 4: 681

    • 13

      Silverstein S M, Thompson J L. A vision science perspective on schizophrenia. Schizophrenia Research Cognition, 2015, 2(2): 39-41

    • 14

      Hemsley D R. The schizophrenic experience: taken out of context?. Schizophrenia Bulletin, 2005, 31(1): 43-53

    • 15

      Phillips W A, Silverstein S M. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. The Behavioral and Brain Sciences, 2003, 26(1): 65-82; discussion82-137

    • 16

      Silverstein S M. Information processing, social cognition, and psychiatric rehabilitation in schizophrenia. Psychiatry, 1997, 60(4): 327-340

    • 17

      Jones H E, Grieve K L, Wang W, et al. Surround suppression in primate V1. Journal of Neurophysiology, 2001, 86(4): 2011-2028

    • 18

      Nassi J J, Lomber S G, Born R T. Corticocortical feedback contributes to surround suppression in V1 of the alert primate. The Journal of Neuroscience, 2013, 33(19): 8504-8517

    • 19

      Albright T D, Stoner G R. Contextual influences on visual processing. Annual Review of Neuroscience, 2002, 25: 339-379

    • 20

      Vaiceliunaite A, Erisken S, Franzen F, et al. Spatial integration in mouse primary visual cortex. Journal of Neurophysiology, 2013, 110(4): 964-972

    • 21

      Self M W, Lorteije J A, Vangeneugden J, et al. Orientation-tuned surround suppression in mouse visual cortex. The Journal of Neuroscience, 2014, 34(28): 9290-9304

    • 22

      Li Z. Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proc Natl Acad Sci USA, 1999, 96(18): 10530-10535

    • 23

      Knierim J J, Van Essen D C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 1992, 67(4): 961-980

    • 24

      Nothdurft H C, Gallant J L, Van Essen D C. Response modulation by texture surround in primate area V1: correlates of "popout" under anesthesia. Visual Neuroscience, 1999, 16(1): 15-34

    • 25

      Walker G A, Ohzawa I, Freeman R D. Asymmetric suppression outside the classical receptive field of the visual cortex. The Journal of Neuroscience, 1999, 19(23): 10536-10553

    • 26

      Petrov Y, Mckee S P. The effect of spatial configuration on surround suppression of contrast sensitivity. Journal of Vision, 2006, 6(3): 224-238

    • 27

      Macevoy S P, Paradiso M A. Lightness constancy in primary visual cortex. Proc Natl Acad Sci USA, 2001, 98(15): 8827-8831

    • 28

      Dakin S, Carlin P, Hemsley D. Weak suppression of visual context in chronic schizophrenia. Current Biology : CB, 2005, 15(20): R822-824

    • 29

      Tadin D, Kim J, Doop M L, et al. Weakened center-surround interactions in visual motion processing in schizophrenia. The Journal of Neuroscience, 2006, 26(44): 11403-11412

    • 30

      Yang E, Tadin D, Glasser D M, et al. Visual context processing in schizophrenia. Clinical Psychological Science, 2013, 1(1): 5-15

    • 31

      Yoon J H, Rokem A S, Silver M A, et al. Diminished orientation-specific surround suppression of visual processing in schizophrenia. Schizophrenia Bulletin, 2009, 35(6): 1078-1084

    • 32

      Yoon J H, Maddock R J, Rokem A, et al. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. The Journal of Neuroscience, 2010, 30(10): 3777-3781

    • 33

      Tibber M S, Anderson E J, Bobin T, et al. Visual surround suppression in schizophrenia. Frontiers in Psychology, 2013, 4: 88

    • 34

      Serrano-Pedraza I, Romero-Ferreiro V, Read J C, et al. Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. Frontiers in Psychology, 2014, 5: 1431

    • 35

      Wang Z, Yao Z, Yuan N, et al. Declined contrast sensitivity of neurons along the visual pathway in aging cats. Frontiers in Aging Neuroscience, 2014, 6: 163

    • 36

      Ejima Y, Takahashi S. Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Research, 1985, 25(9): 1223-1232

    • 37

      Chubb C, Sperling G, Solomon J A. Texture interactions determine perceived contrast. Proc Natl Acad Sci USA, 1989, 86(23): 9631-9635

    • 38

      Cannon M W, Fullenkamp S C. Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Research, 1991, 31(11): 1985-1998

    • 39

      Cannon M W, Fullenkamp S C. Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects. Vision Research, 1993, 33(12): 1685-1695

    • 40

      Barch D M, Carter C S, Dakin S C, et al. The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophrenia Bulletin, 2012, 38(1): 135-143

    • 41

      Chen Y, Norton D, Ongur D. Altered center-surround motion inhibition in schizophrenia. Biological Psychiatry, 2008, 64(1): 74-77

    • 42

      Uhlhaas P J, Silverstein S M, Phillips W A, et al. Evidence for impaired visual context processing in schizotypy with thought disorder. Schizophr Res, 2004, 68(2-3): 249-260

    • 43

      Uhlhaas P J, Phillips W A, Mitchell G, et al. Perceptual grouping in disorganized schizophrenia. Psychiatry Research, 2006, 145(2-3): 105-117

    • 44

      Silverstein S M, Keane B P, Wang Y, et al. Effects of short-term inpatient treatment on sensitivity to a size contrast illusion in first-episode psychosis and multiple-episode schizophrenia. Frontiers in Psychology, 2013, 4: 466

    • 45

      Gibson J J. Adaptation, after-effect, and contrast in the perception of tilted lines. II. Simultaneous contrast and the areal restriction of the after-effect. Journal of Experimental Psychology, 1937, 20: 553-569

    • 46

      Over R, Broerse J, Crassini B. Orientation illusion and masking in central and peripheral vision. J Exp Psychol, 1972, 96(1): 25-31

    • 47

      Wenderoth P, Johnstone S. The different mechanisms of the direct and indirect tilt illusions. Vision Research, 1988, 28(2): 301-312

    • 48

      Schallmo M P, Sponheim S R, Olman C A. Abnormal contextual modulation of visual contour detection in patients with schizophrenia. Plos One, 2013, 8(6): e68090

    • 49

      Tzvetanov T. A single theoretical framework for circular features processing in humans: orientation and direction of motion compared. Frontiers in Computational Neuroscience, 2012, 6: 28

    • 50

      Wang Z, Yu S, Fu Y, et al. Aging potentiates lateral but not local inhibition of orientation processing in primary visual cortex. Frontiers in Aging Neuroscience, 2018, 10: 14

    • 51

      Zenger-Landolt B, Heeger D J. Response suppression in v1 agrees with psychophysics of surround masking. The Journal of Neuroscience, 2003, 23(17): 6884-6893

    • 52

      Haynes J D, Roth G, Stadler M, et al. Neuromagnetic correlates of perceived contrast in primary visual cortex. Journal of Neurophysiology, 2003, 89(5): 2655-2666

    • 53

      Hollmann M, Heinemann S. Cloned glutamate receptors. Annual Review of Neuroscience, 1994, 17: 31-108

    • 54

      Daw N W, Stein P S, Fox K. The role of NMDA receptors in information processing. Annual Review of Neuroscience, 1993, 16: 207-222

    • 55

      Kwon Y H, Nelson S B, Toth L J, et al. Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. Journal of Neurophysiology, 1992, 68(1): 182-196

    • 56

      Fox K, Sato H, Daw N. The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. Journal of Neurophysiology, 1990, 64(5): 1413-1428

    • 57

      Martin L F, Freedman R. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. International Review of Neurobiology, 2007, 78: 225-246

    • 58

      Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients. Trends in Neurosciences, 1990, 13(7): 296-302

    • 59

      Mangel S C, Dowling J E. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science, 1985, 229(4718): 1107-1109

    • 60

      Disney A A, Aoki C, Hawken M J. Gain modulation by nicotine in macaque v1. Neuron, 2007, 56(4): 701-713

王正春

机 构:宁波大学医学院,浙江省病理生理学技术研究重点实验室,宁波 315211

Affiliation:Zhejiang Key Laboratory of Pathophysiology, Ningbo University, Ningbo 315211, China

潘志超

机 构:宁波大学医学院,浙江省病理生理学技术研究重点实验室,宁波 315211

Affiliation:Zhejiang Key Laboratory of Pathophysiology, Ningbo University, Ningbo 315211, China

沈昊伟

机 构:宁波大学医学院,浙江省病理生理学技术研究重点实验室,宁波 315211

Affiliation:Zhejiang Key Laboratory of Pathophysiology, Ningbo University, Ningbo 315211, China

角 色:通讯作者

Role:Corresponding author

电 话:0574-87609585

邮 箱:shenhaowei@nbu.edu.cn

作者简介:沈昊伟. Tel:0574-87609585, E-mail: shenhaowei@nbu.edu.cn

周东升

机 构:宁波市康宁医院,宁波 315201

Affiliation:Ningbo Kangning Hospital, Ningbo 315210, China

html/pibbcn/20180211/alternativeImage/c2124358-0d0c-4b66-91c4-cb4f14db825b-F001.jpg
html/pibbcn/20180211/alternativeImage/c2124358-0d0c-4b66-91c4-cb4f14db825b-F002.jpg
html/pibbcn/20180211/alternativeImage/c2124358-0d0c-4b66-91c4-cb4f14db825b-F003.jpg
html/pibbcn/20180211/alternativeImage/c2124358-0d0c-4b66-91c4-cb4f14db825b-F004.jpg
html/pibbcn/20180211/alternativeImage/c2124358-0d0c-4b66-91c4-cb4f14db825b-F005.jpg

图1 对比度定义的周边抑制刺激范式

Fig. 1 The contrast defined surround suppression paradigm

图2 运动方向定义的周边抑制刺激范式

Fig. 2 The motion direction defined surround suppression paradigm

图3 亮度强度定义的周边抑制

Fig. 3 The luminance defined surround suppression paradigm

图4 刺激大小定义的周边抑制

Fig. 4 The stimulus size defined surround suppression paradigm

图5 刺激方位定义的周边抑制

Fig. 5 The orientation defined surround suppression paradigm

image /

(a)中心-周边噪音纹理对比度实验范式(图片来自Dakin[28]);(b)光栅纹理对比度辨别实验范式(图片来自Yoon[31]).

(a)涵盖中心以及中心与周边的运动光栅刺激实验范式(图片来自Tadin[29]);(b)中心周边运动的随机点纹理刺激实验范式(图片来自Chen[41]);(c)中心周边噪音纹理运动实验范式(图片来自Yang[30]).

(a)噪音填充的中心周边亮度实验范式(图片来自Tibber[33]);(b)均匀亮度定义的中心周边实验范式(图片来自Yang[30]).

Ebbinghaus错觉的变式,是一种对实际大小主观知觉上的错觉. 两个完全相同大小的圆放置在一张图上,其中一个围绕较大的圆,围绕大圆的圆看起来会比单独存在的圆小(图片来自Yang[30]).

同样竖直朝向的光栅,在被朝左或朝右的背景光栅所包围后,会被错误的知觉为朝背景光栅相反的方向倾斜. 一般认为,在中央和外周较小角度差下,这种周边环境对主观知觉的影响主要表现在排斥效应,而较大角度差会表现为吸引效应. 这种倾斜错觉通常被认为源于初级视觉皮层中,朝向特异神经元之间的侧抑制:偏好背景光栅朝向的神经元会抑制其他神经元对这一朝向的反应,使偏好中央光栅朝向的神经元在与背景光栅相同的方向受到更强的抑制,导致人类对中央光栅朝向的知觉偏向了与背景光栅相反的方向.

  • 参 考 文 献

    • 1

      Knapp M, Mangalore R, Simon J. The global costs of schizophrenia. Schizophrenia Bulletin, 2004, 30(2): 279-293

    • 2

      Silverstein S M, Keane B P. Vision science and schizophrenia research: toward a re-view of the disorder. Editors' introduction to special section. Schizophrenia Bulletin, 2011, 37(4): 681-689

    • 3

      Waters F, Collerton D, Ffytche D H, et al. Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease. Schizophrenia Bulletin, 2014, 40(Suppl 4): S233-245

    • 4

      Phillipson O T, Harris J P. Perceptual changes in schizophrenia: a questionnaire survey. Psychological Medicine, 1985, 15(4): 859-866

    • 5

      Kelemen O, Kovacs T, Keri S. Contrast, motion, perceptual integration, and neurocognition in schizophrenia: the role of fragile-X related mechanisms. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2013, 46: 92-97

    • 6

      Roinishvili M, Cappe C, Shaqiri A, et al. Crowding, grouping, and gain control in schizophrenia. Psychiatry Research, 2015, 226(2-3): 441-445

    • 7

      Chen Y. Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophrenia Bulletin, 2011, 37(4): 709-715

    • 8

      Green M F, Hellemann G, Horan W P, et al. From perception to functional outcome in schizophrenia: modeling the role of ability and motivation. Archives of General Psychiatry, 2012, 69(12): 1216-1224

    • 9

      Butler P D, Silverstein S M, Dakin S C. Visual perception and its impairment in schizophrenia. Biological Psychiatry, 2008, 64(1): 40-47

    • 10

      Butler P D, Abeles I Y, Weiskopf N G, et al. Sensory contributions to impaired emotion processing in schizophrenia. Schizophrenia Bulletin, 2009, 35(6): 1095-1107

    • 11

      Chen Y, Levy D L, Sheremata S, et al. Bipolar and schizophrenic patients differ in patterns of visual motion discrimination. Schizophr Res, 2006, 88(1-3): 208-216

    • 12

      Yoon J H, Sheremata S L, Rokem A, et al. Windows to the soul: vision science as a tool for studying biological mechanisms of information processing deficits in schizophrenia. Frontiers in Psychology, 2013, 4: 681

    • 13

      Silverstein S M, Thompson J L. A vision science perspective on schizophrenia. Schizophrenia Research Cognition, 2015, 2(2): 39-41

    • 14

      Hemsley D R. The schizophrenic experience: taken out of context?. Schizophrenia Bulletin, 2005, 31(1): 43-53

    • 15

      Phillips W A, Silverstein S M. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. The Behavioral and Brain Sciences, 2003, 26(1): 65-82; discussion82-137

    • 16

      Silverstein S M. Information processing, social cognition, and psychiatric rehabilitation in schizophrenia. Psychiatry, 1997, 60(4): 327-340

    • 17

      Jones H E, Grieve K L, Wang W, et al. Surround suppression in primate V1. Journal of Neurophysiology, 2001, 86(4): 2011-2028

    • 18

      Nassi J J, Lomber S G, Born R T. Corticocortical feedback contributes to surround suppression in V1 of the alert primate. The Journal of Neuroscience, 2013, 33(19): 8504-8517

    • 19

      Albright T D, Stoner G R. Contextual influences on visual processing. Annual Review of Neuroscience, 2002, 25: 339-379

    • 20

      Vaiceliunaite A, Erisken S, Franzen F, et al. Spatial integration in mouse primary visual cortex. Journal of Neurophysiology, 2013, 110(4): 964-972

    • 21

      Self M W, Lorteije J A, Vangeneugden J, et al. Orientation-tuned surround suppression in mouse visual cortex. The Journal of Neuroscience, 2014, 34(28): 9290-9304

    • 22

      Li Z. Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proc Natl Acad Sci USA, 1999, 96(18): 10530-10535

    • 23

      Knierim J J, Van Essen D C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 1992, 67(4): 961-980

    • 24

      Nothdurft H C, Gallant J L, Van Essen D C. Response modulation by texture surround in primate area V1: correlates of "popout" under anesthesia. Visual Neuroscience, 1999, 16(1): 15-34

    • 25

      Walker G A, Ohzawa I, Freeman R D. Asymmetric suppression outside the classical receptive field of the visual cortex. The Journal of Neuroscience, 1999, 19(23): 10536-10553

    • 26

      Petrov Y, Mckee S P. The effect of spatial configuration on surround suppression of contrast sensitivity. Journal of Vision, 2006, 6(3): 224-238

    • 27

      Macevoy S P, Paradiso M A. Lightness constancy in primary visual cortex. Proc Natl Acad Sci USA, 2001, 98(15): 8827-8831

    • 28

      Dakin S, Carlin P, Hemsley D. Weak suppression of visual context in chronic schizophrenia. Current Biology : CB, 2005, 15(20): R822-824

    • 29

      Tadin D, Kim J, Doop M L, et al. Weakened center-surround interactions in visual motion processing in schizophrenia. The Journal of Neuroscience, 2006, 26(44): 11403-11412

    • 30

      Yang E, Tadin D, Glasser D M, et al. Visual context processing in schizophrenia. Clinical Psychological Science, 2013, 1(1): 5-15

    • 31

      Yoon J H, Rokem A S, Silver M A, et al. Diminished orientation-specific surround suppression of visual processing in schizophrenia. Schizophrenia Bulletin, 2009, 35(6): 1078-1084

    • 32

      Yoon J H, Maddock R J, Rokem A, et al. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. The Journal of Neuroscience, 2010, 30(10): 3777-3781

    • 33

      Tibber M S, Anderson E J, Bobin T, et al. Visual surround suppression in schizophrenia. Frontiers in Psychology, 2013, 4: 88

    • 34

      Serrano-Pedraza I, Romero-Ferreiro V, Read J C, et al. Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. Frontiers in Psychology, 2014, 5: 1431

    • 35

      Wang Z, Yao Z, Yuan N, et al. Declined contrast sensitivity of neurons along the visual pathway in aging cats. Frontiers in Aging Neuroscience, 2014, 6: 163

    • 36

      Ejima Y, Takahashi S. Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Research, 1985, 25(9): 1223-1232

    • 37

      Chubb C, Sperling G, Solomon J A. Texture interactions determine perceived contrast. Proc Natl Acad Sci USA, 1989, 86(23): 9631-9635

    • 38

      Cannon M W, Fullenkamp S C. Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Research, 1991, 31(11): 1985-1998

    • 39

      Cannon M W, Fullenkamp S C. Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects. Vision Research, 1993, 33(12): 1685-1695

    • 40

      Barch D M, Carter C S, Dakin S C, et al. The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophrenia Bulletin, 2012, 38(1): 135-143

    • 41

      Chen Y, Norton D, Ongur D. Altered center-surround motion inhibition in schizophrenia. Biological Psychiatry, 2008, 64(1): 74-77

    • 42

      Uhlhaas P J, Silverstein S M, Phillips W A, et al. Evidence for impaired visual context processing in schizotypy with thought disorder. Schizophr Res, 2004, 68(2-3): 249-260

    • 43

      Uhlhaas P J, Phillips W A, Mitchell G, et al. Perceptual grouping in disorganized schizophrenia. Psychiatry Research, 2006, 145(2-3): 105-117

    • 44

      Silverstein S M, Keane B P, Wang Y, et al. Effects of short-term inpatient treatment on sensitivity to a size contrast illusion in first-episode psychosis and multiple-episode schizophrenia. Frontiers in Psychology, 2013, 4: 466

    • 45

      Gibson J J. Adaptation, after-effect, and contrast in the perception of tilted lines. II. Simultaneous contrast and the areal restriction of the after-effect. Journal of Experimental Psychology, 1937, 20: 553-569

    • 46

      Over R, Broerse J, Crassini B. Orientation illusion and masking in central and peripheral vision. J Exp Psychol, 1972, 96(1): 25-31

    • 47

      Wenderoth P, Johnstone S. The different mechanisms of the direct and indirect tilt illusions. Vision Research, 1988, 28(2): 301-312

    • 48

      Schallmo M P, Sponheim S R, Olman C A. Abnormal contextual modulation of visual contour detection in patients with schizophrenia. Plos One, 2013, 8(6): e68090

    • 49

      Tzvetanov T. A single theoretical framework for circular features processing in humans: orientation and direction of motion compared. Frontiers in Computational Neuroscience, 2012, 6: 28

    • 50

      Wang Z, Yu S, Fu Y, et al. Aging potentiates lateral but not local inhibition of orientation processing in primary visual cortex. Frontiers in Aging Neuroscience, 2018, 10: 14

    • 51

      Zenger-Landolt B, Heeger D J. Response suppression in v1 agrees with psychophysics of surround masking. The Journal of Neuroscience, 2003, 23(17): 6884-6893

    • 52

      Haynes J D, Roth G, Stadler M, et al. Neuromagnetic correlates of perceived contrast in primary visual cortex. Journal of Neurophysiology, 2003, 89(5): 2655-2666

    • 53

      Hollmann M, Heinemann S. Cloned glutamate receptors. Annual Review of Neuroscience, 1994, 17: 31-108

    • 54

      Daw N W, Stein P S, Fox K. The role of NMDA receptors in information processing. Annual Review of Neuroscience, 1993, 16: 207-222

    • 55

      Kwon Y H, Nelson S B, Toth L J, et al. Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. Journal of Neurophysiology, 1992, 68(1): 182-196

    • 56

      Fox K, Sato H, Daw N. The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. Journal of Neurophysiology, 1990, 64(5): 1413-1428

    • 57

      Martin L F, Freedman R. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. International Review of Neurobiology, 2007, 78: 225-246

    • 58

      Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients. Trends in Neurosciences, 1990, 13(7): 296-302

    • 59

      Mangel S C, Dowling J E. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science, 1985, 229(4718): 1107-1109

    • 60

      Disney A A, Aoki C, Hawken M J. Gain modulation by nicotine in macaque v1. Neuron, 2007, 56(4): 701-713