en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
QiaoR R, YangC H, GaoM Y. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem, 2009, 19(35): 6274-6293
参考文献 2
JordanA, ScholzR, WustP, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater, 1999, 194(1): 185-196
参考文献 3
KalamburV S, HanB, HammerB E, et al. In vitro characterization of movement,heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology, 2005, 16(8): 1221-1233
参考文献 4
KimK S, ParkJ K. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab on a Chip, 2005, 5(6): 657-664
参考文献 5
LinY, RenJ, QuX. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc chem Res, 2014, 47(4): 1097-1105
参考文献 6
ThorekD L J, ChenA K, CzuprynaJ, et al. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng, 2006, 34(1): 23-38
参考文献 7
JordanA, WustP, FählinH, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperther, 1993, 9(1): 51-68
参考文献 8
DobsonJ. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol, 2018,3(3): 139-143
参考文献 9
ZhangX, NiuH, PanY, et al. Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Anal Chem, 2010, 82(6): 2363-2371
参考文献 10
乔瑞瑞, 贾巧娟, 曾剑峰, 等. 磁性氧化铁纳米颗粒及其磁共振成像应用. 生物物理学报, 2011, 27(4): 272-288
QiaoR R, JiaQ J, ZengJ F, et al. Acta Biophysica Sinica, 2011, 27(4): 272-288
参考文献 11
乔瑞瑞, 曾剑峰, 贾巧娟, 等. 磁性氧化铁纳米颗粒——通向肿瘤磁共振分子影像的重要基石. 物理化学学报, 2012, 28(5): 993-1011
QiaoR R, ZengJ F, JiaQ J, et al. Acta Physico-Chimica Sinica, 2012, 28(5): 993-1011
参考文献 12
YooD, LeeJ H, ShinT H, et al. Theranostic magnetic nanoparticles. Acc Chem Res, 2011, 44(10): 863-874
参考文献 13
HoD, SunX, SunS. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res, 2011, 44(10): 875-882
参考文献 14
TassaC, ShawS Y, WeisslederR. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res, 2011, 44(10): 842-852
参考文献 15
高利增, 阎锡蕴. 纳米酶的发现与应用. Progress in Biochemistry and Biophysics, 2013, 40(10): 892-902
参考文献 16
WeiH, WangE. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev, 2013, 42(14): 6060-6093
参考文献 17
KimB H, LeeN, KimH, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc, 2011, 133(32): 12624-12631
参考文献 18
ZhangH, LiL, LiuX L, et al. Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS nano, 2017, 11(4): 3614-3631
参考文献 19
LeeJ H, JangJ, ChoiJ, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech, 2011, 6(7): 418-422
参考文献 20
LiuX L, YangY, NgC T, et al. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv Mater, 2015, 27(11): 1939-1944
参考文献 21
TayA, Di CarloD. Remote neural stimulation using magnetic nanoparticles. Curr Med Chem, 2017, 24(5): 537-548
参考文献 22
ManuchehrabadiN, GaoZ, ZhangJ, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med, 2017, 9(379): eaah4586
参考文献 23
KimJ, ChoH R, JeonH, et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc, 2017, 139(32): 10992-10995
参考文献 24
NaH B, HyeonT. Nanostructured T1 MRI contrast agents. J Mater Chem, 2009, 19(35): 6267-6273
参考文献 25
ZengL, RenW, ZhengJ, et al. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys, 2012, 14(8): 2631-2636
参考文献 26
PenfieldJ G, Reilly JrR F. What nephrologists need to know about gadolinium. Nat Rev Nephrol, 2007, 3(12): 654-668
参考文献 27
TaboadaE, RodríguezE, RoigA, et al. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir, 2007, 23(8): 4583-4588
参考文献 28
TromsdorfU I, BrunsO T, SalmenS C, et al. A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett, 2009, 9(12): 4434-4440
参考文献 29
WeiH, BrunsO T, KaulM G, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci USA, 2017: 144(9):2325-2330
参考文献 30
ShenZ, ChenT, MaX, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS nano, 2017, 11(11): 10992-11004
参考文献 31
ShenZ, SongJ, ZhouZ, et al. Dotted core–shell nanoparticles for T1‐weighted MRI of tumors. Adv Mater, 2018, 30(33): 1803163
参考文献 32
LuY, XuY J, ZhangG, et al. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat Biomed Eng, 2017, 1(8): 637-643
参考文献 33
LiZ, YiP W, SunQ, et al. Ultrasmall water‐soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater, 2012, 22(11): 2387-2393
参考文献 34
ZengJ, JingL, HouY, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater, 2014, 26(17): 2694-2698
参考文献 35
LuJ, SunJ, LiF, et al. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. JACS, 2018, 140(32): 10071-10074
参考文献 36
BaiC, JiaZ, SongL, et al. Time‐dependent T1–T2 switchable magnetic resonance imaging realized by c (RGDyK) modified ultrasmall Fe3O4 nanoprobes. Adv Funct Mater, 2018,28(32): 1802281
参考文献 37
ShinT H, ChoiY, KimS, et al. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev, 2015, 44(14): 4501-4516
参考文献 38
JiangX, ZhangS, RenF, et al. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano, 2017, 11(6): 5633-5645
参考文献 39
GaoZ, HouY, ZengJ, et al. Tumor Microenvironment‐triggered aggregation of antiphagocytosis 99mTc‐labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv Mater, 2017, 29(24): 1701095
参考文献 40
ChengL, YangK, LiY, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual‐targeted photothermal therapy. Angew Chem, 2011, 123(32): 7523-7528
参考文献 41
LiuY, YangF, YuanC, et al. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano, 2017, 11(2): 1509-1519
参考文献 42
FergusonR M, KhandharA P, KrishnanK M. Tracer design for magnetic particle imaging. J Appl Phys, 2012, 111(7): 07B318
参考文献 43
吴建鹏, 刘晓丽, 张欢, 等. 涡旋磁纳米颗粒. 生物化学与生物物理进展, 2015, 42(7): 593-605
WuJ P, LiuX L, ZhangH, et al. Prog Biochem Biophys, , 2015, 42(7): 593-605
参考文献 44
GordonR T, HinesJ R, GordonD. Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses, 1979, 5(1): 83-102
参考文献 45
YanaseM, ShinkaiM, HondaH, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Cancer Res, 1998, 89(4): 463-470
参考文献 46
ShinjoT, OkunoT, HassdorfR, et al. Magnetic vortex core observation in circular dots of permalloy. Science, 2000, 289(5481): 930-932
参考文献 47
RothmanJ, KläuiM, Lopez-DiazL, et al. Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. Phys Rev Lett, 2001, 86(6): 1098-1101
参考文献 48
ZhangY F, LiuX, PengE W, et al. Facile synthesis of water-dispersible magnetite nanorings from surfactant-free hematite nanorings. Micro & Nano Letters, 2016, 11(12): 814-818
参考文献 49
JangJ T, NahH, LeeJ H, et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem-Int Edit, 2009, 48(7): 1234-1238
参考文献 50
ChenR, ChristiansenM G, AnikeevaP. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. Acs Nano, 2013, 7(10): 8990-9000
参考文献 51
JangJ, LeeJ, SeonJ, et al. Giant magnetic heat induction of magnesium‐doped γ‐Fe2O3 superparamagnetic nanoparticles for completely killing tumors. Adv Mater, 2018, 30(6): 1704362
参考文献 52
HildebrandtB, WustP, AhlersO, et al. The cellular and molecular basis of hyperthermia. Critical reviews in oncology/hematology, 2002, 43(1): 33-56
参考文献 53
BabincováM, AltanerovÁV, C ÍAltaner, et al. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Transactions on Nanobioscience, 2008, 7(1): 15-19
参考文献 54
RenY, ZhangH, ChenB, et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. International Journal of Nanomedicine, 2012, 7(1): 2261-2269
参考文献 55
XueW M, LiuX L, MaH P, et al. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mater Chem B, 2018, 6(15): 2289-2303
参考文献 56
JohannsenM, ThiesenB, GneveckowU, et al. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. The Prostate, 2006, 66(1): 97-104
参考文献 57
Maier-HauffK, UlrichF, NestlerD, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-oncol, 2011, 103(2): 317-324
参考文献 58
EspinosaA, Di CoratoR, Kolosnjaj-TabiJ, et al. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10(2): 2436-2446
参考文献 59
KumarC S S R, MohammadF. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Delivery Rev, 2011, 63(9): 789-808
参考文献 60
N'GuyenT T T, DuongH T T, BasukiJ, et al. Functional iron oxide magnetic nanoparticles with hyperthermia‐induced drug release ability by using a combination of orthogonal click reactions. Angew Chem Int Ed, 2013, 52(52): 14152-14156
参考文献 61
LiJ, QuY, RenJ, et al. Magnetocaloric effect in magnetothermally-responsive nanocarriers for hyperthermia-triggered drug release. Nanotechnology, 2012, 23(50): 505-706
参考文献 62
TabatabaeiS N, GirouardH, CarretA S, et al. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Control Release, 2015, 206: 49-57
参考文献 63
MontellC. The TRP Superfamily of cation channels. Sciences Signaling, 2005, 2005(272):re3-re3
参考文献 64
HuangH, DelikanliS, ZengH, et al. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotech, 2010, 5(8):602-606
参考文献 65
StanleyS A, GagnerJ E, DamanpourS, et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science, 2012, 336(6081):604-609
参考文献 66
StanleyS A, SauerJ, KaneR S, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med, 2015, 21(1):92-102
参考文献 67
StanleyS A, KellyL, LatchaK N, et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature, 2016, 531(7596):647-650
参考文献 68
ChenR, RomeroG, ChristiansenM G, et al. Wireless magnetothermal deep brain stimulation. Science, 2015, 347(6229):1477-1480
参考文献 69
MunshiR, QadriS M, ZhangQ, et al. Magneto-thermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife, 2017, 6: e27069
参考文献 70
LewisJ K, BischofJ C, BraslavskyI, et al. The grand challenges of organ banking: proceedings from the first global summit on complex tissue cryopreservation. Cryobiology, 2016, 72(2): 169-182
参考文献 71
EtheridgeM L, XuY, RottL, et al. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology, 2014, 2(03): 229-242
参考文献 72
WuC, ShenY, ChenM, et al. Recent Advances in magnetic‐nanomaterial‐based mechanotransduction for cell fate regulation. Adv Mater, 2018, 30(17): 1705673
参考文献 73
TayA, KunzeA, MurrayC, et al. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano, 2016, 10(2): 2331-2341
参考文献 74
KangH, WongD S H, YanX, et al. Remote control of multimodal nanoscale ligand oscillations regulates stem cell adhesion and differentiation. ACS Nano, 2017, 11(10): 9636-9649
参考文献 75
KilincD, DennisC L, LeeG U. Bio‐Nano‐Magnetic materials for localized mechanochemical stimulation of cell growth and death. Adv Mater, 2016, 28(27): 5672-5680
参考文献 76
FranzeK. The mechanical control of nervous system development. Development, 2013, 140(15): 3069-3077
参考文献 77
KilincD, LesniakA, RashdanS A, et al. Mechanochemical stimulation of MCF7 cells with rod‐shaped Fe–Au Janus particles induces cell death through paradoxical hyperactivation of ERK. Adv Healthc Mater, 2015, 4(3): 395-404
参考文献 78
ChengD, LiX, ZhangG, et al. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells. Nano Res Lett, 2014, 9(1): 195-203
参考文献 79
LimE K, KimT, PaikS, et al. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev, 2014, 115(1): 327-394
参考文献 80
ChenH, ZhangW, ZhuG, et al. Rethinking cancer nanotheranostics. Nat Rev Mater, 2017, 2(7): 17024-17042
参考文献 81
XieJ, LeeS, ChenX. Nanoparticle-based theranostic agents. Adv Drug Delivery Rev, 2010, 62(11): 1064-1079
参考文献 82
HayashiK, NakamuraM, SakamotoW, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics, 2013, 3(6): 366-376
参考文献 83
YooD, LeeJ H, ShinT H, et al. Theranostic magnetic nanoparticles. Acc Chem Res, 2011, 44(10): 863-874
参考文献 84
SansonC, DiouO, ThevenotJ, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano, 2011, 5(2): 1122-1140
参考文献 85
LiuX L, NgC T, ChandrasekharanP, et al. Synthesis of ferromagnetic Fe0.6Mn0.4O4 nanoflowers as a new class of magnetic theranostic platform for in vivo T1‐T2 dual‐mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthc Mater, 2016, 5(16): 2092-2104
参考文献 86
SongX, GongH, YinS, et al. Ultra‐small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater, 2014, 24(9): 1194-1201
参考文献 87
ShenZ, ChenT, MaX, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano, 2017,11(11): 10992-11004
参考文献 88
GaoL, ZhuangJ, NieL, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotech, 2007, 2(9): 577-583
参考文献 89
FanH M, YiJ B, YangY, et al. Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. Acs Nano, 2009, 3(9): 2798-2808
参考文献 90
FanK, CaoC, PanY, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotech, 2012, 7(7): 459-464
参考文献 91
WangH, LiS, SiY, et al. Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B, 2014, 2(28): 4442-4448
参考文献 92
LuoS, LiuY, RaoH, et al. Fluorescence and magnetic nanocomposite Fe3O4@ SiO2@Au MNPs as peroxidase mimetics for glucose detection. Anal Biochem, 2017, 538(9): 26-33
目录 contents

    摘要

    以四氧化三铁为代表的医用磁性纳米材料具有独特的磁学性能、表面易功能化、良好的生物学相容性等特点,在纳米医学相关领域展现出巨大的应用前景,特别是近年来它作为可介导外场的智能材料,在材料设计和生物医学应用方面均取得了突破性的进展. 鉴于此,本文围绕磁性氧化铁纳米材料的生物医学应用,着重介绍近年来其在磁共振影像探针、磁热和磁力效应的生物医学应用、诊疗一体化以及纳米酶催化等领域的研究进展,并对磁性纳米材料在生物医学领域未来的发展方向进行了展望.

    Abstract

    Ferroferric oxide ,a respresentative of biomedical magnetic nanomaterials, have shown great potential in nanomedicine because of their unique size-dependent properties, easy surface functionalization and good biocompatibility. Recently, great progress in this field has been achieved in materials design and biomedical applications, especially, the iron oxide nanomaterials can be used as intelligent materials to mediate the external field. To highlight these achievements, here we discuss the biomedical applications of magnetic nanoparticles in magnetic resonance imaging contrast agents, magnetic hyperthermia and magnetic force controlled biological effect, magnetotheranostics and nanozymes. With the quick development in nanomedicine, magnetic nanoparticles-based diagnostics and therapeutics are believed to play vital roles in tackling major disease in the future.

    与大多现有生物医用纳米材料不同,以纳米氧化铁为代表的医用磁性纳米颗粒既可介导外场产生局域磁[1]、热效[2]、力学效[3,4],又兼顾了本征的类酶催化活[5]. 同时,纳米氧化铁是当前为数不多的已被美国食品药品监督管理局(FDA)批准可用于临床的无机纳米材料. 因此,将多功能集成于一体的磁性纳米颗粒在磁共振造影成像(MRI)[1,6]、磁感应热[7]、细胞命运调[8]、生物催[9]等生物医学相关领域展现出巨大的应用前景. 在生物影像方面,超顺磁性氧化铁纳米颗粒增强的磁共振T2成像已应用于多种疾病的诊[10,11];在肿瘤精准治疗方面,集成影像与热疗为一体的磁性氧化铁诊疗一体化纳米平台材料也展现了巨大潜[12,13,14];在生物催化方面,磁性氧化铁纳米材料由于具有类生物酶的催化特性,且稳定性高、经济以及可规模化制备等特点,已经成为当前的研究热点之[15,16].

    然而,磁性纳米材料在取得良好进展的同时,也面临着更重要的挑战. 比如,传统超顺磁氧化铁纳米颗粒作为磁共振T2造影剂,在临床应用上存在易与低信号区产生混淆,且图像分辨率仍有待提高的问题,作为磁热疗剂,其低的磁热效率也一直是临床靶向磁热疗应用的障碍. 令人欣慰的是,随着磁性纳米材料合成技术的不断发展,新型的磁性纳米材料不断涌现,不仅有效改善了以往存在的科学问题,而且也进一步扩展了其在生物医学领域的应用面. 如利用准顺磁氧化铁作为T1造影剂已被成功开[17,18],高磁-热效率的纳米热疗剂也逐步进入人们视[19,20],在脑神经调控、生物体器官冷冻复苏、细胞命运调控以及肿瘤诊疗一体化等方面也取得了长足进[21,22,23]. 目前,磁性纳米材料在生物医学应用的多个领域都展现出其独特的优势,特别是在高效介导外场产生的生物效应及其应用上取得了重要进展,及时总结这些最新进展将推动我国在这些前沿领域的快速发展. 基于以上考虑,本文围绕近年来磁性纳米材料在生物医学领域的新发现和新应用,分析了磁性纳米材料在这些应用中的主要特点和优势,总结了其在磁共振成像探针、磁热和磁力效应的生物医学应用、诊疗一体化、纳米酶催化等领域上的最新研究进展,并进一步展望了磁性纳米材料在生物医学领域未来的发展方向.

  • 1 生物成像应用

  • 1.1 准顺磁氧化铁纳米颗粒的磁共振 T1增强成像

    磁共振成像(magnetic resonance imaging,MRI)是临床影像诊断的主要手段之一,磁共振造影剂可有效增强病变组织与正常组织之间的影像对比度,按照其对弛豫时间影响的不同,被分为缩短纵向弛豫时间的T1造影剂和缩短横向弛豫时间的T2造影剂. T1造影剂使标记区域T1加权成像变亮,是正增强造影剂,而T2造影剂使病变区域T2加权成像变暗,为负增强造影剂. 造影剂性能的优劣通常用弛豫效能(r1r2)来评估,即单位物质的量的造影剂可以加速氢质子弛豫速率快慢的物理量. 传统的超顺磁性纳米颗粒是磁共振T2造影剂,尽管其良好的生物相容性保证了在临床应用的安全性,但在应用过程中仍存在较多问题:a. 作为T2加权造影剂,其变暗的图像区域易与临床上常见的出血、钙化以及金属沉积等病症引起的低信号相混淆,从而导致误诊;b. 磁性纳米颗粒的高磁矩易引起磁敏感伪影效应,导致目标区域图像模糊,从而降低成像的分辨率. 因此,为实现成像区域的高清晰解析,临床诊断往往采用T1造影剂来进行成像增[24,25]. 钆配合物是目前临床上最常用的T1造影剂,然而钆配合物在代谢过程中可能释放游离的钆离子与肾原性系统纤维化等疾病有很强关联性,有较大的潜在毒副作用,此外钆配合物难以进一步功能化,导致靶向性分子成像较困[26]. 开发一种安全高效的纳米氧化铁T1造影剂(图1),将两者的优势结合,实现高效低毒的磁共振分子影像,是当前磁性纳米造影剂的一个重要挑战.

    图1
                            氧化铁纳米颗粒T1造影剂发展里程

    图1 氧化铁纳米颗粒T1造影剂发展里程

    Fig. 1 The development of iron oxide nanoparticles based T1 contrast agent

    2007年Muller[27]首先研究了4.9 nm γ-Fe2O3T1弛豫性能,评估结果表明小尺寸氧化铁颗粒具有作为磁共振T1造影剂的潜力. 2009年Weller[28]的研究明确显示,当氧化铁纳米颗粒尺寸小于5 nm这个阈值,即可展示较好的T1弛豫性能. 他们还进一步研究了不同链长聚乙二醇(PEG)表面修饰对亚5 nm氧化铁T1造影剂的稳定性、弛豫率、细胞毒性以及巨噬细胞吞噬的影响. 2011年Hyeon课题[17]采用油醇作为还原剂,显著降低了油酸铁前驱体的分解温度,大规模合成了小尺寸的氧化铁纳米颗粒(1.5~3.7 nm),并系统评估了3 nm氧化铁纳米颗粒其活体血管磁共振成像效果. 2016年,Bawendi[29]利用两性离子多巴胺磺酸盐修饰3 nm γ-Fe2O3纳米颗粒,并研究其作为T1造影剂的药代动力学行为和小鼠体内分布,发现经修饰后的磁性纳米颗粒经肾清除快速从体内排出. 2017年,Chen和Wu [30]利用水相合成方法制备了7种尺寸(1.9 ~ 4.9 nm)的小尺寸氧化铁颗粒,系统地研究了尺寸依赖的T1弛豫性能. 2018年他们进一步在小尺寸氧化铁纳米颗粒上修饰了氧化钆纳米颗粒,构建了“点状”核壳结构纳米颗粒(FeGd-HN3-RGD2),大幅提高了其T1弛豫性[31].

    多组分合成体系的成核与生长过程较复杂且不易精准控制,导致单分散小尺寸铁氧体纳米颗粒难以制备. 针对这一问题,Fan 课题[18]巧妙地利用金属羧酸配合物的热分解性质,提出了一种普适的动态同步热分解法,成功制备了小于4 nm的磁性铁氧体纳米颗粒,并阐明了该共热分解法制备小尺寸铁氧体的可控生长机制. 随后以3 nm锰铁氧体(UMFNPs)作为磁共振T1造影剂为例,揭示了小尺寸铁氧体材料的T1弛豫机制. 对于亚5 nm铁氧体磁性材料,由于其表面高占比的非晶层破坏了自旋有序结构,导致形成了自旋无序的“准顺磁”T1弛豫特性. 与同尺寸氧化铁纳米颗粒比较研究表明:其增强的T1弛豫机制来源于非晶层内球弛豫过程与晶化内核的外球弛豫过程共同贡献,最终产生了高达8.23 mmol-1·L·s-1T1弛豫率. 其T1弛豫性能较商用造影剂欧乃影(Omniscan)高2倍,可实现微小血管的高清晰成像(图2).

    图2
                            超小铁氧体纳米颗粒的合成与磁共振成像应用[18]

    图2 超小铁氧体纳米颗粒的合成与磁共振成像应[18]

    Fig. 2 Synthesis of ultrasmall metal ferrite nanoparticles for magnetic resonance imaging of blood vessels and liver[18]

    随着准顺磁氧化铁纳米颗粒作为磁共振T1造影剂研究的逐步深入,其全身毒性评估以及临床前期大动物的磁共振成像预评估成为其临床前的必要研究内容. Lu[32]报道了PEG修饰的2 nm氧化铁团簇T1造影剂在大型动物模型比格犬和灵长类动物猕猴的磁共振血管成像、脑缺血成像以及毒性评估结果. 尽管仍需要更多的临床前研究,该大型动物模型研究结果表明准顺磁氧化铁纳米颗粒有望作为磁共振T1造影剂实现临床转化.

    纵观磁性纳米颗粒基磁共振成像造影剂的发展历程,不难发现:尽管早在1996年超顺磁氧化铁纳米颗粒作为磁共振成像T2造影剂已获得FDA批准可以进入临床使用,但由于其诊断功效难以满足临床需求现在已经停产. 但是准顺磁的超小尺寸氧化铁纳米颗粒为新型、低毒的铁基纳米颗粒造影剂带来了新的曙光. 当前的研究进展已经基本实现准顺磁铁氧体纳米颗粒的大规模可控制备及表面修饰,以及大动物安全性和有效性评估,为将来的临床转化奠定了基础.

  • 1.2 基于磁性纳米材料的多模态成像

    癌症的早期诊断是癌症及时治疗和预后良好的关键因素,利用分子影像技术实现癌症的早期精准诊断是当前的研究热点. 相对于传统的单模式磁共振成像,同时利用T1T2特性的双模式成像能够提高影像的准确度和敏感度. 因此设计可具有两种弛豫加权造影功能的纳米探针受到越来越多研究者关注. Lu[33]报道了一种高分子稳定的准顺磁氧化铁纳米颗粒,可实现磁共振T1T2 双模式成像,其在肝或肾的影像增强较钆基造影剂有明显提高. Gao[34]制备了双磷酸PEG衍生物、异羟肟酸PEG衍生物和邻苯二酚PEG衍生物表面修饰的准顺磁氧化铁纳米颗粒,通过理论计算与活体影像实验相结合发现,异羟肟酸PEG衍生物表面修饰的氧化铁纳米颗粒具有最高的T1T2造影效能. 此外,通过巧妙的设计使得纳米探针可响应肿瘤微环境,从而实现T1T2成像之间的转换可望实现微小肿瘤的高灵敏检测. Hyeon和Ling [35]合成了基于i-motif核酸结构的pH敏感型准顺磁氧化铁团聚体纳米探针,通过肿瘤微环境的酸性诱导其解体,实现原位T2T1对比效应的转变,从而提高正常肝和肝癌组织之间的对比度,为开发新型的智能磁共振纳米探针提供一种新策略. Gu[36]则设计了整合素配体c(RGDyK)修饰的小尺寸氧化铁纳米探针,该探针在静脉注射30 min后,在肿瘤区域T1增强效果达到最佳,之后T1信号逐渐消失,T2增强效果逐渐显现. 这个现象是由于纳米探针在肿瘤部位逐渐富集并发生团聚导致的.这种具有时间依赖性的T1T2增强显像效果能有效提高肿瘤检测的准确性和敏感性.

    不同的影像技术在灵敏度、分辨率和定量能力方面都存在各自的优缺点,将磁共振与其他影像技术如X射线计算机断层扫描(CT)、正电子发射断层成像术(PET)、单光子发射计算机断层扫描(SPECT)、荧光成像(FLI)、光声成像(PAI)、以及超声成像(UI)等结合的多模态成像技术受到研究者们的广泛关[37,38]. 而多模态成像探针是多模态影像技术的物质基础,磁性纳米材料作为一种具有良好生物安全性的多功能纳米平台,其不仅可以作为磁共振成像造影剂,且易与其他成像组分相结合构建高性能的多模态纳米探针,实现疾病的精准影像检测. 例如,为了改善单一磁共振成像的灵敏度,Gao课题[39]构建了一种谷胱甘肽刺激响应99mTc标记的氧化铁纳米探针,用于肿瘤部位的主动靶向和MRI/ SPECT双模态成像,用于MRI/ SPECT双模态肿瘤成像,极大程度地提高了肿瘤成像的灵敏度. Liu 课题[40]采用层-层自组装法将上转换纳米颗粒(UCNPs)与超顺磁氧化铁纳米颗粒复合构建了多功能纳米复合物(MFNPs),然后再利用种子诱导还原生长在MFNPs表面形成2~3 nm厚度的金壳. 探针中磁性纳米颗粒不仅可用于磁共振T2成像,而且作为缓冲层降低了金壳对UCNPs的荧光猝灭. 该纳米探针可实现高灵敏度和高穿透深度的FLI/MR双模式成像,使得影像介导的靶向癌症治疗成为可能. Yang[41]报道了一种刺激响应型的茴三硫(ADT)负载的磁性纳米脂质体(AML)递送系统. 在外磁场作用下, AML先靶向肿瘤组织,然后转化为微米尺寸的H2S气泡. 该转化过程可通过MRI/UI双模式成像实时监测,瘤内原位生成的H2S气泡不仅可被高声强超声破裂杀伤肿瘤组织,其本身还可作为信号分子协同抑制肿瘤生长.

    特别值得一提的是:磁性纳米颗粒本身即可实现多模态成像. 磁共振-磁粒子 (MRI-MPI)联合成像、磁动超声成像(MMUS)以及磁光声成像(MPA)等技术均以磁性纳米材料作为示踪剂. 以新型磁粒子成像(MPI)为例,其在2005年被提出,因具有可定量、无背景信号、成像对比度高以及实时成像等优势已被用于心血管成像、细胞示踪和疾病诊[42]. MPI-MRI多模式成像不仅可以高灵敏定位纳米探针,也可实现高分辨率和精准解剖学成像.

  • 2 磁热效应的生物医学应用

  • 2.1 肿瘤磁热疗应用

    肿瘤磁热疗(magnetic induction hyperthermia,MIH)是将磁性纳米颗粒定位于肿瘤组织,颗粒在外界交变磁场作用下发生磁滞损耗产生热量,从而达到局部定点的加热效果,使肿瘤部位温度迅速升高到42~45 ℃,利用肿瘤细胞对热的耐受性较正常细胞低的特性,选择性地将肿瘤细胞杀死. 该治疗方法具有无组织穿透深度限制、物理治疗无药物耐药性且氧化铁制剂毒副作用低等优[43,44,45]. 鉴于此,德国柏林的MagForce AG公司研制了基于水溶性的氨基硅烷化氧化铁纳米颗粒和强交变磁场纳米热治疗体系,并将其用于治疗脑胶质瘤等恶性肿瘤. 目前该产品已经通过了欧洲监管机构的批准上市,而且在美国也获得了FDA的批准,展开前列腺癌磁感应热疗临床研究. 虽然基于超顺磁氧化铁纳米颗粒的磁热疗剂已在临床肿瘤治疗中获得应用,但其在临床治疗中磁热效率过低,难以实现高效的磁热疗,如静脉注射的靶向治疗等.所以提高纳米氧化铁的磁热效率是当前临床磁热疗急需解决的问题之一.

    Cheon[19]以CoFe2O4等硬磁材料为核,MnFe2O4或Fe3O4等软磁材料为壳,采用种子生长方法构建了硬-软磁核壳结构的磁性纳米颗粒. 利用软磁和硬磁在界面处交换耦合作用调制了磁性纳米颗粒的磁晶各向异性能,从而显著提高磁热转换效率. 如在相同交变磁场下(500 kHz,37.3 kA/m),CoFe2O4@MnFe2O4核壳结构纳米颗粒相比于CoFe2O4纳米颗粒,其转换效率(specific loss powers,SLP)由443 W/g提高至2280 W/g,较传统超顺氧化铁纳米颗粒(333 W/g)高出近一个数量级. 在动物肿瘤模型实验中,将75 μg的CoFe2O4@MnFe2O4注入肿瘤组织,在交变磁场下(500 kHz,37.3 kA/m)治疗10 min,18 d后小鼠肿瘤即可完全消除且无复发症状. 而采用商业化纳米氧化铁(Feridex)的对照组,即使注射剂量超过 1 200 mg,其肿瘤依然没有被抑制,说明了高磁热效率的CoFe2O4@MnFe2O4纳米颗粒在肿瘤磁热疗方面的显著优势(图3).

    图3
                            CoFe2O4@MnFe2O4核壳结构纳米颗粒在肿瘤磁热疗中的应用[19]

    图3 CoFe2O4@MnFe2O4核壳结构纳米颗粒在肿瘤磁热疗中的应[19]

    Fig. 3 The application of CoFe2O4@MnFe2O4 core–shell nanoparticles in tumor hyperthermia treatment[19]

    注:(a)CoFe2O4@MnFe2O4核壳结构纳米颗粒用于小鼠肿瘤磁热疗模型;(b,c)小鼠异种移植U87MG人类脑肿瘤细胞,未经处理(对照组)、Feridex、阿霉素以及CoFe2O4@MnFe2O4热疗前、治疗18 d后的小鼠肿瘤控制情况照片和肿瘤生长曲线;(d)阿霉素、Feridex磁热疗、CoFe2O4@MnFe2O4热疗18 d后肿瘤体积的剂量依赖曲线.

    尽管核壳结构交换耦合纳米颗粒展现了良好的磁热效应,但其制备过程复杂难控,且铁磁性特性存在剩磁导致颗粒易团聚,另外其组分中的钴、锰等重金属元素会带来了潜在的生物安全性问题. 而涡旋磁纳米晶是近年发展起来的新型医用磁性纳米生物材料,独特的涡旋磁结构导致其无剩磁,易形成稳定磁溶胶分散体系,同时又具备了接近体相材料的优异磁学性[46,47,48]. 鉴于此,Fan[20]通过 α-Fe2O3纳米颗粒热相变制备了具有纳米环结构的涡旋磁氧化铁(ferrimagnetic vortex-domain iron oxide nanorings,FVIOs),系统地研究了其结构依赖的磁学性质、磁感应升温特性及作为新型纳米热疗剂的局部抗肿瘤磁热疗效果. 结果表明,涡旋磁氧化铁纳米环磁化过程中的涡旋-洋葱态相转变显著增强了磁滞损耗和磁热转换效率,其比吸收率(specific adsorption rate,SAR)较超顺磁纳米颗粒提高了一个数量级,低剂量即可有效抑制肿瘤生长.

    铁氧体磁性颗粒的化学组成也可调制其磁学性质,进而提高磁热转换效[49,50]. 近期,Jang[51]采用热分解法合成了Mg2+填位的Mgx-γFe2O3. 通过系统调控将Mg2+放置在γ-Fe2O3的八面体铁空缺位点,进一步调制八面体间隙中Mg2+的浓度. 研究发现,当x=0.13时,该磁性纳米颗粒表现出优异的磁热性能,在120 kHz、15.2 kA/m的磁场作用下,其本征能量损耗值(intrinsic loss power,ILP)为14 nH·m2 kg-1,是商业氧化铁(Feridex,ILP= 0.15 nH·m2 kg-1)的100倍. 随后裸鼠Hep3B人肝癌肿瘤模型实验验证了其抗肿瘤磁热疗效果,经过Mg0.13-γFe2O3磁热疗14 d后的小鼠肿瘤完全消退,而对照组商业氧化铁治疗的小鼠肿瘤增长至原来的8倍,表明Mg0.13-γFe2O3具有作为临床新型热疗剂的前景.

  • 2.2 基于磁热效应的联合疗法

    除利用磁性颗粒在交变磁场下产热直接杀死肿瘤细胞以外,磁热效应也对放、化疗以及免疫治疗有增强作用,故可与临床放化疗联合,以起到降低放、化疗剂量,减轻其毒副作用,提高疗效以及改善患者预后的作用.

  • 2.2.1 热化疗联合疗法

    大量研究表明:热疗可扩张肿瘤血管,加速血液循环,有效提高肿瘤部位的药物富集度;干扰肿瘤DNA的修复机制和多药耐药性P-糖蛋白的表达,导致肿瘤细胞的抵抗凋亡途径受损;增加药物的体内扩散速度,催化药物与肿瘤细胞DNA的反应,使癌细胞对化疗药物的敏感性增加,以达到热化疗协同增效的效[52,53,54].

    Melania[53]用负载了顺铂的磁性纳米颗粒对BP6细胞进行处理. 结果表明:磁热可增强药物释放,相对于单一化疗和磁热疗,联合治疗实验组表现出热化疗协同增效的效果. Ren[54]将化疗药物道诺霉素(DNR)、P-糖蛋白抑制剂5-溴粉防己碱(5-BrTet)与磁性纳米颗粒复合,构建了一种磁性纳米药物Fe3O4-MNPs-DNR-5-BrTet. 采用裸鼠白血病异种肿瘤模型对该纳米药物疗效研究表明:交变磁场下作用40 min后,相对于对照组,实验组表现出显著的治疗效果,且体内P-糖蛋白的表达量明显下调. Liang[55]将氧化铁纳米颗粒和阿霉素封装在海藻酸盐-壳聚糖微球内形成磁药物复合物(DM-ACMSs),其可作为交变磁场刺激响应型热化疗平台材料有效预防乳腺癌术后复发.乳腺癌肿瘤模型实验验证了DM-ACMSs的抗肿瘤复发效果,经热化疗联合治疗的小鼠,12 d后肿瘤完全消失,且在监测的40 d内未出现复发症状,而单一磁热疗或化疗的对照组,在第25 d肿瘤均出现复发现象.

  • 2.2.2 热放疗联合疗法

    磁热效应可阻碍损伤癌细胞的修复,还可抑制肿瘤新血管生成,从而增强放疗效果. Johannsen[56]将96只原位前列腺癌模型的哥本哈根鼠进行分组,分别用单一放疗、单一磁热疗以及磁热-放疗联合进行治疗.结果表明:磁热疗联合20 Gy放疗的实验组治疗效果最好,其疗效与使用60 Gy照射剂量的单一放疗效果相当. 鉴于磁热对放疗良好的协同增效,该联合疗法已被应用于临床试验. 2005年4月,MargForce公司进行了磁流体热疗的临床二期试[57],这次试验的对象是59位多发性脑胶质瘤患者. 本次治疗采用磁热疗和放疗相结合的方式,首先瘤内注射氨基硅烷修饰的超顺磁氧化铁纳米颗粒,同时通过MRI和CT成像对肿瘤部位进行的三维图像采集. 磁热疗时瘤内中位温度为51.2 ℃,结合立体定向放射治疗. 结果表明,接受治疗的病人中位生存期达到13.4 m,相比于传统疗法的中位生存期(6.2 m)有了显著提高.

  • 2.2.3 磁热-光热联合疗法

    目前,单一的光热疗和磁热疗都存在一定缺陷. 对于光热疗,要达到理想的升温效果,通常需要高强度的激光照射(2~5 W/cm2),远超出皮肤组织能承受的安全范围(0.33 W/cm2);对于磁热疗,要达到理想的加热效果则需要高剂量(1~2 mol/L)的磁热剂,然而大剂量热疗剂破坏了体内铁代谢平衡,导致较大毒副作用. 磁性纳米材料除与交变磁场作用产生热以外,还可吸收近红外光转换为热,从而可利用磁性纳米颗粒进行磁热-光热联合治疗,打破单一治疗模式的局限性. 如Wilhelm[58]在低浓度氧化铁纳米颗粒(0.25 mol/L),低强度 808 nm激光辐射下(0.3 W/cm2)进行双模式热疗,相对于单一磁热疗或光热疗,热效率获得显著提高,可使肿瘤完全消退. 此外,热疗可明显增强机体的抗肿瘤免疫效应,其分子生物学机制主要包括:热休克蛋白(Hsps)的表达增高、抗原呈递细胞的激活以及淋巴细胞的交易行为改变,且经过磁热疗后的小鼠,机体免疫系统存在记忆效应,可以激发免疫系统获得二次抗肿瘤免疫响[45].

  • 2.3 磁热控制药物递送

    磁性纳米材料由于具有优异的磁热效应、易于耦合多种配体和药物等特点,以其构建热化疗纳米制剂可望实现药物在病灶部位的智能靶向递[59]. Fontaine[60]将含有膦酸基和两个可发生点击反应基团(炔基、呋喃环)的多功能配体修饰在磁性氧化铁纳米颗粒表面,并通过炔基与叠氮化物的点击反应(CuAAC)将亲水聚合物修饰在颗粒表面,随后通过呋喃环与马来酰亚胺发生迪尔斯-阿尔德反应(Diels–Alder,DA)将含有马来酰亚胺的模型分子罗丹明探针(Rhd-M)连接到磁性颗粒上(图4). 在外加交变磁场下产热致使磁性颗粒表面温度升高,诱发DA反应的逆反应,使得探针分子罗丹明M释放,而培养基没有明显的加热.

    图4
                            热敏磁性纳米颗粒载药系统的构建[53]

    图4 热敏磁性纳米颗粒载药系统的构[53]

    Fig. 4 The synthesis of thermal-sensitive magnetic nanoparticle-baesd drug delivery system[53]

    热敏感性聚合物在经过磁热升温后,能够将其包裹的药物释放,从而实现磁热调控的药物缓释. 如Li[61]将Mn0.2Zn0.8Fe2O4 磁性纳米颗粒分散在由N-异丙基丙烯酰胺(NIPAAm)和N-羟甲基丙烯酰胺(HMAAm)组成的温敏型共聚物基质中,通过调整NIPAAm和HMAAm的比例将聚合物的低临界溶解温度(lower critical solution temperature,LSCT)控制在40.1 ℃. 在交变磁场下,磁性纳米颗粒产热致使温度上升至42.9 ℃,从而触发聚合物的热敏“开关”,使得抗癌药物阿霉素释放.

    由于血脑屏障(blood brain barrier,BBB)的存在,药物的脑部靶向递送是一个巨大挑战,利用磁性纳米颗粒的磁热效应可以增强BBB的渗透性,为药物通过血脑屏障提供一种新的思路. 如Martel[62]在研究中发现,通过动脉插管技术将磁性纳米颗粒注射至鼠脑动脉中,利用磁共振成像对纳米颗粒进行定位,在7.6 kA/m、150 kHz低交变场作用下,位于脑毛细血管中磁性纳米颗粒作为一个小型化热源,产生的热能可瞬时增加血脑屏障的渗透性.

  • 2.4 磁热调控深部脑神经

    交变磁场可有效穿透颅骨,将植入脑部的磁性纳米颗粒加热激活神经细胞钙离子通道,利用这个方法可精准调控小鼠大脑深层的神经信[21]. 研究表明,当局部温度大于43 ℃时,温度敏感型瞬时受体电位香草酸受体1(TRPV 1)可被激活. 该钙离子通道蛋白开启后,瞬时引起细胞外钙离子内流,导致细胞内钙浓度升高,从而影响神经递质释放、细胞兴奋、基因表达等一系列细胞的基本活[63]. Huang[64]以直径6 nm的超顺磁锰铁氧体(MnFe2O4)为核心材料,在表面偶联链亲和素和光敏荧光探针. 在体外细胞实验中,通过生物素与链亲和素的相互作用,将磁性纳米颗粒特异性地靶向到细胞膜表面,检测结果表明细胞内Ca2+浓度由100 nmol/L增加至1.6 mmol/L,验证了磁热可激活TRPV1,开启钙离子通道(图5a). 在此基础上,利用光敏荧光探针,还观察到磁热作用下能够改变海马神经元细胞膜电位的改变. 而在活体实验中,将磁性颗粒注入线虫(C. elegans),借助磁热效应,明显观测到线虫的回缩运动.

    图5
                            利用超顺磁纳米颗粒的磁热特性精准调控小鼠深层脑神经信号[57,60,61,62]

    图5 利用超顺磁纳米颗粒的磁热特性精准调控小鼠深层脑神经信[57,60,61,62]

    Fig. 5 The application of magnetothermal effect to precisely regulate the deep brain neural signals of mice[57,60,61,62]

    注:(a)超顺磁锰铁氧体磁热开启TRPV1通[57];(b)细胞内铁蛋白磁热开启TRPV1,影响小鼠进[60];(c)利用磁性纳米颗粒的磁热特性调控神经元的兴奋状[61];(d)利用超顺磁纳米颗粒的磁热特性刺激神经诱发小鼠运动行[62].

    Stanley[65]也利用氧化铁纳米颗粒在低频交变磁场下的磁热特性,激活细胞中位于上游的基因启动子,从而促进细胞对前胰岛素的合成和分泌. 2015年,该课题[66]将GFP标记的融合铁蛋白与抗GFP-TRPV1通道蛋白偶联. 在交变磁场中,利用融合铁蛋白中铁核的磁热效应启动一个合成的DNA片段,激活下游基因表达胰岛素,从而降低小鼠血糖. Stanley[67]最新报道,借助突变技术改造TRPV1通道,磁场作用时,该蛋白通道允许氯离子流入细胞,可提高胰岛素水平,同时抑制小鼠进食,从而降低血糖(图5b).

    Chen[68]证实磁热刺激还可调控小鼠神经元的兴奋状态. 在交变磁场下,磁热刺激小鼠蔡氏腹侧被盖区,可以诱导大脑靶向区域为兴奋状态,该调控可实现长达一个月的有效刺激(图5c). Munshi[69]报道,利用超顺磁纳米颗粒的磁热特性刺激神经可诱发清醒状态的小鼠产生运动行为(图5d).

    尽管磁热刺激深部脑神经取得了显著的进展,但是由于传统超顺磁低磁热效率,难于实现快速、低剂量下安全的调控. 与光遗传研究相比,磁性纳米颗粒介导的磁遗传对脑部各区域的功能研究还远远不足. 由于磁性纳米颗粒介导的磁遗传学远程非接触式,以及纳米尺度磁热刺激等优势,进一步发展高效、快速、安全的纳米尺度脑部磁刺激技术,精确控制特定神经元活动,可作为光遗传的一个有力补充,成为未来脑科学研究中的一个重要工具.

  • 2.5 磁热复苏冷冻组织

    生物材料的低温贮存为组织器官的复苏、调配和移植带来了巨大的技术革新. 它能够促进供体和受体之间的匹配,为受体移植做更充分准[70]. “玻璃化”冷冻保存是让细胞、器官甚至人体安全地“冻存”起来的技术. 其采用超低温保存技术和特制的保护液,生物样本在超低温下(-160℃~ -196℃)被冷却至无冰的玻璃态,以避免水结晶成冰过程对细胞结构和功能的伤害,可以长久地保存下去. 目前普遍采用对流加热法解冻玻璃化组织样本,然而其在实际应用时只能成功解冻体积为几毫升的组织样本,对于大多数器官组织都不能实现很好地化冻. 主要是由于传热和传质受限,通常表现出脱玻化和裂解的现[71]. 因此,如何在较大体系中实现冷冻组织的快速均匀复苏成为器官移植的巨大挑战.

    近年来,利用磁性纳米材料磁热效应发展起来的新型纳米加热技术,可以解决器官解冻时所需的快速升温、均匀加热等问题. Bischof[71]将磁性纳米颗粒加入甘油和VS55这两种常用的冷冻保护剂中,发现颗粒对它们的冻融行为影响甚微. 并且这些纳米粒子在交变磁场下能够以300 ℃/min的速率产热,避免了冻存样品在复温时的脱玻化. 更值得一提的是,Bischof课题[22]在最新的研究中,将二氧化硅包覆的氧化铁纳米颗粒分散在器官的冷冻保护液中,将冻存管置于外加交变磁场中,该体系能够实现以100~200 ℃/min的速率快速而均匀地加热组织. 并且从细胞水平的对比测试实验中可以明显观察到:这种纳米加热技术复苏的组织与正常组织基本无异,说明其对组织没有造成损害,而其他运用传统加热方法复苏的组织均出现了不同程度的损伤(图6). 进一步表明,利用磁性纳米颗粒的磁热效应在实现人体器官的冷冻复苏方面具有更好的应用优势和潜力.

    图6
                            对流加热和纳米加热复苏对比示意图[22]

    图6 对流加热和纳米加热复苏对比示意[22]

    Fig. 6 Schematic diagram of the comparison of convective warming and nanowarming[22]

    磁性纳米颗粒介导的磁热效应是一种纳米尺度的热效应,与宏观热效应相比,其与生物分子的作用具有独特的优点:a. 纳米颗粒产生的磁热是局域的、高效的和安全的,它只能影响到纳米颗粒周围10 nm以内的大分子,且热点温度高;b. 纳米颗粒产生的磁热是瞬时的,可用作特定的“分子开关”,有效调节大分子间相互作用;c. 纳米尺度的局域热可实现高选择性和靶向性治疗.

    利用磁性纳米材料的磁热效应打破了传统方法在肿瘤治疗、药物靶向递送、深部脑神经调控以及冷冻器官复苏的局限性,为解决此类科学问题提供了新思路和新方法. 与此同时,随着纳米技术的发展,材料合成机理的完善以及人们对于纳米尺度磁热效应理解的加深,磁性纳米颗粒介导的磁热效应可望在生物医学领域发挥更大作用.

  • 3 磁力学效应调控细胞命运

    机械力在调节细胞命运中起着关键性作用,磁性纳米材料可介导外磁场产生力学效应,被认为是介导力学的理想平台,通过将非侵入性的物理输入转化为受体特异性的生物输出,从而对细胞命运进行远程精准调控 [72]. Carlo[73]研究发现,铁磁性纳米颗粒在磁力刺激下会引发大脑皮层神经网络中的钙离子内流,且随着刺激时间的增加,细胞内Ca2+荧光信号不断增强.随后,为了验证磁力刺激是否激活了一种特定类型的钙离子通道,利用 ω-漏斗网蛛毒素GVIA(ω-conotoxin GVIA)(一种机械敏感性N型钙离子通道抑制剂)堵塞了钙离子通道,结果发现纳米磁力的刺激作用受到了抑制,表明机械敏感离子通道在调节钙离子内流中发挥重要作用. Bian [74]提出可通过外部磁场刺激远程控制整合素配体来调节干细胞的黏附和分化,他们利用长柔性聚乙二醇(PEG)将精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp,RGD)整合配体修饰的氧化铁纳米颗粒固定在基板上,通过调整磁场的振荡频率,发现在低频率(0.1 Hz)振荡磁场下,外磁场介导磁性颗粒振动可促进整合素和配体结合并与成熟的干细胞融合,而在高频率(2 Hz)磁场下表现出抑制效果. 此外,利用磁性纳米材料的局部机械刺激还可诱导细胞生长以及凋[75]. 例如机械刺激可用来指导轴突生长锥细胞的生长,应用于骨髓损伤后修复、神经修复等领域,破坏靶细胞的细胞膜、细胞内结构或激活特定的机械转导途径从而诱导肿瘤细胞死亡 [76,77,78].

    随着磁性纳米颗粒制备工艺的不断改进,磁-力转化效率不断的提高以及人们对纳米生物力学机制的深入理解,磁力生物效应有望在细胞生物学及其他相关领域展现出巨大的应用潜力.

  • 4 诊疗一体化应用

    诊疗一体化即利用先进的诊断技术辅助疾病治疗. 其可实现精准治疗,显著提高或改善现有治疗效果,为解决临床疑难和重大疾病提供了一种新的手[79,80]. 纳米诊疗一体化的核心在于开发和设计具有多种影像和治疗功能于一体的纳米诊疗剂. 磁性纳米材料因其可同时扮演多重角色实现诊疗功能,而被广泛认为是具有良好临床应用前景的诊疗一体化纳米平台材[81,82,83],以其构建的诊疗一体化纳米制剂是当前的研究热点.

    Lecommandoux[84]报道了通过一步简单的纳米沉淀法,将疏水的γ-Fe2O3纳米颗粒和阿霉素被封装在聚三亚甲基碳酸酯(PTMC)和聚L-谷氨酸(PGA)组成的聚合物中,形成尺寸在100~ 400 nm的囊泡小球. 这些磁性聚合物囊泡可被作为高效的多功能载体,用于磁共振影像介导的热化疗联合疗法.

    Fan课题[85]报道了室温铁磁性锰铁氧化物纳米花(FIMO-NFs)作为一类新颖的磁性诊疗平台可用于磁共振T1-T2双模影像介导的磁热疗. T1-T2双模式成像下可清楚地观察到小鼠原位胶质瘤(图7a),为磁热疗带来指导作用. 由于存在交换耦合相互作用,锰铁氧化物纳米花在室温下呈现铁磁性,且具有扩大的磁滞面积,从而有效提高磁热效率. 活体磁热抗肿瘤结果显示铁磁性锰铁氧化物纳米花在交变磁场下升温可诱导MCF-7乳腺癌细胞凋亡,肿瘤体积从第7天开始显著变小,第10天肿瘤已被完全消除,且在50天内都没有出现复发症状,而空白组小鼠第50天时肿瘤体积较最初增大了7倍(图7b~d),表明该铁磁性锰铁氧化物纳米花可作为肿瘤的高效磁热疗剂.

    图7
                            FIMO-NFs在肿瘤诊疗一体化中的应用[81]

    图7 FIMO-NFs在肿瘤诊疗一体化中的应[81]

    Fig. 7 The application of FIMO-NFs in tumor theranostic[81]

    注:(a)在注射FIMO-NFs之前与注射后1 h的原位胶质瘤小鼠头部磁共振T1加权与T2加权成像(箭头指的是肿瘤).(b)FIMO-NFs磁热处理组与对照组在肿瘤热疗后第50天的照片.(c)FIMO-NFs磁热处理组与控制组小鼠肿瘤生长曲线. 肿瘤体积由最初的尺寸进行归一化处理,误差线代表每组3只小鼠的肿瘤体积标准差.(d)两组小鼠的体重变化,误差线代表每组3只小鼠的体重标准差.

    Hyeon[23]将锰铁氧体纳米颗粒与光动力治疗剂二氢卟吩E6(chlorin e6)负载在介孔二氧化硅表面,利用锰铁氧体催化Fenton反应的特性,催化肿瘤细胞中H2O2产生氧气,从而提高光动力治疗效率. 此外,锰铁氧体纳米颗粒作为磁共振T2成像,为光动力治疗带来影像指导. Song[86]在小尺寸氧化铁表面修饰聚吡咯和聚乙二醇,实现了MRI/PAI双模式成像介导的肿瘤光热疗. Wu课题[87]通过在准顺磁氧化铁表面修饰新型精氨酰-甘氨酰-天冬氨酰多肽二聚体(RGD2)和甲基化聚乙二醇(mPEG)构建了氧化铁诊疗一体化纳米平台材料,并将化疗药物盐酸多柔比星(Dox) 修饰在颗粒表面,形成了DOX@ES-MION@RGD2@mPEG多功能复合颗粒,可实现磁共振T1成像介导的化疗.

    诊疗一体化的目的在于通过分子影像技术,对病人进行个性化治疗,并监测治疗的安全性和有效性. 尽管超顺磁氧化铁作为造影剂、热疗剂都已经获得临床批准,但是基于磁性纳米颗粒的诊疗一体化应用目前尚处于基础研究阶段,开发面向临床转化的磁性诊疗一体化纳米制剂仍是当前的一大挑战.

  • 5 纳米酶特性

    虽然天然酶催化效率高、底物专一,但其稳定性差、难以获得且价格昂贵等缺点严重限制了其在生物医学领域中的应用. 为了提高酶的稳定性并降低成本,科学家一直致力于人工酶的合成与开发. 随着纳米科技的发展,科学家发现多种无机纳米材料本身就具有类似天然酶的催化活性,这类纳米材料被统称为纳米酶(nanozyme).

    首次发现并报道具有类酶特性的无机纳米材料是Fe3O4纳米颗粒. 2007年,Yan课题[88]发现,Fe3O4纳米粒子能够催化3,3',5,5'-四甲基联苯胺(TME)、邻苯二胺(OPD)、重氮氨基苯(DAB)等多种过氧化物酶底物显色(图8),随后又对Fe3O4的催化活性、催化动力学以及稳定性做了系统的研究. 氧化铁颗粒模拟酶本质上是一种纳米晶体材料,其酶活性也受其本身纳米材料特性的影响. Fan[89]报道了采用热转换法制备了Fe3O4纳米管,并对其作为过氧化物酶在实验免疫测定方面的催化性能作了测试. 结果显示,尺寸相近的Fe3O4纳米管(长为370 nm)与Fe3O4纳米颗粒(直径为300 nm)相比,其催化常数(Kcat)高了一个数量级.

    图8
                            Fe3O4 磁性纳米颗粒的类过氧化物酶活性研究[82]

    图8 Fe3O4 磁性纳米颗粒的类过氧化物酶活性研[82]

    Fig. 8 Fe3O4 nanoparticles show peroxidase-like activity[82]

    注:(a)不同尺寸的Fe3O4 磁性纳米颗粒的TEM图;(b)Fe3O4 磁性纳米颗粒催化过氧化物酶底物TMB(蓝色)、DAB(棕色)、OPD(橙色)的显色反应;(c)Fe3O4 磁性纳米颗粒的催化机理.

    值得一提的是,Yan课题[90]合成了由重组人铁蛋白重链(HFn)外壳和四氧化三铁内核构成的一种磁铁蛋白纳米颗粒(M-HFn)(图9a),铁蛋白能直接靶向在肿瘤细胞中过度表达的转铁蛋白受体1(TfR1),从而特异性识别肿瘤细胞,而四氧化三铁内核能催化过氧化物酶底物显色. 因此,M-HFn作为一种双功能的肿瘤诊断试剂,能够同时实现对肿瘤细胞的定位和显色. 后通过对9种不同肿瘤的病人进行临床检测,证实这种铁蛋白磁性纳米粒对肿瘤诊断的灵敏性为98%,特异性为95%(图9b),实现了对肿瘤组织的高效检测.

    图9
                            M-HFn纳米酶的应用[86]

    图9 M-HFn纳米酶的应[86]

    Fig. 9 The application of M-HFn nanozyme[86]

    注:(a)M-HFn 纳米颗粒的制备及结构示意;(b)M-HFn纳米酶用于肿瘤诊断的效果.

    随着氧化铁纳米材料的过氧化物模拟酶特性被报道,越来越多的无机纳米材料,如金纳米颗粒、单壁碳纳米管、二氧化铈纳米颗粒、硫化铜纳米棒等也被发现具有类酶特性. 因此设计复合材料实现酶活的协同增强也成为纳米酶研究的热点之一. Lin[91]将Fe3O4纳米颗粒负载在双亲性氧化石墨烯分散的导电碳纳米管上,不仅很大程度地提高了H2O2的过氧化物酶催化活性和电催化活性,而且成功地解决了疏水性碳载体分散性差以及负载的铁基催化剂稳定性差的问题. Wang[92]合成的Fe3O4@SiO2@Au的复合纳米颗粒,相比于游离的Fe3O4纳米颗粒和Au纳米簇,复合材料的催化活性得到了显著提高.

    发现纳米材料具有类酶催化活性是一个里程碑式的进展,打破了只有生物大分子才能发挥酶高效催化能力的局限. 而且基于纳米材料的类酶催化功能开发的肿瘤催化疗法已在肿瘤治疗中展现出巨大潜力.

  • 6 结论与展望

    铁基氧化物磁性纳米材料是当前生物医学应用最成功的无机纳米材料,特别是在磁共振增强成像、介导外场产生磁热和磁力的生物效应、新型诊疗一体化纳米药物以及纳米酶催化等生物医学领域,已成为科学研究热点. 尽管近年来已经取得了较多的进展,但由于纳米生物学和纳米医学本身跨学科研究的特点,其基础研究和应用转化仍面临许多挑战. 例如,超顺磁特性是纳米氧化铁的主要优点之一,但其限制了纳米氧化铁颗粒高效介导外场,导致低的磁热效率. 在纳米尺度上深入理解并调控磁性氧化铁的材料特性和生物学效应是进一步发展的基础. 在磁共振造影方面,探索新型靶向病灶的准顺磁氧化铁纳米探针,多层面设计提高特异性和靶向效率,研究其与病灶微环境的相互作用,建立影像与疾病发生发展过程的关联,结合治疗组分,实现影像介导的高效治疗. 在磁热效应方面,将纳米技术的方法与纳米科学的原理应用于磁热生物学效应研究,深化对纳米尺度磁热生物学效应和机制的理解,明确其对生命过程的调控机理,自主设计和开发磁热仪等相关设备,将可介导外场的磁性纳米颗粒发展成为生命科学研究的一个新工具. 在纳米酶方面,氧化铁纳米酶的发现跨越了无机纳米材料与生物酶之间的界限,它的发展不仅完善了生物酶自身的不足,也为人工模拟生命体系提供了一个新的视角.

    深入研究磁性纳米颗粒的各种理化特性与生物医学应用之间的关系,最大化地发挥其应用价值是至关重要的. 为实现磁性纳米颗粒的有效应用与转化,预计今后几年将在以下几个方面继续加强: a. 可高效介导外场的人工智能磁性纳米材料的设计与开发;b. 介导外场产生的热、力学效应,以及可能增强的纳米酶活性与生物体系之间的作用机制;c. 磁性纳米颗粒自身多种生物效应之间的协同机制;d. 高效分子影像探针与诊疗一体化纳米药物;e. 磁性纳米材料介导外场对分子相互作用、细胞命运和疾病的调控;f. 外场作用对磁性纳米材料的活体代谢和清除的影响等. 尽管磁性纳米材料在生物医学应用上已有大量的研究,但介导外场的新型智能材料可能是未来的一个重要突破点,已经在多个应用方面展现出显著优势和潜力. 相信在多学科科研工作者的共同努力下,随着今后纳米合成工艺的日趋成熟以及人们对磁性纳米颗粒生物学效应的深入理解,其生物医学应用空间必将越来越广阔,从而为未来智能磁纳米生物材料和磁纳米诊疗学奠定坚实的基础.

    TANG Qian-Qian1), ZHANG Yi-Fan2), HE Yuan1), PENG Ming-Li1), ZHAI Gao-Hong1), FAN Hai-Ming1)**

    1)College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China;

    2)School of Chemical Engineering, Northwest University, Xi’an 710069, China)

  • 参 考 文 献

    • 1

      Qiao R R, Yang C H, Gao M Y. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem, 2009, 19(35): 6274-6293

    • 2

      Jordan A, Scholz R, Wust P, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater, 1999, 194(1): 185-196

    • 3

      Kalambur V S, Han B, Hammer B E, et al. In vitro characterization of movement,heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology, 2005, 16(8): 1221-1233

    • 4

      Kim K S, Park J K. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab on a Chip, 2005, 5(6): 657-664

    • 5

      Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc chem Res, 2014, 47(4): 1097-1105

    • 6

      Thorek D L J, Chen A K, Czupryna J, et al. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng, 2006, 34(1): 23-38

    • 7

      Jordan A, Wust P, Fählin H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperther, 1993, 9(1): 51-68

    • 8

      Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol, 2018,3(3): 139-143

    • 9

      Zhang X, Niu H, Pan Y, et al. Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Anal Chem, 2010, 82(6): 2363-2371

    • 10

      乔瑞瑞, 贾巧娟, 曾剑峰, 等. 磁性氧化铁纳米颗粒及其磁共振成像应用. 生物物理学报, 2011, 27(4): 272-288

      Qiao R R, Jia Q J, Zeng J F, et al. Acta Biophysica Sinica, 2011, 27(4): 272-288

    • 11

      乔瑞瑞, 曾剑峰, 贾巧娟, 等. 磁性氧化铁纳米颗粒——通向肿瘤磁共振分子影像的重要基石. 物理化学学报, 2012, 28(5): 993-1011

      Qiao R R, Zeng J F, Jia Q J, et al. Acta Physico-Chimica Sinica, 2012, 28(5): 993-1011

    • 12

      Yoo D, Lee J H, Shin T H, et al. Theranostic magnetic nanoparticles. Acc Chem Res, 2011, 44(10): 863-874

    • 13

      Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res, 2011, 44(10): 875-882

    • 14

      Tassa C, Shaw S Y, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res, 2011, 44(10): 842-852

    • 15

      高利增, 阎锡蕴. 纳米酶的发现与应用. Progress in Biochemistry and Biophysics, 2013, 40(10): 892-902

    • 16

      Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev, 2013, 42(14): 6060-6093

    • 17

      Kim B H, Lee N, Kim H, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc, 2011, 133(32): 12624-12631

    • 18

      Zhang H, Li L, Liu X L, et al. Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS nano, 2017, 11(4): 3614-3631

    • 19

      Lee J H, Jang J, Choi J, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech, 2011, 6(7): 418-422

    • 20

      Liu X L, Yang Y, Ng C T, et al. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv Mater, 2015, 27(11): 1939-1944

    • 21

      Tay A, Di Carlo D. Remote neural stimulation using magnetic nanoparticles. Curr Med Chem, 2017, 24(5): 537-548

    • 22

      Manuchehrabadi N, Gao Z, Zhang J, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med, 2017, 9(379): eaah4586

    • 23

      Kim J, Cho H R, Jeon H, et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc, 2017, 139(32): 10992-10995

    • 24

      Na H B, Hyeon T. Nanostructured T1 MRI contrast agents. J Mater Chem, 2009, 19(35): 6267-6273

    • 25

      Zeng L, Ren W, Zheng J, et al. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys, 2012, 14(8): 2631-2636

    • 26

      Penfield J G, Reilly Jr R F. What nephrologists need to know about gadolinium. Nat Rev Nephrol, 2007, 3(12): 654-668

    • 27

      Taboada E, Rodríguez E, Roig A, et al. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir, 2007, 23(8): 4583-4588

    • 28

      Tromsdorf U I, Bruns O T, Salmen S C, et al. A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett, 2009, 9(12): 4434-4440

    • 29

      Wei H, Bruns O T, Kaul M G, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci USA, 2017: 144(9):2325-2330

    • 30

      Shen Z, Chen T, Ma X, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS nano, 2017, 11(11): 10992-11004

    • 31

      Shen Z, Song J, Zhou Z, et al. Dotted core–shell nanoparticles for T1‐weighted MRI of tumors. Adv Mater, 2018, 30(33): 1803163

    • 32

      Lu Y, Xu Y J, Zhang G, et al. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat Biomed Eng, 2017, 1(8): 637-643

    • 33

      Li Z, Yi P W, Sun Q, et al. Ultrasmall water‐soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater, 2012, 22(11): 2387-2393

    • 34

      Zeng J, Jing L, Hou Y, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater, 2014, 26(17): 2694-2698

    • 35

      Lu J, Sun J, Li F, et al. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. JACS, 2018, 140(32): 10071-10074

    • 36

      Bai C, Jia Z, Song L, et al. Time‐dependent T1–T2 switchable magnetic resonance imaging realized by c (RGDyK) modified ultrasmall Fe3O4 nanoprobes. Adv Funct Mater, 2018,28(32): 1802281

    • 37

      Shin T H, Choi Y, Kim S, et al. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev, 2015, 44(14): 4501-4516

    • 38

      Jiang X, Zhang S, Ren F, et al. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano, 2017, 11(6): 5633-5645

    • 39

      Gao Z, Hou Y, Zeng J, et al. Tumor Microenvironment‐triggered aggregation of antiphagocytosis 99mTc‐labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv Mater, 2017, 29(24): 1701095

    • 40

      Cheng L, Yang K, Li Y, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual‐targeted photothermal therapy. Angew Chem, 2011, 123(32): 7523-7528

    • 41

      Liu Y, Yang F, Yuan C, et al. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano, 2017, 11(2): 1509-1519

    • 42

      Ferguson R M, Khandhar A P, Krishnan K M. Tracer design for magnetic particle imaging. J Appl Phys, 2012, 111(7): 07B318

    • 43

      吴建鹏, 刘晓丽, 张欢, 等. 涡旋磁纳米颗粒. 生物化学与生物物理进展, 2015, 42(7): 593-605

      Wu J P, Liu X L, Zhang H, et al. Prog Biochem Biophys, , 2015, 42(7): 593-605

    • 44

      Gordon R T, Hines J R, Gordon D. Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses, 1979, 5(1): 83-102

    • 45

      Yanase M, Shinkai M, Honda H, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Cancer Res, 1998, 89(4): 463-470

    • 46

      Shinjo T, Okuno T, Hassdorf R, et al. Magnetic vortex core observation in circular dots of permalloy. Science, 2000, 289(5481): 930-932

    • 47

      Rothman J, Kläui M, Lopez-Diaz L, et al. Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. Phys Rev Lett, 2001, 86(6): 1098-1101

    • 48

      Zhang Y F, Liu X, Peng E W, et al. Facile synthesis of water-dispersible magnetite nanorings from surfactant-free hematite nanorings. Micro & Nano Letters, 2016, 11(12): 814-818

    • 49

      Jang J T, Nah H, Lee J H, et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem-Int Edit, 2009, 48(7): 1234-1238

    • 50

      Chen R, Christiansen M G, Anikeeva P. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. Acs Nano, 2013, 7(10): 8990-9000

    • 51

      Jang J, Lee J, Seon J, et al. Giant magnetic heat induction of magnesium‐doped γ‐Fe2O3 superparamagnetic nanoparticles for completely killing tumors. Adv Mater, 2018, 30(6): 1704362

    • 52

      Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Critical reviews in oncology/hematology, 2002, 43(1): 33-56

    • 53

      Babincová M, AltanerovÁ V, Altaner C Í, et al. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Transactions on Nanobioscience, 2008, 7(1): 15-19

    • 54

      Ren Y, Zhang H, Chen B, et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. International Journal of Nanomedicine, 2012, 7(1): 2261-2269

    • 55

      Xue W M, Liu X L, Ma H P, et al. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mater Chem B, 2018, 6(15): 2289-2303

    • 56

      Johannsen M, Thiesen B, Gneveckow U, et al. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. The Prostate, 2006, 66(1): 97-104

    • 57

      Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-oncol, 2011, 103(2): 317-324

    • 58

      Espinosa A, Di Corato R, Kolosnjaj-Tabi J, et al. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10(2): 2436-2446

    • 59

      Kumar C S S R, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Delivery Rev, 2011, 63(9): 789-808

    • 60

      N'Guyen T T T, Duong H T T, Basuki J, et al. Functional iron oxide magnetic nanoparticles with hyperthermia‐induced drug release ability by using a combination of orthogonal click reactions. Angew Chem Int Ed, 2013, 52(52): 14152-14156

    • 61

      Li J, Qu Y, Ren J, et al. Magnetocaloric effect in magnetothermally-responsive nanocarriers for hyperthermia-triggered drug release. Nanotechnology, 2012, 23(50): 505-706

    • 62

      Tabatabaei S N, Girouard H, Carret A S, et al. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Control Release, 2015, 206: 49-57

    • 63

      Montell C. The TRP Superfamily of cation channels. Sciences Signaling, 2005, 2005(272):re3-re3

    • 64

      Huang H, Delikanli S, Zeng H, et al. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotech, 2010, 5(8):602-606

    • 65

      Stanley S A, Gagner J E, Damanpour S, et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science, 2012, 336(6081):604-609

    • 66

      Stanley S A, Sauer J, Kane R S, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med, 2015, 21(1):92-102

    • 67

      Stanley S A, Kelly L, Latcha K N, et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature, 2016, 531(7596):647-650

    • 68

      Chen R, Romero G, Christiansen M G, et al. Wireless magnetothermal deep brain stimulation. Science, 2015, 347(6229):1477-1480

    • 69

      Munshi R, Qadri S M, Zhang Q, et al. Magneto-thermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife, 2017, 6: e27069

    • 70

      Lewis J K, Bischof J C, Braslavsky I, et al. The grand challenges of organ banking: proceedings from the first global summit on complex tissue cryopreservation. Cryobiology, 2016, 72(2): 169-182

    • 71

      Etheridge M L, Xu Y, Rott L, et al. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology, 2014, 2(03): 229-242

    • 72

      Wu C, Shen Y, Chen M, et al. Recent Advances in magnetic‐nanomaterial‐based mechanotransduction for cell fate regulation. Adv Mater, 2018, 30(17): 1705673

    • 73

      Tay A, Kunze A, Murray C, et al. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano, 2016, 10(2): 2331-2341

    • 74

      Kang H, Wong D S H, Yan X, et al. Remote control of multimodal nanoscale ligand oscillations regulates stem cell adhesion and differentiation. ACS Nano, 2017, 11(10): 9636-9649

    • 75

      Kilinc D, Dennis C L, Lee G U. Bio‐Nano‐Magnetic materials for localized mechanochemical stimulation of cell growth and death. Adv Mater, 2016, 28(27): 5672-5680

    • 76

      Franze K. The mechanical control of nervous system development. Development, 2013, 140(15): 3069-3077

    • 77

      Kilinc D, Lesniak A, Rashdan S A, et al. Mechanochemical stimulation of MCF7 cells with rod‐shaped Fe–Au Janus particles induces cell death through paradoxical hyperactivation of ERK. Adv Healthc Mater, 2015, 4(3): 395-404

    • 78

      Cheng D, Li X, Zhang G, et al. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells. Nano Res Lett, 2014, 9(1): 195-203

    • 79

      Lim E K, Kim T, Paik S, et al. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev, 2014, 115(1): 327-394

    • 80

      Chen H, Zhang W, Zhu G, et al. Rethinking cancer nanotheranostics. Nat Rev Mater, 2017, 2(7): 17024-17042

    • 81

      Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Delivery Rev, 2010, 62(11): 1064-1079

    • 82

      Hayashi K, Nakamura M, Sakamoto W, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics, 2013, 3(6): 366-376

    • 83

      Yoo D, Lee J H, Shin T H, et al. Theranostic magnetic nanoparticles. Acc Chem Res, 2011, 44(10): 863-874

    • 84

      Sanson C, Diou O, Thevenot J, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano, 2011, 5(2): 1122-1140

    • 85

      Liu X L, Ng C T, Chandrasekharan P, et al. Synthesis of ferromagnetic Fe0.6Mn0.4O4 nanoflowers as a new class of magnetic theranostic platform for in vivo T1‐T2 dual‐mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthc Mater, 2016, 5(16): 2092-2104

    • 86

      Song X, Gong H, Yin S, et al. Ultra‐small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater, 2014, 24(9): 1194-1201

    • 87

      Shen Z, Chen T, Ma X, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano, 2017,11(11): 10992-11004

    • 88

      Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotech, 2007, 2(9): 577-583

    • 89

      Fan H M, Yi J B, Yang Y, et al. Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. Acs Nano, 2009, 3(9): 2798-2808

    • 90

      Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotech, 2012, 7(7): 459-464

    • 91

      Wang H, Li S, Si Y, et al. Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B, 2014, 2(28): 4442-4448

    • 92

      Luo S, Liu Y, Rao H, et al. Fluorescence and magnetic nanocomposite Fe3O4@ SiO2@Au MNPs as peroxidase mimetics for glucose detection. Anal Biochem, 2017, 538(9): 26-33

唐倩倩

机 构:西北大学化学与材料科学学院,西安 710127

张艺凡

机 构:西北大学化工学院,西安 710069

和媛

机 构:西北大学化学与材料科学学院,西安 710127

彭明丽

机 构:西北大学化学与材料科学学院,西安 710127

翟高红

机 构:西北大学化学与材料科学学院,西安 710127

樊海明

机 构:西北大学化学与材料科学学院,西安 710127

html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F001.jpg
html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F002.jpg
html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F003.jpg
html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F004.jpg
html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F005.jpg
html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F006.jpg
html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F007.jpg
html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F008.jpg
html/pibbcn/20180219/alternativeImage/3492e2cf-efc4-4b60-91ae-4d341cb19d3a-F009.jpg

图1 氧化铁纳米颗粒T1造影剂发展里程

Fig. 1 The development of iron oxide nanoparticles based T1 contrast agent

图2 超小铁氧体纳米颗粒的合成与磁共振成像应[18]

Fig. 2 Synthesis of ultrasmall metal ferrite nanoparticles for magnetic resonance imaging of blood vessels and liver[18]

图3 CoFe2O4@MnFe2O4核壳结构纳米颗粒在肿瘤磁热疗中的应[19]

Fig. 3 The application of CoFe2O4@MnFe2O4 core–shell nanoparticles in tumor hyperthermia treatment[19]

图4 热敏磁性纳米颗粒载药系统的构[53]

Fig. 4 The synthesis of thermal-sensitive magnetic nanoparticle-baesd drug delivery system[53]

图5 利用超顺磁纳米颗粒的磁热特性精准调控小鼠深层脑神经信[57,60,61,62]

Fig. 5 The application of magnetothermal effect to precisely regulate the deep brain neural signals of mice[57,60,61,62]

图6 对流加热和纳米加热复苏对比示意[22]

Fig. 6 Schematic diagram of the comparison of convective warming and nanowarming[22]

图7 FIMO-NFs在肿瘤诊疗一体化中的应[81]

Fig. 7 The application of FIMO-NFs in tumor theranostic[81]

图8 Fe3O4 磁性纳米颗粒的类过氧化物酶活性研[82]

Fig. 8 Fe3O4 nanoparticles show peroxidase-like activity[82]

图9 M-HFn纳米酶的应[86]

Fig. 9 The application of M-HFn nanozyme[86]

image /

无注解

无注解

(a)CoFe2O4@MnFe2O4核壳结构纳米颗粒用于小鼠肿瘤磁热疗模型;(b,c)小鼠异种移植U87MG人类脑肿瘤细胞,未经处理(对照组)、Feridex、阿霉素以及CoFe2O4@MnFe2O4热疗前、治疗18 d后的小鼠肿瘤控制情况照片和肿瘤生长曲线;(d)阿霉素、Feridex磁热疗、CoFe2O4@MnFe2O4热疗18 d后肿瘤体积的剂量依赖曲线.

无注解

(a)超顺磁锰铁氧体磁热开启TRPV1通[57];(b)细胞内铁蛋白磁热开启TRPV1,影响小鼠进[60];(c)利用磁性纳米颗粒的磁热特性调控神经元的兴奋状[61];(d)利用超顺磁纳米颗粒的磁热特性刺激神经诱发小鼠运动行[62].

无注解

(a)在注射FIMO-NFs之前与注射后1 h的原位胶质瘤小鼠头部磁共振T1加权与T2加权成像(箭头指的是肿瘤).(b)FIMO-NFs磁热处理组与对照组在肿瘤热疗后第50天的照片.(c)FIMO-NFs磁热处理组与控制组小鼠肿瘤生长曲线. 肿瘤体积由最初的尺寸进行归一化处理,误差线代表每组3只小鼠的肿瘤体积标准差.(d)两组小鼠的体重变化,误差线代表每组3只小鼠的体重标准差.

(a)不同尺寸的Fe3O4 磁性纳米颗粒的TEM图;(b)Fe3O4 磁性纳米颗粒催化过氧化物酶底物TMB(蓝色)、DAB(棕色)、OPD(橙色)的显色反应;(c)Fe3O4 磁性纳米颗粒的催化机理.

(a)M-HFn 纳米颗粒的制备及结构示意;(b)M-HFn纳米酶用于肿瘤诊断的效果.

  • 参 考 文 献

    • 1

      Qiao R R, Yang C H, Gao M Y. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem, 2009, 19(35): 6274-6293

    • 2

      Jordan A, Scholz R, Wust P, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater, 1999, 194(1): 185-196

    • 3

      Kalambur V S, Han B, Hammer B E, et al. In vitro characterization of movement,heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology, 2005, 16(8): 1221-1233

    • 4

      Kim K S, Park J K. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab on a Chip, 2005, 5(6): 657-664

    • 5

      Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc chem Res, 2014, 47(4): 1097-1105

    • 6

      Thorek D L J, Chen A K, Czupryna J, et al. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng, 2006, 34(1): 23-38

    • 7

      Jordan A, Wust P, Fählin H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperther, 1993, 9(1): 51-68

    • 8

      Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol, 2018,3(3): 139-143

    • 9

      Zhang X, Niu H, Pan Y, et al. Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Anal Chem, 2010, 82(6): 2363-2371

    • 10

      乔瑞瑞, 贾巧娟, 曾剑峰, 等. 磁性氧化铁纳米颗粒及其磁共振成像应用. 生物物理学报, 2011, 27(4): 272-288

      Qiao R R, Jia Q J, Zeng J F, et al. Acta Biophysica Sinica, 2011, 27(4): 272-288

    • 11

      乔瑞瑞, 曾剑峰, 贾巧娟, 等. 磁性氧化铁纳米颗粒——通向肿瘤磁共振分子影像的重要基石. 物理化学学报, 2012, 28(5): 993-1011

      Qiao R R, Zeng J F, Jia Q J, et al. Acta Physico-Chimica Sinica, 2012, 28(5): 993-1011

    • 12

      Yoo D, Lee J H, Shin T H, et al. Theranostic magnetic nanoparticles. Acc Chem Res, 2011, 44(10): 863-874

    • 13

      Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res, 2011, 44(10): 875-882

    • 14

      Tassa C, Shaw S Y, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res, 2011, 44(10): 842-852

    • 15

      高利增, 阎锡蕴. 纳米酶的发现与应用. Progress in Biochemistry and Biophysics, 2013, 40(10): 892-902

    • 16

      Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev, 2013, 42(14): 6060-6093

    • 17

      Kim B H, Lee N, Kim H, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc, 2011, 133(32): 12624-12631

    • 18

      Zhang H, Li L, Liu X L, et al. Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS nano, 2017, 11(4): 3614-3631

    • 19

      Lee J H, Jang J, Choi J, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech, 2011, 6(7): 418-422

    • 20

      Liu X L, Yang Y, Ng C T, et al. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv Mater, 2015, 27(11): 1939-1944

    • 21

      Tay A, Di Carlo D. Remote neural stimulation using magnetic nanoparticles. Curr Med Chem, 2017, 24(5): 537-548

    • 22

      Manuchehrabadi N, Gao Z, Zhang J, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med, 2017, 9(379): eaah4586

    • 23

      Kim J, Cho H R, Jeon H, et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc, 2017, 139(32): 10992-10995

    • 24

      Na H B, Hyeon T. Nanostructured T1 MRI contrast agents. J Mater Chem, 2009, 19(35): 6267-6273

    • 25

      Zeng L, Ren W, Zheng J, et al. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys, 2012, 14(8): 2631-2636

    • 26

      Penfield J G, Reilly Jr R F. What nephrologists need to know about gadolinium. Nat Rev Nephrol, 2007, 3(12): 654-668

    • 27

      Taboada E, Rodríguez E, Roig A, et al. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir, 2007, 23(8): 4583-4588

    • 28

      Tromsdorf U I, Bruns O T, Salmen S C, et al. A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett, 2009, 9(12): 4434-4440

    • 29

      Wei H, Bruns O T, Kaul M G, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci USA, 2017: 144(9):2325-2330

    • 30

      Shen Z, Chen T, Ma X, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS nano, 2017, 11(11): 10992-11004

    • 31

      Shen Z, Song J, Zhou Z, et al. Dotted core–shell nanoparticles for T1‐weighted MRI of tumors. Adv Mater, 2018, 30(33): 1803163

    • 32

      Lu Y, Xu Y J, Zhang G, et al. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat Biomed Eng, 2017, 1(8): 637-643

    • 33

      Li Z, Yi P W, Sun Q, et al. Ultrasmall water‐soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater, 2012, 22(11): 2387-2393

    • 34

      Zeng J, Jing L, Hou Y, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater, 2014, 26(17): 2694-2698

    • 35

      Lu J, Sun J, Li F, et al. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. JACS, 2018, 140(32): 10071-10074

    • 36

      Bai C, Jia Z, Song L, et al. Time‐dependent T1–T2 switchable magnetic resonance imaging realized by c (RGDyK) modified ultrasmall Fe3O4 nanoprobes. Adv Funct Mater, 2018,28(32): 1802281

    • 37

      Shin T H, Choi Y, Kim S, et al. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev, 2015, 44(14): 4501-4516

    • 38

      Jiang X, Zhang S, Ren F, et al. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano, 2017, 11(6): 5633-5645

    • 39

      Gao Z, Hou Y, Zeng J, et al. Tumor Microenvironment‐triggered aggregation of antiphagocytosis 99mTc‐labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv Mater, 2017, 29(24): 1701095

    • 40

      Cheng L, Yang K, Li Y, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual‐targeted photothermal therapy. Angew Chem, 2011, 123(32): 7523-7528

    • 41

      Liu Y, Yang F, Yuan C, et al. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano, 2017, 11(2): 1509-1519

    • 42

      Ferguson R M, Khandhar A P, Krishnan K M. Tracer design for magnetic particle imaging. J Appl Phys, 2012, 111(7): 07B318

    • 43

      吴建鹏, 刘晓丽, 张欢, 等. 涡旋磁纳米颗粒. 生物化学与生物物理进展, 2015, 42(7): 593-605

      Wu J P, Liu X L, Zhang H, et al. Prog Biochem Biophys, , 2015, 42(7): 593-605

    • 44

      Gordon R T, Hines J R, Gordon D. Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses, 1979, 5(1): 83-102

    • 45

      Yanase M, Shinkai M, Honda H, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Cancer Res, 1998, 89(4): 463-470

    • 46

      Shinjo T, Okuno T, Hassdorf R, et al. Magnetic vortex core observation in circular dots of permalloy. Science, 2000, 289(5481): 930-932

    • 47

      Rothman J, Kläui M, Lopez-Diaz L, et al. Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. Phys Rev Lett, 2001, 86(6): 1098-1101

    • 48

      Zhang Y F, Liu X, Peng E W, et al. Facile synthesis of water-dispersible magnetite nanorings from surfactant-free hematite nanorings. Micro & Nano Letters, 2016, 11(12): 814-818

    • 49

      Jang J T, Nah H, Lee J H, et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem-Int Edit, 2009, 48(7): 1234-1238

    • 50

      Chen R, Christiansen M G, Anikeeva P. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. Acs Nano, 2013, 7(10): 8990-9000

    • 51

      Jang J, Lee J, Seon J, et al. Giant magnetic heat induction of magnesium‐doped γ‐Fe2O3 superparamagnetic nanoparticles for completely killing tumors. Adv Mater, 2018, 30(6): 1704362

    • 52

      Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Critical reviews in oncology/hematology, 2002, 43(1): 33-56

    • 53

      Babincová M, AltanerovÁ V, Altaner C Í, et al. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Transactions on Nanobioscience, 2008, 7(1): 15-19

    • 54

      Ren Y, Zhang H, Chen B, et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. International Journal of Nanomedicine, 2012, 7(1): 2261-2269

    • 55

      Xue W M, Liu X L, Ma H P, et al. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mater Chem B, 2018, 6(15): 2289-2303

    • 56

      Johannsen M, Thiesen B, Gneveckow U, et al. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. The Prostate, 2006, 66(1): 97-104

    • 57

      Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-oncol, 2011, 103(2): 317-324

    • 58

      Espinosa A, Di Corato R, Kolosnjaj-Tabi J, et al. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10(2): 2436-2446

    • 59

      Kumar C S S R, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Delivery Rev, 2011, 63(9): 789-808

    • 60

      N'Guyen T T T, Duong H T T, Basuki J, et al. Functional iron oxide magnetic nanoparticles with hyperthermia‐induced drug release ability by using a combination of orthogonal click reactions. Angew Chem Int Ed, 2013, 52(52): 14152-14156

    • 61

      Li J, Qu Y, Ren J, et al. Magnetocaloric effect in magnetothermally-responsive nanocarriers for hyperthermia-triggered drug release. Nanotechnology, 2012, 23(50): 505-706

    • 62

      Tabatabaei S N, Girouard H, Carret A S, et al. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Control Release, 2015, 206: 49-57

    • 63

      Montell C. The TRP Superfamily of cation channels. Sciences Signaling, 2005, 2005(272):re3-re3

    • 64

      Huang H, Delikanli S, Zeng H, et al. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotech, 2010, 5(8):602-606

    • 65

      Stanley S A, Gagner J E, Damanpour S, et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science, 2012, 336(6081):604-609

    • 66

      Stanley S A, Sauer J, Kane R S, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med, 2015, 21(1):92-102

    • 67

      Stanley S A, Kelly L, Latcha K N, et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature, 2016, 531(7596):647-650

    • 68

      Chen R, Romero G, Christiansen M G, et al. Wireless magnetothermal deep brain stimulation. Science, 2015, 347(6229):1477-1480

    • 69

      Munshi R, Qadri S M, Zhang Q, et al. Magneto-thermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife, 2017, 6: e27069

    • 70

      Lewis J K, Bischof J C, Braslavsky I, et al. The grand challenges of organ banking: proceedings from the first global summit on complex tissue cryopreservation. Cryobiology, 2016, 72(2): 169-182

    • 71

      Etheridge M L, Xu Y, Rott L, et al. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology, 2014, 2(03): 229-242

    • 72

      Wu C, Shen Y, Chen M, et al. Recent Advances in magnetic‐nanomaterial‐based mechanotransduction for cell fate regulation. Adv Mater, 2018, 30(17): 1705673

    • 73

      Tay A, Kunze A, Murray C, et al. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano, 2016, 10(2): 2331-2341

    • 74

      Kang H, Wong D S H, Yan X, et al. Remote control of multimodal nanoscale ligand oscillations regulates stem cell adhesion and differentiation. ACS Nano, 2017, 11(10): 9636-9649

    • 75

      Kilinc D, Dennis C L, Lee G U. Bio‐Nano‐Magnetic materials for localized mechanochemical stimulation of cell growth and death. Adv Mater, 2016, 28(27): 5672-5680

    • 76

      Franze K. The mechanical control of nervous system development. Development, 2013, 140(15): 3069-3077

    • 77

      Kilinc D, Lesniak A, Rashdan S A, et al. Mechanochemical stimulation of MCF7 cells with rod‐shaped Fe–Au Janus particles induces cell death through paradoxical hyperactivation of ERK. Adv Healthc Mater, 2015, 4(3): 395-404

    • 78

      Cheng D, Li X, Zhang G, et al. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells. Nano Res Lett, 2014, 9(1): 195-203

    • 79

      Lim E K, Kim T, Paik S, et al. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev, 2014, 115(1): 327-394

    • 80

      Chen H, Zhang W, Zhu G, et al. Rethinking cancer nanotheranostics. Nat Rev Mater, 2017, 2(7): 17024-17042

    • 81

      Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Delivery Rev, 2010, 62(11): 1064-1079

    • 82

      Hayashi K, Nakamura M, Sakamoto W, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics, 2013, 3(6): 366-376

    • 83

      Yoo D, Lee J H, Shin T H, et al. Theranostic magnetic nanoparticles. Acc Chem Res, 2011, 44(10): 863-874

    • 84

      Sanson C, Diou O, Thevenot J, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano, 2011, 5(2): 1122-1140

    • 85

      Liu X L, Ng C T, Chandrasekharan P, et al. Synthesis of ferromagnetic Fe0.6Mn0.4O4 nanoflowers as a new class of magnetic theranostic platform for in vivo T1‐T2 dual‐mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthc Mater, 2016, 5(16): 2092-2104

    • 86

      Song X, Gong H, Yin S, et al. Ultra‐small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater, 2014, 24(9): 1194-1201

    • 87

      Shen Z, Chen T, Ma X, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano, 2017,11(11): 10992-11004

    • 88

      Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotech, 2007, 2(9): 577-583

    • 89

      Fan H M, Yi J B, Yang Y, et al. Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. Acs Nano, 2009, 3(9): 2798-2808

    • 90

      Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotech, 2012, 7(7): 459-464

    • 91

      Wang H, Li S, Si Y, et al. Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B, 2014, 2(28): 4442-4448

    • 92

      Luo S, Liu Y, Rao H, et al. Fluorescence and magnetic nanocomposite Fe3O4@ SiO2@Au MNPs as peroxidase mimetics for glucose detection. Anal Biochem, 2017, 538(9): 26-33