en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
LedouxJ E. Emotion circuits in the brain. Annual Review of Neuroscience, 2000, 23(1): 155-184
参考文献 2
LedouxJ. The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 2003, 23(4-5): 727-738
参考文献 3
RauchS L, ShinL M, PhelpsE A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol Psychiatry, 2006, 60(4): 376-382
参考文献 4
HayesJ P, VanelzakkerM B, ShinL M. Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. Front Integr Neurosci, 2012, 6: 89
参考文献 5
LedouxJ E. Coming to terms with fear. Proc Natl Acad Sci USA, 2014, 111(8): 2871-2878
参考文献 6
LonsdorfT B, MenzM M, AndreattaM, et al. Don't fear 'fear conditioning': methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev, 2017, 77(1): 247-285
参考文献 7
LabarK S, GatenbyJ C, GoreJ C, et al. Human amygdala activation during conditioned fear acquisition and extinction: a mixed trial fMRI study. Neuron, 1998, 20(5): 937-945
参考文献 8
BuchelC, MorrisJ, DolanR J, et al. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron, 1998, 20(5): 947-957
参考文献 9
ClemR L, SchillerD. New learning and unlearning: strangers or accomplices in threat memory attenuation?. Trends Neurosci, 2016, 39(5): 340-351
参考文献 10
VervlietB, BaeyensF, Van Den BerghO, et al. Extinction, generalization, and return of fear: a critical review of renewal research in humans. Biol Psychol, 2013, 92(1): 51-58
参考文献 11
MiladM R, QuirkG J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol, 2012, 63(1): 129-151
参考文献 12
MarenS. Out with the old and in with the new: synaptic mechanisms of extinction in the amygdala. Brain Res, 2015, 1621(1): 231-238
参考文献 13
BoutonM E, KingD A. Contextual control of the extinction of conditioned fear: tests for the associative value of the context. Journal of Experimental Psychology: Animal Behavior Processes, 1983, 9(3): 248-265
参考文献 14
RescorlaR A, HethC D. Reinstatement of fear to an extinguished conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 1975, 1(1): 88-96
参考文献 15
Sotres-BayonF, BushD E, LedouxJ E. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology, 2007, 32(9): 1929-1940
参考文献 16
FallsW A, MiserendinoM, DavisM. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. Journal of Neuroscience, 1992, 12(3): 854-863
参考文献 17
LiF, TsienJ Z. Memory and the NMDA receptors. N Engl J Med, 2009, 361(3): 302-303
参考文献 18
BuzsakiG, AnastassiouC A, KochC. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci, 2012, 13(6): 407-420
参考文献 19
FristonK J, BastosA M, PinotsisD, et al. LFP and oscillations-what do they tell us?. Curr Opin Neurobiol, 2015, 31(1): 1-6
参考文献 20
BuzsákiG, DraguhnA. Neuronal oscillations in cortical networks. Science, 2004, 304(5679): 1926-1929
参考文献 21
HeadleyD B, PareD. In sync: gamma oscillations and emotional memory. Front Behav Neurosci, 2013, 7(170): 1-12
参考文献 22
LismanJ E, JensenO. The theta-gamma neural code. Neuron, 2013, 77(6): 1002-1016
参考文献 23
HeadleyD B, WeinbergerN M. Fear conditioning enhances gamma oscillations and their entrainment of neurons representing the conditioned stimulus. J Neurosci, 2013, 33(13): 5705-5717
参考文献 24
MiltnerW H, BraunC, ArnoldM, et al. Coherence of gamma-band EEG activity as a basis for associative learning. Nature, 1999, 397(6718): 434-436
参考文献 25
PareD, CollinsD R. Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. Journal of Neuroscience, 2000, 20(7): 2701-2710
参考文献 26
TrenadoC, Pedroarena-LealN, CifL, et al. Neural oscillatory correlates for conditioning and extinction of fear. Biomedicines, 2018, 6(2): 49-59
参考文献 27
HerryC, JohansenJ P. Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci, 2014, 17(12): 1644-1654
参考文献 28
LikhtikE, PazR. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci, 2015, 38(3): 158-166
参考文献 29
BrennanJ F, WisniewskiC. The efficacy of response prevention on avoidance behavior in young and adult rats with prefrontal cortical injury. Behavioural Brain Research, 1982, 4(2): 117-131
参考文献 30
SanbergP R, PisaM, FaulksI J, et al. Experiential influences on catalepsy. Psychopharmacology, 1980, 69(2): 225-226
参考文献 31
KalischR, KorenfeldE, StephanK E, et al. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci, 2006, 26(37): 9503-9511
参考文献 32
LiuC C, CroneN E, FranaszczukP J, et al. Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus, and frontal lobe. Neuroscience, 2011, 189: 359-369
参考文献 33
OrsiniC A, KimJ H, KnapskaE, et al. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J Neurosci, 2011, 31(47): 17269-17277
参考文献 34
LestingJ, NarayananR T, KlugeC, et al. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. Plos One, 2011, 6(6): e21714
参考文献 35
BaldiE, BucherelliC. Brain sites involved in fear memory reconsolidation and extinction of rodents. Neurosci Biobehav Rev, 2015, 53: 160-190
参考文献 36
LestingJ, DaldrupT, NarayananV, et al. Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. Plos One, 2013, 8(10): e77707
参考文献 37
MotzkinJ C, PhilippiC L, WolfR C, et al. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry, 2015, 77(3): 276-284
参考文献 38
CourtinJ, BienvenuT C, EinarssonE O, et al. Medial prefrontal cortex neuronal circuits in fear behavior. Neuroscience, 2013, 240: 219-242
参考文献 39
DejeanC, CourtinJ, KaralisN, et al. Prefrontal neuronal assemblies temporally control fear behaviour. Nature, 2016, 535(7612): 420-424
参考文献 40
FanselowM S, LedouxA J E. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 1999, 23(2):229-232
参考文献 41
PhelpsE A, LedouxJ E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 2005, 48(2): 175-187
参考文献 42
DuvarciS, PareD. Amygdala microcircuits controlling learned fear. Neuron, 2014, 82(5): 966-980
参考文献 43
NiteckaL, Ben‐AriY. Distribution of GABA‐like immunoreactivity in the rat amygdaloid complex. Journal of Comparative Neurology, 1987, 266(1): 45-55
参考文献 44
McdonaldA J, AugustineJ R. Localization of GABA-like immunoreactivity in the monkey amygdala. Neuroscience, 1993, 52(2): 281-294
参考文献 45
ParéD, SmithY. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience, 1993, 57(4): 1077-1090
参考文献 46
SpampanatoJ, PolepalliJ, SahP. Interneurons in the basolateral amygdala. Neuropharmacology, 2011, 60(5): 765-773
参考文献 47
JhaveriD, TedoldiA, HuntS, et al. Evidence for newly generated interneurons in the basolateral amygdala of adult mice. Molecular Psychiatry, 2018, 23(3): 521-532
参考文献 48
WolffS B, GründemannJ, TovoteP, et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature, 2014, 509(7501): 453-458
参考文献 49
CiocchiS, HerryC, GrenierF, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 2010, 468(7321): 277-282
参考文献 50
HaubensakW, KunwarP S, CaiH, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 2010, 468(7321): 270-276
参考文献 51
SeidenbecherT. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science, 2003, 301(5634): 846-850
参考文献 52
LikhtikE, StujenskeJ M, TopiwalaM A, et al. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci, 2014, 17(1): 106-113
参考文献 53
KaralisN, DejeanC, ChaudunF, et al. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci, 2016, 19(4): 605-612
参考文献 54
LikhtikE, GordonJ A. Circuits in sync: decoding theta communication in fear and safety. Neuropsychopharmacology, 2014, 39(1): 235-236
参考文献 55
MuellerE M, PanitzC, HermannC, et al. Prefrontal oscillations during recall of conditioned and extinguished fear in humans. J Neurosci, 2014, 34(21): 7059-7066
参考文献 56
PopaD, DuvarciS, PopescuA T, et al. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci USA, 2010, 107(14): 6516-6519
参考文献 57
CambiaghiM, GrossoA, LikhtikE, et al. Higher-order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. J Neurosci, 2016, 36(5): 1647-1659
参考文献 58
DavisP, ReijmersL G. The dynamic nature of fear engrams in the basolateral amygdala. Brain Res Bull, 2018, 141: 44-49
参考文献 59
NarayananR T, SeidenbecherT, KlugeC, et al. Dissociated theta phase synchronization in amygdalo- hippocampal circuits during various stages of fear memory. Eur J Neurosci, 2007, 25(6): 1823-1831
参考文献 60
DavisP, ZakiY, MaguireJ, et al. Cellular and oscillatory substrates of fear extinction learning. Nat Neurosci, 2017, 20(11): 1624-1633
参考文献 61
PapeH C, PareD. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev, 2010, 90(2): 419-463
参考文献 62
BauerE P, PazR, PareD. Gamma oscillations coordinate amygdalo-rhinal interactions during learning. J Neurosci, 2007, 27(35): 9369-9379
参考文献 63
PopescuA T, PopaD, PareD. Coherent gamma oscillations couple the amygdala and striatum during learning. Nat Neurosci, 2009, 12(6): 801-807
参考文献 64
StujenskeJ M, LikhtikE, TopiwalaM A, et al. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron, 2014, 83(4): 919-933
参考文献 65
CourtinJ, KaralisN, Gonzalez-CampoC, et al. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol Learn Mem, 2014, 113(1): 82-89
参考文献 66
HerryC, FerragutiF, SingewaldN, et al. Neuronal circuits of fear extinction. Eur J Neurosci, 2010, 31(4): 599-612
参考文献 67
RozeskeR R, HerryC. Neuronal coding mechanisms mediating fear behavior. Curr Opin Neurobiol, 2018, 52: 60-64
参考文献 68
FitzgeraldP J, WhittleN, FlynnS M, et al. Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiol Learn Mem, 2014, 113: 69-81
参考文献 69
MiladM R, QuirkG J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002, 420(6911): 68-70
参考文献 70
McdonaldA J. Cortical pathways to the mammalian amygdala. Progress in Neurobiology, 1998, 55(3): 257-332
参考文献 71
VertesR P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 2004, 51(1): 32-58
参考文献 72
MorganM A, RomanskiL M, LedouxJ E. Extinction of emotional learning: contribution of medial prefrontal cortex. Neuroscience Letters, 1993, 163(1): 109-113
参考文献 73
LikhtikE, PelletierJ G, PazR, et al. Prefrontal control of the amygdala. Journal of Neuroscience, 2005, 25(32): 7429-7437
参考文献 74
RoyerS, PareD. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience, 2002, 115(2): 455-462
参考文献 75
QuirkG J, RussoG K, BarronJ L, et al. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. Journal of Neuroscience, 2000, 20(16): 6225-6231
参考文献 76
PhelpsE A, DelgadoM R, NearingK I, et al. Extinction learning in humans: role of the amygdala and vmPFC. Neuron, 2004, 43(6): 897-905
参考文献 77
KnightD C, ChengD T, SmithC N, et al. Neural substrates mediating human delay and trace fear conditioning. Journal of Neuroscience, 2004, 24(1): 218-228
参考文献 78
ChengD T, KnightD C, SmithC N, et al. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behavioral Neuroscience, 2003, 117(1): 3-10
参考文献 79
LinnmanC, Rougemont-BückingA, BeuckeJ C, et al. Unconditioned responses and functional fear networks in human classical conditioning. Behavioural Brain Research, 2011, 221(1): 237-245
参考文献 80
KlavirO, Genud-GabaiR, PazR. Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories. J Neurosci, 2012, 32(25): 8589-8597
参考文献 81
MiladM R, WrightC I, OrrS P, et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry, 2007, 62(5): 446-454
参考文献 82
KimJ J, FanselowM S. Modality-specific retrograde amnesia of fear. Science, 1992, 256(5057): 675-677
参考文献 83
FanselowM S, PoulosA M. The neuroscience of mammalian associative learning. Annu Rev Psychol, 2005, 56: 207-234
参考文献 84
JiJ, MarenS. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus, 2007, 17(9): 749-758
参考文献 85
RadulovicJ, TronsonN C. Molecular specificity of multiple hippocampal processes governing fear extinction. Reviews in The Neurosciences, 2010, 21(1): 1-18
参考文献 86
GirardeauG, InemaI, BuzsakiG. Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci, 2017, 20(11): 16-34
参考文献 87
Sierra-MercadoD, Padilla-CoreanoN, QuirkG J. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 2011, 36(2): 529-538
参考文献 88
CorcoranK A, DesmondT J, FreyK A, et al. Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. Journal of Neuroscience, 2005, 25(39): 8978-8987
参考文献 89
MarenS, QuirkG J. Neuronal signalling of fear memory. Nat Rev Neurosci, 2004, 5(11): 844-852
参考文献 90
PhillipsR, LedouxJ. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 1992, 106(2): 274-285
参考文献 91
PitkänenA, PikkarainenM, NurminenN, et al. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat: a review. Annals of the New York Academy of Sciences, 2000, 911(1): 369-391
参考文献 92
AdhikariA, TopiwalaM A, GordonJ A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 2010, 65(2): 257-269
参考文献 93
QuirkG J, MuellerD. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 2008, 33(1): 56-72
参考文献 94
BocchioM, NabaviS, CapognaM. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron, 2017, 94(4): 731-743
参考文献 95
StujenskeJ M, LikhtikE. Fear from the bottom up. Nat Neurosci, 2017, 20(6): 765-767
参考文献 96
Burgos-RoblesA, KimchiE Y, IzadmehrE M, et al. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat Neurosci, 2017, 20(6): 824-835
参考文献 97
SennV, WolffS B, HerryC, et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron, 2014, 81(2): 428-437
参考文献 98
SperlM F J, PanitzC, RossoI M, et al. Fear extinction recall modulates human frontomedial theta and amygdala activity. Cereb Cortex, 2018, 1-15
参考文献 99
GiustinoT F, MarenS. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci, 2015, 9(298):1-20
参考文献 100
FriesP. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 2009, 32(1): 209-224
参考文献 101
MarinM F, ZsidoR G, SongH, et al. Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders. JAMA Psychiatry, 2017, 74(6): 622-631
参考文献 102
HaunerK K, HowardJ D, ZelanoC, et al. Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat Neurosci, 2013, 16(11): 1553-1555
参考文献 103
BallT M, KnappS E, PaulusM P, et al. Brain activation during fear extinction predicts exposure success. Depress Anxiety, 2017, 34(3): 257-266
参考文献 104
HarrisonB J, FullanaM A, ViaE, et al. Human ventromedial prefrontal cortex and the positive affective processing of safety signals. Neuroimage, 2017, 152(1): 12-18
参考文献 105
HerryC, GarciaR. Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. Journal of Neuroscience, 2002, 22(2): 577-583
参考文献 106
ShehadiK, MarounM. Different effects of low frequency stimulation to infralimbic prefrontal cortex on extinction of aversive memories. Brain Res, 2013, 1490(1): 111-116
参考文献 107
MarounM, KavushanskyA, HolmesA, et al. Enhanced extinction of aversive memories by high-frequency stimulation of the rat infralimbic cortex. Plos One, 2012, 7(5): e35853
参考文献 108
BaekK, J-HChae, JeongJ. The effect of repetitive transcranial magnetic stimulation on fear extinction in rats. Neuroscience, 2012, 200(1): 159-165
参考文献 109
KlavirO, PriggeM, SarelA, et al. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat Neurosci, 2017, 20(6): 836-844
参考文献 110
Do-MonteF H, Manzano-NievesG, Quinones-LaracuenteK, et al. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci, 2015, 35(8): 3607-3615
参考文献 111
Van't WoutM, LongoS M, ReddyM K, et al. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav, 2017, 7(5): e00681
参考文献 112
IsserlesM, ShalevA Y, RothY, et al. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder--a pilot study. Brain Stimul, 2013, 6(3): 377-383
参考文献 113
RaijT, NummenmaaA, M-FMarin, et al. Prefrontal cortex stimulation enhances fear extinction memory in humans. Biological Psychiatry, 2018, 84(2): 129-137
目录 contents

    摘要

    恐惧作为个体应对内外界危险因素形成的自我保护机制的一部分,在生物体的生存中发挥着重要作用. 但过度的恐惧不仅对个体生存无益,反而易引发创伤后应激障碍、焦虑等精神疾病,严重影响个体生活质量. 临床上通常采用基于行为学研究结果的暴露疗法对恐惧相关疾病进行治疗,然而在患者处于治疗环境之外的时候,上述症状经常会复发. 因此,解析恐惧记忆相关神经环路内信息处理的神经机制,对于理解这些疾病的发生发展,寻求切实有效的治疗方案至关重要. 大量研究表明与恐惧记忆消退相关的脑区主要涉及杏仁核、内侧前额叶和海马. 在恐惧消退的过程中,这3个脑区表现出特定的神经振荡模式,而且这些活动也具有同步性,构成了恐惧记忆成功消退的神经基础. 未来可利用基于神经神经振荡的无创性脑刺激手段干预恐惧记忆消退的神经环路,以促进恐惧记忆的消退并避免复发,为恐惧相关障碍的临床治疗提供重要的科学依据.

    Abstract

    As part of the self-protection mechanism that individuals use to deal with internal and external risk factors, fear plays an important role in the survival of organisms. However, excessive fear is not only detrimental to the survival of the individual, but also easy to cause mental illness such as post-traumatic stress disorder and anxiety, which seriously affects the quality of life. Clinically, exposure therapy based on behavioral findings is often used to treat fear-related diseases, but these symptoms often recur when the patient break away from the treatment environment. Therefore, the investigation of the information processing in the neural circuits related to fear memory is essential for understanding the occurrence and development of these diseases and establishing new treatments. Numerous studies have demonstrated that the brain regions associated with the extinction of fear memory mainly include the amygdala, medial prefrontal cortex and hippocampus. In the process of fear extinction, these three brain regions show specific patterns of neural oscillations, and their activities are also synchronized, which constitute the neural basis for the successful extinction of fear memory. In the future, non-invasive brain stimulation based on oscillatory entrainment can be used to intervene the neural circuit and promote the extinction of fear memory and avoid the recurrence of fear, which provides new insights into the treatment of clinical fear-related disorders.

    关键词 恐惧消退,恐惧记忆,神经振荡,神经环路

    恐惧是个体为适应环境求得生存而演化出的自我保护性反应,它普遍存在于人类及多种动物群体中,在动物和人类的进化发展中发挥着重要作用. 当个体对外界环境的危险因素感受到恐惧时,能够促使其产生回避行为,从而免受环境中危险因素的伤[1,2]. 另外,适当的恐惧反应能够让个体对未来可能发生的危险产生一定的适应,从而学习如何应对危险. 但是,过度的恐惧应激反应不但不能帮助机体有效回避危险和学习应对策略,反而可能导致病理性精神障碍的发生. 例如,部分个体经历异乎寻常的灾难性事件或刺激后导致创伤后应激障碍(posttraumatic stress disorder,PTSD),其临床症状为频繁地再度体验创伤,而该症状可能是由于患者在安全情景下无法抑制恐惧反应所[3,4]. 此外,焦虑(anxiety)、惊恐障碍(panic disorder)等疾病都与个体的恐惧调控失衡有关. 这些疾病严重影响了患者的日常生活和身心状态,给国家和社会带来巨大的经济负担. 因此,研究恐惧记忆消退过程中的神经机制,探索有效消退恐惧记忆的方法对人类的身心健康发展具有重要意义.

  • 1 恐惧记忆及其消退

  • 1.1 恐惧记忆实验范式

    研究恐惧记忆的经典方法是基于巴甫洛夫条件反射所建立的恐惧条件化范式(fear conditioning paradigm[5]. 恐惧记忆的获取依赖条件刺激(conditioned stimuli,CS)和厌恶刺激(aversive stimuli)的联结. 其中,条件刺激指不会对被试引起情绪反应的普通刺激. 大部分CS都是视觉刺激,如不同颜色的灯光和几何形状、中性面孔、动物图片等. 另外,声音刺激、触觉刺激、嗅觉刺激、味觉刺激也得到广泛使用. 在虚拟现实的研究中,场景线索也可以作为条件刺激呈现. 厌恶性刺激又称为非条件化刺激(unconditioned stimuli, US),通常会直接对机体产生威胁并能够引发机体的内生性防御反应,即非条件化反应(unconditioned response,UR),包括电击、刺耳的噪音、咽喉吹气、难闻的气味[6].

    经典的恐惧记忆范式通常包含恐惧记忆习得、消退、消退测试三个阶段. 习得期间,一种或多种不带情绪色彩的中性刺激(neutral stimuli)作为条件刺激反复呈现给实验对象. 通常,在其中一或两种CS的部分试次(通常是随机选取的)呈现的特定时段会伴随US的出现(如皮肤电刺激). 匹配负性刺激的CS被称为CS+,而总不伴随厌恶刺激的CS则称为CS-[7,8]. 当被试反复学习条件刺激和非条件刺激的联结后,单独呈现CS+也能诱发与US匹配时类似的恐惧反应,而CS-则不能引起相同反应,即被试成功习得了对CS+的恐惧记忆.

    消退训练通常在恐惧记忆习得后立即(即时消退)或24 h后进行(延迟消退). 消退阶段的材料呈现通常与习得阶段相同,但所有的条件刺激CS都不再匹配厌恶刺激US;在消退测试阶段,向实验对象呈现所有实验材料,以探测个体对CS+和CS-的消退效[9]. 然而,常规的消退方法常常会使恐惧发生不同程度的恢复. 恐惧恢复可能发生于以下3种情况:随着时间的推移,恐惧产生自发恢复(spontaneous recovery);单独呈现厌恶刺激时恐惧发生恢复,称为恐惧重建(reinstatement);或当个体重新回到条件化的场景中时,恐惧再次出现,称为恐惧的续新(renewal[10].

    对恐惧习得机制的研究已有100多年的历史,而神经生物技术用于研究恐惧消退从1990年代才逐渐发展起来. 在2000年后,关于恐惧消退的动物和人类的研究剧[11].

  • 1.2 消退学习:新的联结学习过程

    关于恐惧记忆的消退机制有两种猜测:第一种是“消退说”,习得的恐惧记忆本身在经过消退训练后被彻底消除;第二种是“抑制说”,消退训练是一个将刺激与安全信息绑定进行再学习,形成新的记忆的过程,新形成的记忆与之前形成的恐惧记忆相互竞争,从而使得之前已经建立的恐惧记忆被抑[9,12]. 人们发现,当采用消退训练对实验的恐惧记忆进行消退后,在某些情况下恐惧记忆仍然会再次出现. 1983年,研究者发现已经通过训练消除的恐惧反应在新的情境[13]或再次接触非条件化恐惧刺激时会重新出[14]. 另外,众多研究发现恐惧消退需要N-甲基-D-天冬氨酸受体(N-methyl-D-aspartic acid receptor,NMDA受体)的参与,阻断基底外侧杏仁核(basolateral anaygdala,BLA)内的NMDA受体可使消退学习受[15,16],而NMDA受体与神经突触的长时程增强(long-term potentiation,LTP)、神经可塑性有密切关系,是学习记忆重要的物质基[17]. 这些证据都表明,消退并不是简单消除了CS与US之间的联结,而是建立了抑制条件性恐惧记忆表达的新联结. 因此,科学家们认为消退类似于恐惧条件化,其本身是一种对新联结的学习.

  • 2 恐惧记忆消退的神经振荡机制

    神经振荡是中枢神经系统中存在的一种重复性、节律性的神经元活动. 相较于脑成像技术,神经电生理技术具有较高的时间分辨率,能够实时记录个体进行认知任务时大脑活动的动态变化过程,包括单/多神经元细胞放电(single/multi-unit recording)、局部场电位(local field potential,LFP)、脑电(electroencephalography)和脑磁信号(magnetoencephalography)等. 这些技术所记录到的有节律的神经振荡是由神经元群的细胞膜突触后电位的同步发放而引发的一种神经活动模式,不同频段的振荡由神经元集群的大量树突或胞体膜电位去极化活动所引[18,19]. 研究表明,神经振荡是大脑精确控制神经活动的内在机制,脑区内的振荡同步化能够反映神经元间的长距离交流,因而研究神经振荡能够帮助我们了解神经活动的变化,并探究其在认知活动中的作[19].

    神经振荡频率覆盖范围很广,约为0.05~ 500 Hz[20],其中与认知活动相关的的节律集中在0.5~150 Hz. 不同频段的节律性振荡反应了大脑的不同功能状态,包括delta振荡(0.5~4 Hz,与麻醉、睡眠有关);theta振荡(灵长类动物4~8 Hz,啮齿类动物4~12 Hz,与情景记忆编码和提取、空间定位功能有关);最早发现的alpha振荡(8~12 Hz,与选择性注意、工作记忆有关);beta振荡(13~30 Hz,与运动、意识状态改变、自上而下的认知调控相关)和gamma振荡. 而gamma频段又可分为低频(30~70 Hz,与自下而上的注意加工有关)和高频(70~150 Hz,与多种认知功能有关,反映局部神经元活动)gamma振荡. 在这些节律性神经振荡中,与恐惧记忆最相关的神经振荡是theta振荡以及gamma振[21,22,23]. 1999年,Miltner[24]首次利用头皮脑电探测到gamma振荡在人类条件化恐惧记忆中的作用,发现在习得和消退过程中,CS+引发的顶枕叶区域gamma振荡显著强于CS-;2000年,Pare[25]发现,当家猫产生恐惧反应时,其杏仁核内的theta振荡增强. 通常认为,theta振荡和低频gamma振荡与恐惧的习得和表达有关,而高频gamma振荡则更多地参与恐惧的消退和抑[26,27,28].

  • 2.1 与恐惧记忆消退相关的脑区

    早期直接对大脑结构进行操作来探索消退机制的研究较少,但大量脑损伤和电刺激干预实验发现前额叶、纹状体和海马等结构都参与到恐惧记忆的消退[29,30]. 随着近年来研究的不断深入,研究者们逐渐将恐惧记忆消退的神经机制聚焦于杏仁核(amygdala)、内侧前额叶(medial prefrontal cortex,mPFC)和海马(hippocampus,HPC)3个脑[31,32,33,34,35,36,37,38,39]. 本文将从这3个脑区出发综述恐惧记忆消退的神经振荡机制.

  • 2.1.1 杏仁核在恐惧消退中的作用

    杏仁核位于颞叶内侧,是掌管动物和人类情绪的核心脑区,参与情绪性联结记忆的形成和储[40,41]. 研究认为,杏仁核及其内部抑制性神经元的投射掌控了恐惧的输出,包括位于基底外侧杏仁核(basolateral amygdala,BLA)与中央杏仁核之间的中间神经元细胞[42,43,44,45]、基底外侧杏仁核局部的抑制性中间神经[46,47,48],以及从中央杏仁核外侧投射至中央杏仁核内侧的抑制性中间神经[49,50]. BLA中常出现delta、theta(4~12 Hz)、beta(12~30 Hz)和 gamma (30~120 Hz)振荡,其中最显著的是4~8 Hz的theta频段振[51,52,53].

    最早对 theta振荡与恐惧的研究聚焦于theta振荡在杏仁核及其相关脑区中的活动. 当动物或人类感受到恐惧时,杏仁核内theta振荡的功率,以及与其他脑区theta振荡的同步化均显著增[54,55,56,57,58,59]. 这种振荡与海马的位置细胞驱动产生的theta振荡不同,它不受空间位置和内侧隔核活动的影[51,53],而是特异于恐惧记忆的习得和提取,因此认为该theta振荡反应的是恐惧特异性的活动.

    Theta振荡又可细分为两个作用不同的频段,较低的频段与恐惧的表达相关,而较高的频段更可能参与恐惧抑制. Karalis[53]发现,在杏仁核-前额叶神经环路之间的4 Hz 神经振荡能够预测恐惧反应的发生,且这种反应是由dmPFC产生并驱动杏仁核活动产生的. 实验中两种声音刺激分别作为CS-和CS+,以足底电击作为US. 反复呈现与US匹配的CS+和不匹配US的CS-以习得恐惧记忆,24 h后单独呈现CS+和CS-进行恐惧记忆的提取并记录小鼠大脑的局部场电位. 结果发现,在提取恐惧记忆时,小鼠对CS+的恐惧僵直率远远高于CS-,更重要的是,在产生恐惧僵直反应之前1.5 s,dmPFC-BLA神经环路就出现了明显的4 Hz振荡的同步化,证明该神经环路的4 Hz 振荡同步化能够预测恐惧行为的产生和表达.

    Davis[60]发现,在消退学习过程中,小鼠杏仁核内表达小清蛋白的PV中间神经元(parvalbumin-expressing interneurons)的6~12 Hz theta振荡增强,并超越BLA→mPFC的3~6 Hz振荡(与恐惧习得和表达相关),抑制了条件化僵直反应和恐惧活动. 失活PV中间神经元后,BLA→mPFC方向的3~6 Hz振荡增强,6~12 Hz和3~6 Hz之间的竞争平衡被打乱,BLA和内侧前额叶皮层的恐惧活动增强,条件性恐惧反应也增强,说明由BLA驱动的不同频段的theta振荡分别调制了恐惧记忆的表达和抑制,PV中间神经元所产生的6~ 12 Hz theta振荡可能是恐惧记忆消退的神经基础.

    反映杏仁核与其他脑区沟通的另一种重要方式是gamma振荡. 许多证据证明gamma活动与BLA内部神经元之间及BLA和其他脑区的同步化活动有[61]:同时记录两个脑区的LFP发现,嗅皮层、鼻周皮层以及纹状体等脑区与BLA的gamma活动一致性比其他任何频段都[62],但纹状体与其他脑区并没有显著的gamma同步活[63],说明gamma活动一致性能提示BLA与其他脑区的活动存在协同性.

    在BLA中发现的gamma振荡可分为较慢的30~70 Hz和较快的70~120 Hz两个频[62,63,64]. 有研究发现杏仁核低频gamma(30~80 Hz)振荡的强度在恐惧提取时增[65]. 对小鼠进行恐惧习惯化和条件化后,于24 h和48 h后分别接受早期和晚期两次消退,并在消退7 d后进行消退提取,发现在消退学习早期产生了强烈的低频gamma振荡,这种活动随着消退的进行逐渐减弱,在消退期间gamma活动越稳定,消退提取时小鼠的僵直反应就越强. 这表明,BLA内gamma振荡强度的稳定性能够预测消退的提取程度:消退学习期间的低频gamma 强度稳定度越高,消退的效果就越[65].

    与低频gamma不同,高频gamma振荡与安全信息更相关. Stujenske[64]发现,当觉察到危险信息时BLA内高频gamma(70~120 Hz)功率减弱,而觉察到安全信息时BLA的高频gamma功率增强. 同时,BLA内部的低频gamma振荡与theta节律的锁时关系编码了恐惧相关信息,而编码安全信息时gamma振荡则没有紧密地嵌入到theta节律中,这表明BLA中的高频gamma振荡可能参与了恐惧记忆的消退.

  • 2.1.2 内侧前额叶在恐惧消退中的作用

    内侧前额叶是与恐惧相关联系紧密的脑区之一. 小鼠mFPC中的边缘下区(infralimbic area,IL)和边缘前区(prelimbic area,PL)能够接受广泛的输入,并输出到各个层级的恐惧环路,在恐惧表达和抑制中负责识别和评价威胁信[66,67],在恐惧记忆的习得、巩固、消退中发挥重要作用. mPFC与下游目标皮层进行长距离交流的重要机制是theta(4~12 Hz)和gamma(30~120 Hz)振荡. 例如,mPFC能对BLA输入theta振荡并调节恐惧的消退[52]. 相比于恐惧记忆成功消退的小鼠,不能成功消退的小鼠其PL脑区的低频gamma强度更[68],当小鼠接收到安全信息时,mPFC的高频gamma功率(而不是低频gamma)增高,并且这类gamma振荡可能由mPFC产[64].

    PL和IL通过向杏仁核不同位置的投射分别调控恐惧的表达和抑[69]. 其中,PL投射至杏仁核的基底核团,与恐惧记忆的表达相关,IL投射至中央核团的外侧部(CeL)和ITC中间神经元等抑制区,与恐惧记忆的消退有[70,71]. IL参与恐惧消退的证据首次发现于Morgan[72]的研究. 他们发现,IL(而不是PL)内的神经元只对经过消退的条件化刺激产生应答. 另外,生理学研究也证明了PL和IL的兴奋和抑制作用:刺激PL,BLA紧跟PL的活动产生电位发[73],而刺激IL则驱动中间神经元兴奋,从而抑制Ce输出神经元的活[74];损伤IL的大鼠仍能够消退恐惧,但在几天后消退的恐惧记忆又恢复[75]. 可见,IL和PL通过不同的投射通路调控依赖于杏仁核的恐惧记忆.

    小鼠的 PL和IL分别对应人类的背侧前扣带回( dorsal anterior cingulate cortex,dACC)和腹内侧前额叶(ventral medial prefrontal cortex,vmPFC[11]. 众多研究发现,dACC在恐惧条件化过程中活动增[8,76,77,78],强噪声和电刺激构成的US都能够激活dACC,而对电刺激的预期也能够激活dACC[79],这些证据都表明dACC在人类身上发挥着与PL相似的作用. Klavir[80]采用听觉、视觉和吹风刺激搭配对猕猴进行恐惧条件化,并在消退期间给予dACC低频电刺激抑制其活动. 结果发现,在消退训练期间抑制dACC的活动能够防止恐惧记忆的自发恢复. 这说明dACC参与了恐惧记忆的维持,对其进行干预能够促进恐惧记忆的消退. Mueller[55]以两组不同的中性面孔和刺耳的白噪声为实验材料,采用为期两天的恐惧记忆实验范式,探讨了人类前额叶的神经振荡在恐惧提取和消退提取中的作用:实验对象分为两组,一组被试在第一天接受条件化恐惧的习得和消退,并于24 h后进行消退提取,另一组被试在习得恐惧记忆后不进行消退,而是于24 h后直接进行提取,即是对恐惧记忆的提取. 结果显示,在提取恐惧记忆时,dACC对CS+产生了更强的theta活动,说明恐惧记忆的提取与dACC的theta振荡相关.

    人类vmPFC参与恐惧消退的证据首次发现于Phelps[76]的研究,他们利用功能磁共振成像技术发现,在消退过程中,被试vmPFC对CS-的反应强于CS+. Milad[81]发现,vmPFC在条件化阶段处于去激活状态,而在消退学习后期则表现为显著的正激活. 在消退测试阶段,vmPFC对消退刺激的激活程度与恐惧的消退保持能力呈正相关,提示vmPFC激活越强,被试在消除测试阶段越能抑制恐惧反应. 在神经振荡层面,Mueller[55]发现,消退训练使得vmPFC对CS+的低频gamma振荡(36.5~44 Hz)比CS- 减弱更多,皮肤电反应显示没有成功消退的被试,其vmPFC脑区内gamma振荡不明显. 这些结果都表明vmPFC在消退记忆的提取中发挥着重要作用.

  • 2.1.3 恐惧消退中海马的作用

    恐惧消退的过程具有背景依赖性,海马作为表征空间位置、场景信息和学习记忆的关键脑区,也在恐惧记忆的习得和消退中发挥重要作[82],它在对特定CS或情境条件化的消退中,为恐惧记忆的习得和消退提供情境性信[83,84,85,86]. 研究认为,海马的活动主要是参与恐惧信息的编码,海马去激活使得条件化恐惧的表达减[87]并成功抑制消退后的恐惧记忆恢[87,88].

    背侧(dorsal hippocampus,dHPC)和腹侧海马(ventral hippocampus,vHPC)都在情景依赖性的恐惧反应中发挥重要作[82,89,90],但只有腹侧海马对杏仁核有直接的投[91]. 消退前抑制背侧海马的活动降低了个体对特定CS消退学习的效果,而抑制腹侧海马则影响了消退后的提取. 在焦虑状态下,小鼠的mPFC与腹侧海马(而不是背侧海马)的theta同步化增[92],低频刺激vHPC会影响恐惧消退的效果. 这些结果表明背侧和腹侧海马可能在恐惧记忆消退的不同阶段发挥作用. 另外,在消退后立即抑制海马的活动并不影响消退记忆的效[87],说明海马对恐惧消退的影响主要发生在消退学习阶段.

    海马-杏仁核环路的活动是情绪记忆巩固和消退的基[86],且海马能够通过降低对杏仁核的调节参与恐惧消退. 在恐惧记忆提取期间,杏仁核LA(lateral amygdala)区与海马CA1区的theta活动同步化增强,在小鼠产生恐惧僵直反应时尤为显[51,59]. BLA中接受腹侧海马直接投射的神经元也能够对恐惧记忆的续新产生激[93],而情绪记忆的消退使得CA1与BLA的 theta 同步化减[34].

  • 2.2 恐惧记忆消退的神经环路

  • 2.2.1 杏仁核-内侧前额叶通路参与恐惧记忆的消退

    事实上,恐惧记忆的消退不止依靠各个脑区内部的活动变化,还需要脑区间长距离的连接来进行信息的沟通交流. 解剖和电生理研究显示杏仁核与内侧前额叶之间存在大量的神经投射,它们之间的信息交流在恐惧消退中发挥着重要作用.

    在接收到安全信号时,BLA接受来自mPFC的theta振荡输入. Likhtik[52]采用恐惧条件化和旷场实验检测小鼠的焦虑和恐惧行为后发现,对于能够成功区分安全和危险信息的小鼠,当其在旷场周围地带(即安全地带)以及在恐惧条件化实验中感知到安全信息(即呈现CS-)时, theta振荡活动是由mPFC流向BLA的. 另外,人类和动物的研究都发现,感知安全信息使得theta振荡同步化在CA1-BLA环路中减弱,但从mPFC到BLA的方向性增[94]. 这些证据都支持了一个观点:mPFC对BLA的输入指示了消退记忆的发生.

    在习得的和内生的(innate)安全情境下,BLA中高频gamma振荡的强度是由mPFC的theta相位调制,这种现象被称为theta-gamma跨频耦[22]. 面临威胁信息时,BLA-mPFC的theta同步化触发了BLA内部的theta-高频gamma耦合,并且mPFC和BLA的高频gamma 强度降低;而面临安全信息时,mPFC对BLA的theta输入占据优势,mPFC和BLA的 gamma锁相于mPFC的theta振荡,并且mPFC和BLA的gamma强度以及脑区间gamma活动的同步性也增强[64,95].

    在小鼠的大脑中,杏仁核的恐惧性神经元特异性地投射到PL,BLA恐惧性的信息流向反映大鼠对恐惧信息的编码,刺激这条环路能够增强大鼠的恐惧反应,对其抑制则能够减少僵直的发[96],而消退性神经元则投射到IL. 另外,BLA-PL和BLA-IL投射通路之间的平衡决定了恐惧记忆或消退记忆的相对表[97].

    近期一项同时记录fMRI和EEG信号的研究发现,经过消退训练后,被试mPFC的theta振荡强度和杏仁核激活程度都降低了,并且mPFC的theta能量随着杏仁核激活程度变化而变化,由mPFC的theta振荡指示的消退提取能够解释杏仁核60%的活动变异[98],这说明mPFC能够通过调节杏仁核的活动影响恐惧的消退.

  • 2.2.2 杏仁核-内侧前额叶-海马功能神经网络参与恐惧记忆的消退

    杏仁核、内侧前额叶和海马3个脑区通过同步化神经振荡形成功能神经网络,调控恐惧记忆的消退. 目前大多数观点认为,恐惧记忆的消退主要是依赖于杏仁核与mPFC之间的信息交流,海马通过编码背景情境相关的信息参与到恐惧的消退过程中. 在这个功能神经网络中,theta振荡发挥协调脑区间同步化的作用,以达到及时在脑区间传递信息的目[99]. Lesting[34]发现,提取恐惧记忆使得BLA-mPFC-CA1环路中的theta振荡耦合增强,随着消退训练的进行,这种同步化逐渐减弱. 在消退提取阶段,theta耦合在CA1-mPFC和LA-mPFC之间会发生部分恢复,但在CA1-LA通路中仍保持较低水平. 与之相反,当个体接收到的信号为安全信号时,BLA-mPFC-CA1之间的theta振荡减弱,而高频gamma振荡同步化增强,并且这种gamma振荡的流向为mPFC→BLA→CA1[64],这个结果与gamma参与跨脑区的同步化活动的结果一[100]. 以上这些研究结果都表明,mPFC、BLA和CA1 3个脑区能够形成神经振荡网络参与到恐惧记忆的消退中.

  • 3 展望

    综上所述,本文总结了参与恐惧记忆消退的杏仁核、内侧前额叶以及海马的神经振荡模式以及3个脑区之间同步性活动的特点(图1). 恐惧消退时,神经振荡或许在未改变神经发放率的情况下改变了神经突触可塑性. 总的来说,大多数研究都强调了海马-杏仁核-内侧前额叶3个脑区各自内部和它们之间的theta活动,以及由vmPFC为主导的gamma振荡在恐惧消退中的重要作用. 但值得注意的是,目前以人类为实验对象的研究大部分都是利用脑成像技术完成[76,101,102,103,104],探究神经振荡机制的工作相对而言还较[55,98].那么人类相关脑区在恐惧消退时呈现怎样的神经振荡模式?是否遵从与动物相同的活动规律?这些问题都是十分重要并亟待解决的. 未来可以利用头皮EEG、颅内EEG、MEG等技术,探寻人类大脑的相应脑区在恐惧记忆消退中所发挥的功能.

    图1
                            以杏仁核、内侧前额叶、海马为核心的恐惧记忆消退环路的神经振荡变化模式

    图1 以杏仁核、内侧前额叶、海马为核心的恐惧记忆消退环路的神经振荡变化模式

    Fig. 1 Neural oscillation features of fear memory extinction

    注:当动物觉察到安全信息时,杏仁核-内侧前额叶-海马环路的theta同步化活动降低,而高频gamma同步化活动增强. 在恐惧记忆消退期间,杏仁核中间神经元的6~12 Hz 振荡及高频gamma(70~120 Hz)振荡强度增加,与恐惧提取相关的低频gamma(30~70 Hz) 活动强度则降低,另外,杏仁核的高频gamma与mPFC的theta振荡发生跨频段耦合,并接受来自mPFC的抑制性theta输入. 随着消退的进行,mPFC的高频gamma振荡增强,以调节恐惧记忆的消退. 以人类为对象的研究结果显示,恐惧记忆的习得与dACC(图中橙色区域)相关,而vmPFC更多地参与到恐惧消退中. 在消退期间,vmPFC(图中红色区域)内低频gamma(36~44 Hz) 活动减弱. 与此同时,海马通过调控情景信息参与到恐惧记忆的消退中(图中绿色所示为人类研究结果,蓝色所示为动物研究结果).

    随着研究的进行,人们对恐惧记忆消退的神经机制的认识在不断加深,同时进一步的工作也在进行中. 在动物研究领域,研究者们采用了一系列神经调控技术对恐惧消退的神经环路施加人为干预,探索促进恐惧消退的有效方法. Herry[105]对小鼠背内侧丘脑核团分别施加高频电刺激(high-frequency stimulation,HFS)和低频电刺激(low-frequency stimulation,LFS),以此引起前额叶的长时程增强或长时程抑制后发现,低频刺激阻碍了恐惧的消退,而高频刺激则让消退记忆得以更完整地维持;类似的,Maroun[106,107]也发现对大鼠IL施加HFS能够促进恐惧的消退,而LFS则对恐惧消退产生阻碍作用.除电刺激外,经颅磁刺激(transcranial magnetic stimulation,TMS)也能够促进恐惧的消退. Baek[108]发现,在恐惧记忆消退期间接受重复性经颅磁刺激的大鼠,在消退提取期间的恐惧反应表现更弱;另外,光遗传技术干预实验也发现激活IL能够促进大鼠恐惧记忆的消退[109,110].

    以上这些动物神经调控干预结果表明,通过神经调控干预恐惧消退的相关回路能够促进恐惧消退,也为人类恐惧记忆消退的研究提供了新的启示. 对人类而言,vmPFC和背侧前扣带回gamma信号的改变,以及内侧前额叶与杏仁核和海马之间theta振荡强度的减弱可能是恐惧记忆消退的一个指标,通过干预dACC、vmPFC的活动或许可以促进患者对恐惧记忆的消退. 近年来,经颅磁刺激、经颅直/交流电刺激(transcranial direct/alternating stimulation,tDCS/tACS)、深部脑刺激(deep brain stimulation,DBS)等神经调控技术应用越来越广泛,科学家和临床医生也利用这些技术为促进恐惧记忆的消退做出了许多尝试. Wout[111]在恐惧消退期间对PTSD患者的vmPFC给予tDCS干预,降低了消退提取时的皮肤电恐惧反应;Isserles[112]对PTSD患者的前额叶在提取创伤记忆时施加深部磁刺激(deep transcranial magnetic stimulation,DTMS),发现患者在创伤唤起时表现出闯入性记忆减少、心率降低,而对照组则没有相同表现;其他研究也发现在消退期间利用TMS刺激与vmPFC具有功能性连接的皮层区域也可降低消退提取时被试的恐惧反[113]. 由此可见,利用神经调控技术调节BLA-mPFC-CA1神经振荡网络的活动,是促进恐惧记忆消退并防止恐惧复发的有效方法之一,未来还需深入探索无创性神经调控技术在恐惧消退中的作用,为恐惧相关精神障碍的临床治疗提供重要参考.

  • 参 考 文 献

    • 1

      Ledoux J E. Emotion circuits in the brain. Annual Review of Neuroscience, 2000, 23(1): 155-184

    • 2

      Ledoux J. The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 2003, 23(4-5): 727-738

    • 3

      Rauch S L, Shin L M, Phelps E A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol Psychiatry, 2006, 60(4): 376-382

    • 4

      Hayes J P, Vanelzakker M B, Shin L M. Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. Front Integr Neurosci, 2012, 6: 89

    • 5

      Ledoux J E. Coming to terms with fear. Proc Natl Acad Sci USA, 2014, 111(8): 2871-2878

    • 6

      Lonsdorf T B, Menz M M, Andreatta M, et al. Don't fear 'fear conditioning': methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev, 2017, 77(1): 247-285

    • 7

      Labar K S, Gatenby J C, Gore J C, et al. Human amygdala activation during conditioned fear acquisition and extinction: a mixed trial fMRI study. Neuron, 1998, 20(5): 937-945

    • 8

      Buchel C, Morris J, Dolan R J, et al. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron, 1998, 20(5): 947-957

    • 9

      Clem R L, Schiller D. New learning and unlearning: strangers or accomplices in threat memory attenuation?. Trends Neurosci, 2016, 39(5): 340-351

    • 10

      Vervliet B, Baeyens F, Van Den Bergh O, et al. Extinction, generalization, and return of fear: a critical review of renewal research in humans. Biol Psychol, 2013, 92(1): 51-58

    • 11

      Milad M R, Quirk G J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol, 2012, 63(1): 129-151

    • 12

      Maren S. Out with the old and in with the new: synaptic mechanisms of extinction in the amygdala. Brain Res, 2015, 1621(1): 231-238

    • 13

      Bouton M E, King D A. Contextual control of the extinction of conditioned fear: tests for the associative value of the context. Journal of Experimental Psychology: Animal Behavior Processes, 1983, 9(3): 248-265

    • 14

      Rescorla R A, Heth C D. Reinstatement of fear to an extinguished conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 1975, 1(1): 88-96

    • 15

      Sotres-Bayon F, Bush D E, Ledoux J E. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology, 2007, 32(9): 1929-1940

    • 16

      Falls W A, Miserendino M, Davis M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. Journal of Neuroscience, 1992, 12(3): 854-863

    • 17

      Li F, Tsien J Z. Memory and the NMDA receptors. N Engl J Med, 2009, 361(3): 302-303

    • 18

      Buzsaki G, Anastassiou C A, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci, 2012, 13(6): 407-420

    • 19

      Friston K J, Bastos A M, Pinotsis D, et al. LFP and oscillations-what do they tell us?. Curr Opin Neurobiol, 2015, 31(1): 1-6

    • 20

      Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science, 2004, 304(5679): 1926-1929

    • 21

      Headley D B, Pare D. In sync: gamma oscillations and emotional memory. Front Behav Neurosci, 2013, 7(170): 1-12

    • 22

      Lisman J E, Jensen O. The theta-gamma neural code. Neuron, 2013, 77(6): 1002-1016

    • 23

      Headley D B, Weinberger N M. Fear conditioning enhances gamma oscillations and their entrainment of neurons representing the conditioned stimulus. J Neurosci, 2013, 33(13): 5705-5717

    • 24

      Miltner W H, Braun C, Arnold M, et al. Coherence of gamma-band EEG activity as a basis for associative learning. Nature, 1999, 397(6718): 434-436

    • 25

      Pare D, Collins D R. Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. Journal of Neuroscience, 2000, 20(7): 2701-2710

    • 26

      Trenado C, Pedroarena-Leal N, Cif L, et al. Neural oscillatory correlates for conditioning and extinction of fear. Biomedicines, 2018, 6(2): 49-59

    • 27

      Herry C, Johansen J P. Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci, 2014, 17(12): 1644-1654

    • 28

      Likhtik E, Paz R. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci, 2015, 38(3): 158-166

    • 29

      Brennan J F, Wisniewski C. The efficacy of response prevention on avoidance behavior in young and adult rats with prefrontal cortical injury. Behavioural Brain Research, 1982, 4(2): 117-131

    • 30

      Sanberg P R, Pisa M, Faulks I J, et al. Experiential influences on catalepsy. Psychopharmacology, 1980, 69(2): 225-226

    • 31

      Kalisch R, Korenfeld E, Stephan K E, et al. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci, 2006, 26(37): 9503-9511

    • 32

      Liu C C, Crone N E, Franaszczuk P J, et al. Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus, and frontal lobe. Neuroscience, 2011, 189: 359-369

    • 33

      Orsini C A, Kim J H, Knapska E, et al. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J Neurosci, 2011, 31(47): 17269-17277

    • 34

      Lesting J, Narayanan R T, Kluge C, et al. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. Plos One, 2011, 6(6): e21714

    • 35

      Baldi E, Bucherelli C. Brain sites involved in fear memory reconsolidation and extinction of rodents. Neurosci Biobehav Rev, 2015, 53: 160-190

    • 36

      Lesting J, Daldrup T, Narayanan V, et al. Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. Plos One, 2013, 8(10): e77707

    • 37

      Motzkin J C, Philippi C L, Wolf R C, et al. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry, 2015, 77(3): 276-284

    • 38

      Courtin J, Bienvenu T C, Einarsson E O, et al. Medial prefrontal cortex neuronal circuits in fear behavior. Neuroscience, 2013, 240: 219-242

    • 39

      Dejean C, Courtin J, Karalis N, et al. Prefrontal neuronal assemblies temporally control fear behaviour. Nature, 2016, 535(7612): 420-424

    • 40

      Fanselow M S, Ledoux A J E. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 1999, 23(2):229-232

    • 41

      Phelps E A, Ledoux J E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 2005, 48(2): 175-187

    • 42

      Duvarci S, Pare D. Amygdala microcircuits controlling learned fear. Neuron, 2014, 82(5): 966-980

    • 43

      Nitecka L, Ben‐Ari Y. Distribution of GABA‐like immunoreactivity in the rat amygdaloid complex. Journal of Comparative Neurology, 1987, 266(1): 45-55

    • 44

      Mcdonald A J, Augustine J R. Localization of GABA-like immunoreactivity in the monkey amygdala. Neuroscience, 1993, 52(2): 281-294

    • 45

      Paré D, Smith Y. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience, 1993, 57(4): 1077-1090

    • 46

      Spampanato J, Polepalli J, Sah P. Interneurons in the basolateral amygdala. Neuropharmacology, 2011, 60(5): 765-773

    • 47

      Jhaveri D, Tedoldi A, Hunt S, et al. Evidence for newly generated interneurons in the basolateral amygdala of adult mice. Molecular Psychiatry, 2018, 23(3): 521-532

    • 48

      Wolff S B, Gründemann J, Tovote P, et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature, 2014, 509(7501): 453-458

    • 49

      Ciocchi S, Herry C, Grenier F, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 2010, 468(7321): 277-282

    • 50

      Haubensak W, Kunwar P S, Cai H, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 2010, 468(7321): 270-276

    • 51

      Seidenbecher T. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science, 2003, 301(5634): 846-850

    • 52

      Likhtik E, Stujenske J M, Topiwala M A, et al. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci, 2014, 17(1): 106-113

    • 53

      Karalis N, Dejean C, Chaudun F, et al. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci, 2016, 19(4): 605-612

    • 54

      Likhtik E, Gordon J A. Circuits in sync: decoding theta communication in fear and safety. Neuropsychopharmacology, 2014, 39(1): 235-236

    • 55

      Mueller E M, Panitz C, Hermann C, et al. Prefrontal oscillations during recall of conditioned and extinguished fear in humans. J Neurosci, 2014, 34(21): 7059-7066

    • 56

      Popa D, Duvarci S, Popescu A T, et al. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci USA, 2010, 107(14): 6516-6519

    • 57

      Cambiaghi M, Grosso A, Likhtik E, et al. Higher-order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. J Neurosci, 2016, 36(5): 1647-1659

    • 58

      Davis P, Reijmers L G. The dynamic nature of fear engrams in the basolateral amygdala. Brain Res Bull, 2018, 141: 44-49

    • 59

      Narayanan R T, Seidenbecher T, Kluge C, et al. Dissociated theta phase synchronization in amygdalo- hippocampal circuits during various stages of fear memory. Eur J Neurosci, 2007, 25(6): 1823-1831

    • 60

      Davis P, Zaki Y, Maguire J, et al. Cellular and oscillatory substrates of fear extinction learning. Nat Neurosci, 2017, 20(11): 1624-1633

    • 61

      Pape H C, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev, 2010, 90(2): 419-463

    • 62

      Bauer E P, Paz R, Pare D. Gamma oscillations coordinate amygdalo-rhinal interactions during learning. J Neurosci, 2007, 27(35): 9369-9379

    • 63

      Popescu A T, Popa D, Pare D. Coherent gamma oscillations couple the amygdala and striatum during learning. Nat Neurosci, 2009, 12(6): 801-807

    • 64

      Stujenske J M, Likhtik E, Topiwala M A, et al. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron, 2014, 83(4): 919-933

    • 65

      Courtin J, Karalis N, Gonzalez-Campo C, et al. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol Learn Mem, 2014, 113(1): 82-89

    • 66

      Herry C, Ferraguti F, Singewald N, et al. Neuronal circuits of fear extinction. Eur J Neurosci, 2010, 31(4): 599-612

    • 67

      Rozeske R R, Herry C. Neuronal coding mechanisms mediating fear behavior. Curr Opin Neurobiol, 2018, 52: 60-64

    • 68

      Fitzgerald P J, Whittle N, Flynn S M, et al. Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiol Learn Mem, 2014, 113: 69-81

    • 69

      Milad M R, Quirk G J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002, 420(6911): 68-70

    • 70

      Mcdonald A J. Cortical pathways to the mammalian amygdala. Progress in Neurobiology, 1998, 55(3): 257-332

    • 71

      Vertes R P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 2004, 51(1): 32-58

    • 72

      Morgan M A, Romanski L M, Ledoux J E. Extinction of emotional learning: contribution of medial prefrontal cortex. Neuroscience Letters, 1993, 163(1): 109-113

    • 73

      Likhtik E, Pelletier J G, Paz R, et al. Prefrontal control of the amygdala. Journal of Neuroscience, 2005, 25(32): 7429-7437

    • 74

      Royer S, Pare D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience, 2002, 115(2): 455-462

    • 75

      Quirk G J, Russo G K, Barron J L, et al. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. Journal of Neuroscience, 2000, 20(16): 6225-6231

    • 76

      Phelps E A, Delgado M R, Nearing K I, et al. Extinction learning in humans: role of the amygdala and vmPFC. Neuron, 2004, 43(6): 897-905

    • 77

      Knight D C, Cheng D T, Smith C N, et al. Neural substrates mediating human delay and trace fear conditioning. Journal of Neuroscience, 2004, 24(1): 218-228

    • 78

      Cheng D T, Knight D C, Smith C N, et al. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behavioral Neuroscience, 2003, 117(1): 3-10

    • 79

      Linnman C, Rougemont-Bücking A, Beucke J C, et al. Unconditioned responses and functional fear networks in human classical conditioning. Behavioural Brain Research, 2011, 221(1): 237-245

    • 80

      Klavir O, Genud-Gabai R, Paz R. Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories. J Neurosci, 2012, 32(25): 8589-8597

    • 81

      Milad M R, Wright C I, Orr S P, et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry, 2007, 62(5): 446-454

    • 82

      Kim J J, Fanselow M S. Modality-specific retrograde amnesia of fear. Science, 1992, 256(5057): 675-677

    • 83

      Fanselow M S, Poulos A M. The neuroscience of mammalian associative learning. Annu Rev Psychol, 2005, 56: 207-234

    • 84

      Ji J, Maren S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus, 2007, 17(9): 749-758

    • 85

      Radulovic J, Tronson N C. Molecular specificity of multiple hippocampal processes governing fear extinction. Reviews in The Neurosciences, 2010, 21(1): 1-18

    • 86

      Girardeau G, Inema I, Buzsaki G. Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci, 2017, 20(11): 16-34

    • 87

      Sierra-Mercado D, Padilla-Coreano N, Quirk G J. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 2011, 36(2): 529-538

    • 88

      Corcoran K A, Desmond T J, Frey K A, et al. Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. Journal of Neuroscience, 2005, 25(39): 8978-8987

    • 89

      Maren S, Quirk G J. Neuronal signalling of fear memory. Nat Rev Neurosci, 2004, 5(11): 844-852

    • 90

      Phillips R, Ledoux J. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 1992, 106(2): 274-285

    • 91

      Pitkänen A, Pikkarainen M, Nurminen N, et al. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat: a review. Annals of the New York Academy of Sciences, 2000, 911(1): 369-391

    • 92

      Adhikari A, Topiwala M A, Gordon J A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 2010, 65(2): 257-269

    • 93

      Quirk G J, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 2008, 33(1): 56-72

    • 94

      Bocchio M, Nabavi S, Capogna M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron, 2017, 94(4): 731-743

    • 95

      Stujenske J M, Likhtik E. Fear from the bottom up. Nat Neurosci, 2017, 20(6): 765-767

    • 96

      Burgos-Robles A, Kimchi E Y, Izadmehr E M, et al. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat Neurosci, 2017, 20(6): 824-835

    • 97

      Senn V, Wolff S B, Herry C, et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron, 2014, 81(2): 428-437

    • 98

      Sperl M F J, Panitz C, Rosso I M, et al. Fear extinction recall modulates human frontomedial theta and amygdala activity. Cereb Cortex, 2018, 1-15

    • 99

      Giustino T F, Maren S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci, 2015, 9(298):1-20

    • 100

      Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 2009, 32(1): 209-224

    • 101

      Marin M F, Zsido R G, Song H, et al. Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders. JAMA Psychiatry, 2017, 74(6): 622-631

    • 102

      Hauner K K, Howard J D, Zelano C, et al. Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat Neurosci, 2013, 16(11): 1553-1555

    • 103

      Ball T M, Knapp S E, Paulus M P, et al. Brain activation during fear extinction predicts exposure success. Depress Anxiety, 2017, 34(3): 257-266

    • 104

      Harrison B J, Fullana M A, Via E, et al. Human ventromedial prefrontal cortex and the positive affective processing of safety signals. Neuroimage, 2017, 152(1): 12-18

    • 105

      Herry C, Garcia R. Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. Journal of Neuroscience, 2002, 22(2): 577-583

    • 106

      Shehadi K, Maroun M. Different effects of low frequency stimulation to infralimbic prefrontal cortex on extinction of aversive memories. Brain Res, 2013, 1490(1): 111-116

    • 107

      Maroun M, Kavushansky A, Holmes A, et al. Enhanced extinction of aversive memories by high-frequency stimulation of the rat infralimbic cortex. Plos One, 2012, 7(5): e35853

    • 108

      Baek K, Chae J-H, Jeong J. The effect of repetitive transcranial magnetic stimulation on fear extinction in rats. Neuroscience, 2012, 200(1): 159-165

    • 109

      Klavir O, Prigge M, Sarel A, et al. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat Neurosci, 2017, 20(6): 836-844

    • 110

      Do-Monte F H, Manzano-Nieves G, Quinones-Laracuente K, et al. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci, 2015, 35(8): 3607-3615

    • 111

      Van't Wout M, Longo S M, Reddy M K, et al. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav, 2017, 7(5): e00681

    • 112

      Isserles M, Shalev A Y, Roth Y, et al. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder--a pilot study. Brain Stimul, 2013, 6(3): 377-383

    • 113

      Raij T, Nummenmaa A, Marin M-F, et al. Prefrontal cortex stimulation enhances fear extinction memory in humans. Biological Psychiatry, 2018, 84(2): 129-137

夏文然

机 构:

1. 中国科学院心理健康重点实验室(中国科学院心理研究所),北京 100101

2. 中国科学院大学心理学系,北京 100049

Affiliation:

1. CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

2. Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China

陈思

机 构:

1. 中国科学院心理健康重点实验室(中国科学院心理研究所),北京 100101

2. 中国科学院大学心理学系,北京 100049

Affiliation:

1. CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

2. Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China

王亮

机 构:

1. 中国科学院心理健康重点实验室(中国科学院心理研究所),北京 100101

2. 中国科学院大学心理学系,北京 100049

3. 中国科学院脑科学与智能技术卓越创新中心,上海 200031

Affiliation:

1. CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

2. Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China

3. CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China

html/pibbcn/20180251/alternativeImage/11fe15e2-e8c1-423a-9832-fcc54f925045-F001.jpg

图1 以杏仁核、内侧前额叶、海马为核心的恐惧记忆消退环路的神经振荡变化模式

Fig. 1 Neural oscillation features of fear memory extinction

image /

当动物觉察到安全信息时,杏仁核-内侧前额叶-海马环路的theta同步化活动降低,而高频gamma同步化活动增强. 在恐惧记忆消退期间,杏仁核中间神经元的6~12 Hz 振荡及高频gamma(70~120 Hz)振荡强度增加,与恐惧提取相关的低频gamma(30~70 Hz) 活动强度则降低,另外,杏仁核的高频gamma与mPFC的theta振荡发生跨频段耦合,并接受来自mPFC的抑制性theta输入. 随着消退的进行,mPFC的高频gamma振荡增强,以调节恐惧记忆的消退. 以人类为对象的研究结果显示,恐惧记忆的习得与dACC(图中橙色区域)相关,而vmPFC更多地参与到恐惧消退中. 在消退期间,vmPFC(图中红色区域)内低频gamma(36~44 Hz) 活动减弱. 与此同时,海马通过调控情景信息参与到恐惧记忆的消退中(图中绿色所示为人类研究结果,蓝色所示为动物研究结果).

  • 参 考 文 献

    • 1

      Ledoux J E. Emotion circuits in the brain. Annual Review of Neuroscience, 2000, 23(1): 155-184

    • 2

      Ledoux J. The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 2003, 23(4-5): 727-738

    • 3

      Rauch S L, Shin L M, Phelps E A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol Psychiatry, 2006, 60(4): 376-382

    • 4

      Hayes J P, Vanelzakker M B, Shin L M. Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. Front Integr Neurosci, 2012, 6: 89

    • 5

      Ledoux J E. Coming to terms with fear. Proc Natl Acad Sci USA, 2014, 111(8): 2871-2878

    • 6

      Lonsdorf T B, Menz M M, Andreatta M, et al. Don't fear 'fear conditioning': methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev, 2017, 77(1): 247-285

    • 7

      Labar K S, Gatenby J C, Gore J C, et al. Human amygdala activation during conditioned fear acquisition and extinction: a mixed trial fMRI study. Neuron, 1998, 20(5): 937-945

    • 8

      Buchel C, Morris J, Dolan R J, et al. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron, 1998, 20(5): 947-957

    • 9

      Clem R L, Schiller D. New learning and unlearning: strangers or accomplices in threat memory attenuation?. Trends Neurosci, 2016, 39(5): 340-351

    • 10

      Vervliet B, Baeyens F, Van Den Bergh O, et al. Extinction, generalization, and return of fear: a critical review of renewal research in humans. Biol Psychol, 2013, 92(1): 51-58

    • 11

      Milad M R, Quirk G J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol, 2012, 63(1): 129-151

    • 12

      Maren S. Out with the old and in with the new: synaptic mechanisms of extinction in the amygdala. Brain Res, 2015, 1621(1): 231-238

    • 13

      Bouton M E, King D A. Contextual control of the extinction of conditioned fear: tests for the associative value of the context. Journal of Experimental Psychology: Animal Behavior Processes, 1983, 9(3): 248-265

    • 14

      Rescorla R A, Heth C D. Reinstatement of fear to an extinguished conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 1975, 1(1): 88-96

    • 15

      Sotres-Bayon F, Bush D E, Ledoux J E. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology, 2007, 32(9): 1929-1940

    • 16

      Falls W A, Miserendino M, Davis M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. Journal of Neuroscience, 1992, 12(3): 854-863

    • 17

      Li F, Tsien J Z. Memory and the NMDA receptors. N Engl J Med, 2009, 361(3): 302-303

    • 18

      Buzsaki G, Anastassiou C A, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci, 2012, 13(6): 407-420

    • 19

      Friston K J, Bastos A M, Pinotsis D, et al. LFP and oscillations-what do they tell us?. Curr Opin Neurobiol, 2015, 31(1): 1-6

    • 20

      Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science, 2004, 304(5679): 1926-1929

    • 21

      Headley D B, Pare D. In sync: gamma oscillations and emotional memory. Front Behav Neurosci, 2013, 7(170): 1-12

    • 22

      Lisman J E, Jensen O. The theta-gamma neural code. Neuron, 2013, 77(6): 1002-1016

    • 23

      Headley D B, Weinberger N M. Fear conditioning enhances gamma oscillations and their entrainment of neurons representing the conditioned stimulus. J Neurosci, 2013, 33(13): 5705-5717

    • 24

      Miltner W H, Braun C, Arnold M, et al. Coherence of gamma-band EEG activity as a basis for associative learning. Nature, 1999, 397(6718): 434-436

    • 25

      Pare D, Collins D R. Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. Journal of Neuroscience, 2000, 20(7): 2701-2710

    • 26

      Trenado C, Pedroarena-Leal N, Cif L, et al. Neural oscillatory correlates for conditioning and extinction of fear. Biomedicines, 2018, 6(2): 49-59

    • 27

      Herry C, Johansen J P. Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci, 2014, 17(12): 1644-1654

    • 28

      Likhtik E, Paz R. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci, 2015, 38(3): 158-166

    • 29

      Brennan J F, Wisniewski C. The efficacy of response prevention on avoidance behavior in young and adult rats with prefrontal cortical injury. Behavioural Brain Research, 1982, 4(2): 117-131

    • 30

      Sanberg P R, Pisa M, Faulks I J, et al. Experiential influences on catalepsy. Psychopharmacology, 1980, 69(2): 225-226

    • 31

      Kalisch R, Korenfeld E, Stephan K E, et al. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci, 2006, 26(37): 9503-9511

    • 32

      Liu C C, Crone N E, Franaszczuk P J, et al. Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus, and frontal lobe. Neuroscience, 2011, 189: 359-369

    • 33

      Orsini C A, Kim J H, Knapska E, et al. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J Neurosci, 2011, 31(47): 17269-17277

    • 34

      Lesting J, Narayanan R T, Kluge C, et al. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. Plos One, 2011, 6(6): e21714

    • 35

      Baldi E, Bucherelli C. Brain sites involved in fear memory reconsolidation and extinction of rodents. Neurosci Biobehav Rev, 2015, 53: 160-190

    • 36

      Lesting J, Daldrup T, Narayanan V, et al. Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. Plos One, 2013, 8(10): e77707

    • 37

      Motzkin J C, Philippi C L, Wolf R C, et al. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry, 2015, 77(3): 276-284

    • 38

      Courtin J, Bienvenu T C, Einarsson E O, et al. Medial prefrontal cortex neuronal circuits in fear behavior. Neuroscience, 2013, 240: 219-242

    • 39

      Dejean C, Courtin J, Karalis N, et al. Prefrontal neuronal assemblies temporally control fear behaviour. Nature, 2016, 535(7612): 420-424

    • 40

      Fanselow M S, Ledoux A J E. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 1999, 23(2):229-232

    • 41

      Phelps E A, Ledoux J E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 2005, 48(2): 175-187

    • 42

      Duvarci S, Pare D. Amygdala microcircuits controlling learned fear. Neuron, 2014, 82(5): 966-980

    • 43

      Nitecka L, Ben‐Ari Y. Distribution of GABA‐like immunoreactivity in the rat amygdaloid complex. Journal of Comparative Neurology, 1987, 266(1): 45-55

    • 44

      Mcdonald A J, Augustine J R. Localization of GABA-like immunoreactivity in the monkey amygdala. Neuroscience, 1993, 52(2): 281-294

    • 45

      Paré D, Smith Y. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience, 1993, 57(4): 1077-1090

    • 46

      Spampanato J, Polepalli J, Sah P. Interneurons in the basolateral amygdala. Neuropharmacology, 2011, 60(5): 765-773

    • 47

      Jhaveri D, Tedoldi A, Hunt S, et al. Evidence for newly generated interneurons in the basolateral amygdala of adult mice. Molecular Psychiatry, 2018, 23(3): 521-532

    • 48

      Wolff S B, Gründemann J, Tovote P, et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature, 2014, 509(7501): 453-458

    • 49

      Ciocchi S, Herry C, Grenier F, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 2010, 468(7321): 277-282

    • 50

      Haubensak W, Kunwar P S, Cai H, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 2010, 468(7321): 270-276

    • 51

      Seidenbecher T. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science, 2003, 301(5634): 846-850

    • 52

      Likhtik E, Stujenske J M, Topiwala M A, et al. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci, 2014, 17(1): 106-113

    • 53

      Karalis N, Dejean C, Chaudun F, et al. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci, 2016, 19(4): 605-612

    • 54

      Likhtik E, Gordon J A. Circuits in sync: decoding theta communication in fear and safety. Neuropsychopharmacology, 2014, 39(1): 235-236

    • 55

      Mueller E M, Panitz C, Hermann C, et al. Prefrontal oscillations during recall of conditioned and extinguished fear in humans. J Neurosci, 2014, 34(21): 7059-7066

    • 56

      Popa D, Duvarci S, Popescu A T, et al. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci USA, 2010, 107(14): 6516-6519

    • 57

      Cambiaghi M, Grosso A, Likhtik E, et al. Higher-order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. J Neurosci, 2016, 36(5): 1647-1659

    • 58

      Davis P, Reijmers L G. The dynamic nature of fear engrams in the basolateral amygdala. Brain Res Bull, 2018, 141: 44-49

    • 59

      Narayanan R T, Seidenbecher T, Kluge C, et al. Dissociated theta phase synchronization in amygdalo- hippocampal circuits during various stages of fear memory. Eur J Neurosci, 2007, 25(6): 1823-1831

    • 60

      Davis P, Zaki Y, Maguire J, et al. Cellular and oscillatory substrates of fear extinction learning. Nat Neurosci, 2017, 20(11): 1624-1633

    • 61

      Pape H C, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev, 2010, 90(2): 419-463

    • 62

      Bauer E P, Paz R, Pare D. Gamma oscillations coordinate amygdalo-rhinal interactions during learning. J Neurosci, 2007, 27(35): 9369-9379

    • 63

      Popescu A T, Popa D, Pare D. Coherent gamma oscillations couple the amygdala and striatum during learning. Nat Neurosci, 2009, 12(6): 801-807

    • 64

      Stujenske J M, Likhtik E, Topiwala M A, et al. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron, 2014, 83(4): 919-933

    • 65

      Courtin J, Karalis N, Gonzalez-Campo C, et al. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol Learn Mem, 2014, 113(1): 82-89

    • 66

      Herry C, Ferraguti F, Singewald N, et al. Neuronal circuits of fear extinction. Eur J Neurosci, 2010, 31(4): 599-612

    • 67

      Rozeske R R, Herry C. Neuronal coding mechanisms mediating fear behavior. Curr Opin Neurobiol, 2018, 52: 60-64

    • 68

      Fitzgerald P J, Whittle N, Flynn S M, et al. Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiol Learn Mem, 2014, 113: 69-81

    • 69

      Milad M R, Quirk G J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002, 420(6911): 68-70

    • 70

      Mcdonald A J. Cortical pathways to the mammalian amygdala. Progress in Neurobiology, 1998, 55(3): 257-332

    • 71

      Vertes R P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 2004, 51(1): 32-58

    • 72

      Morgan M A, Romanski L M, Ledoux J E. Extinction of emotional learning: contribution of medial prefrontal cortex. Neuroscience Letters, 1993, 163(1): 109-113

    • 73

      Likhtik E, Pelletier J G, Paz R, et al. Prefrontal control of the amygdala. Journal of Neuroscience, 2005, 25(32): 7429-7437

    • 74

      Royer S, Pare D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience, 2002, 115(2): 455-462

    • 75

      Quirk G J, Russo G K, Barron J L, et al. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. Journal of Neuroscience, 2000, 20(16): 6225-6231

    • 76

      Phelps E A, Delgado M R, Nearing K I, et al. Extinction learning in humans: role of the amygdala and vmPFC. Neuron, 2004, 43(6): 897-905

    • 77

      Knight D C, Cheng D T, Smith C N, et al. Neural substrates mediating human delay and trace fear conditioning. Journal of Neuroscience, 2004, 24(1): 218-228

    • 78

      Cheng D T, Knight D C, Smith C N, et al. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behavioral Neuroscience, 2003, 117(1): 3-10

    • 79

      Linnman C, Rougemont-Bücking A, Beucke J C, et al. Unconditioned responses and functional fear networks in human classical conditioning. Behavioural Brain Research, 2011, 221(1): 237-245

    • 80

      Klavir O, Genud-Gabai R, Paz R. Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories. J Neurosci, 2012, 32(25): 8589-8597

    • 81

      Milad M R, Wright C I, Orr S P, et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry, 2007, 62(5): 446-454

    • 82

      Kim J J, Fanselow M S. Modality-specific retrograde amnesia of fear. Science, 1992, 256(5057): 675-677

    • 83

      Fanselow M S, Poulos A M. The neuroscience of mammalian associative learning. Annu Rev Psychol, 2005, 56: 207-234

    • 84

      Ji J, Maren S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus, 2007, 17(9): 749-758

    • 85

      Radulovic J, Tronson N C. Molecular specificity of multiple hippocampal processes governing fear extinction. Reviews in The Neurosciences, 2010, 21(1): 1-18

    • 86

      Girardeau G, Inema I, Buzsaki G. Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci, 2017, 20(11): 16-34

    • 87

      Sierra-Mercado D, Padilla-Coreano N, Quirk G J. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 2011, 36(2): 529-538

    • 88

      Corcoran K A, Desmond T J, Frey K A, et al. Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. Journal of Neuroscience, 2005, 25(39): 8978-8987

    • 89

      Maren S, Quirk G J. Neuronal signalling of fear memory. Nat Rev Neurosci, 2004, 5(11): 844-852

    • 90

      Phillips R, Ledoux J. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 1992, 106(2): 274-285

    • 91

      Pitkänen A, Pikkarainen M, Nurminen N, et al. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat: a review. Annals of the New York Academy of Sciences, 2000, 911(1): 369-391

    • 92

      Adhikari A, Topiwala M A, Gordon J A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 2010, 65(2): 257-269

    • 93

      Quirk G J, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 2008, 33(1): 56-72

    • 94

      Bocchio M, Nabavi S, Capogna M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron, 2017, 94(4): 731-743

    • 95

      Stujenske J M, Likhtik E. Fear from the bottom up. Nat Neurosci, 2017, 20(6): 765-767

    • 96

      Burgos-Robles A, Kimchi E Y, Izadmehr E M, et al. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat Neurosci, 2017, 20(6): 824-835

    • 97

      Senn V, Wolff S B, Herry C, et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron, 2014, 81(2): 428-437

    • 98

      Sperl M F J, Panitz C, Rosso I M, et al. Fear extinction recall modulates human frontomedial theta and amygdala activity. Cereb Cortex, 2018, 1-15

    • 99

      Giustino T F, Maren S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci, 2015, 9(298):1-20

    • 100

      Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 2009, 32(1): 209-224

    • 101

      Marin M F, Zsido R G, Song H, et al. Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders. JAMA Psychiatry, 2017, 74(6): 622-631

    • 102

      Hauner K K, Howard J D, Zelano C, et al. Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat Neurosci, 2013, 16(11): 1553-1555

    • 103

      Ball T M, Knapp S E, Paulus M P, et al. Brain activation during fear extinction predicts exposure success. Depress Anxiety, 2017, 34(3): 257-266

    • 104

      Harrison B J, Fullana M A, Via E, et al. Human ventromedial prefrontal cortex and the positive affective processing of safety signals. Neuroimage, 2017, 152(1): 12-18

    • 105

      Herry C, Garcia R. Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. Journal of Neuroscience, 2002, 22(2): 577-583

    • 106

      Shehadi K, Maroun M. Different effects of low frequency stimulation to infralimbic prefrontal cortex on extinction of aversive memories. Brain Res, 2013, 1490(1): 111-116

    • 107

      Maroun M, Kavushansky A, Holmes A, et al. Enhanced extinction of aversive memories by high-frequency stimulation of the rat infralimbic cortex. Plos One, 2012, 7(5): e35853

    • 108

      Baek K, Chae J-H, Jeong J. The effect of repetitive transcranial magnetic stimulation on fear extinction in rats. Neuroscience, 2012, 200(1): 159-165

    • 109

      Klavir O, Prigge M, Sarel A, et al. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat Neurosci, 2017, 20(6): 836-844

    • 110

      Do-Monte F H, Manzano-Nieves G, Quinones-Laracuente K, et al. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci, 2015, 35(8): 3607-3615

    • 111

      Van't Wout M, Longo S M, Reddy M K, et al. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav, 2017, 7(5): e00681

    • 112

      Isserles M, Shalev A Y, Roth Y, et al. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder--a pilot study. Brain Stimul, 2013, 6(3): 377-383

    • 113

      Raij T, Nummenmaa A, Marin M-F, et al. Prefrontal cortex stimulation enhances fear extinction memory in humans. Biological Psychiatry, 2018, 84(2): 129-137