en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
KuhnU, WahleE. Structure and function of poly(A) binding proteins. Biochim Biophys Acta, 2004, 1678(2-3): 67-84
参考文献 2
GossD J, KleimanF E. Poly(A) binding proteins: are they all created equal? Wiley Interdiscip Rev RNA, 2013, 4(2): 167-179
参考文献 3
DeoR C, BonannoJ B, SonenbergN, et al. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell, 1999, 98(6): 835-845
参考文献 4
KuhnU, PielerT. Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J Mol Biol, 1996, 256(1): 20-30
参考文献 5
BaerB W, KornbergR D. The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J Cell Biol, 1983, 96(3): 717-721
参考文献 6
GrayN K, CollerJ M, DicksonK S, et al. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J, 2000, 19(17): 4723-4733
参考文献 7
SladicR T, LagnadoC A, BagleyC J, et al. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur J Biochem, 2004, 271(2): 450-457
参考文献 8
KozlovG, TrempeJ F, KhaleghpourK, et al. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc Natl Acad Sci U S A, 2001, 98(8): 4409-4413
参考文献 9
DerryM C, YanagiyaA, MartineauY, et al. Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol, 2006, 71: 537-543
参考文献 10
KozlovG, MenadeM, RosenauerA, et al. Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. J Mol Biol, 2010, 397(2): 397-407
参考文献 11
SiddiquiN, MangusD A, ChangT C, et al. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J Biol Chem, 2007, 282(34): 25067-25075
参考文献 12
MaS, BhattacharjeeR B, BagJ. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J, 2009, 276(2): 552-570
参考文献 13
BurgessH M, RichardsonW A, AndersonR C, et al. Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs. J Cell Sci, 2011, 124(19): 3344-3355
参考文献 14
MureF, PanthuB, Zanella-CleonI, et al. Epstein-Barr virus protein EB2 stimulates translation initiation of mRNAs through direct interactions with both poly(A)-binding protein and eukaryotic initiation factor 4G. J Virol, 2018, 92(3): e01917-17
参考文献 15
KiniH K, SilvermanI M, JiX J, et al. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. Rna, 2016, 22(1): 61-74
参考文献 16
HornsteinE, HarelH, LevyG, et al. Overexpression of poly(A)-binding protein down-regulates the translation or the abundance of its own mRNA. FEBS Lett, 1999, 457(2): 209-213
参考文献 17
PatelG P, MaS H, BagJ. The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res, 2005, 33(22): 7074-7089
参考文献 18
BagJ. Feedback inhibition of poly(A)-binding protein mRNA translation-A possible mechanism of translation arrest by stalled 40 S ribosomal subunits. J Biol Chem, 2001, 276(50): 47352-47360
参考文献 19
PatelG P, BagJ. IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KHIII-IV domain. Febs J, 2006, 273(24): 5678-5690
参考文献 20
HornsteinE, GitA, BraunsteinI, et al. The expression of poly(A)-binding protein gene is translationally regulated in a growth-dependent fashion through a 5'-terminal oligopyrimidine tract motif. J Biol Chem, 1999, 274(3): 1708-1714
参考文献 21
Patursky-PolischukI, KasirJ, MiloslavskiR, et al. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs. Plos One, 2014, 9(10): e109410
参考文献 22
FonsecaB D, ZakariaC, JiaJ J, et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J Biol Chem, 2015, 290(26): 15996-16020
参考文献 23
BurgessH M, GrayN K. mRNA-specific regulation of translation by poly(A)-binding proteins. Biochem Soc Trans, 2010, 38(6): 1517-1522
参考文献 24
ChorghadeS, SeimetzJ, EmmonsR, et al. Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. eLife, 2017, 6: e24139.
参考文献 25
KuhnU, GundelM, KnothA, et al. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem, 2009, 284(34): 22803-22814
参考文献 26
HosodaN, LejeuneF, MaquatL E. Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. Mol Cell Biol, 2006, 26(8): 3085-3097
参考文献 27
BurgessH M, GrayN K. An integrated model for the nucleo-cytoplasmic transport of cytoplasmic poly(A)-binding proteins. Commun Integr Biol, 2012, 5(3): 243-247
参考文献 28
GrayN K, HrabalkovaL, ScanlonJ P, et al. Poly(A)-binding proteins and mRNA localization: who rules the roost? Biochem Soc Trans, 2015, 43(6): 1277-1284
参考文献 29
KisselevL, EhrenbergM, FrolovaL. Termination of translation: interplay of mRNA, rRNAs and release factors? Embo J, 2003, 22(2): 175-182
参考文献 30
IvanovA, MikhailovaT, EliseevB, et al. PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res, 2016, 44(16): 7766-7776
参考文献 31
BrookM, GrayN K. The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem Soc Trans, 2012, 40(4): 856-864
参考文献 32
SonenbergN, HinnebuschA G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 2009, 136(4): 731-745
参考文献 33
ThakorN, SmithM D, RobertsL, et al. Cellular mRNA recruits the ribosome via eIF3-PABP bridge to initiate internal translation. RNA Biol, 2017, 14(5): 553-567
参考文献 34
SmithR W P, AndersonR C, LarraldeO, et al. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc Natl Acad Sci U S A, 2017, 114(24): 6310-6315
参考文献 35
LiJ H, HeY P, WangW D, et al. Polyamine-mediated stoichiometric assembly of ribonucleoproteins for enhanced mRNA delivery. Angew Chem-Int Edit, 2017, 56(44): 13709-13712
参考文献 36
EliseevaI A, LyabinD N, OvchinnikovL P. Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochem-Moscow, 2013, 78(13): 1377-1391
参考文献 37
YiH, ParkJ, HaM, et al. PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol Cell, 2018, 70(6): 1081-1088
参考文献 38
WebsterM W, ChenY H, StowellJ a W, et al. mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4-Not nucleases. Mol Cell, 2018, 70(6): 1089-1100
参考文献 39
WahleE, WinklerG S. RNA decay machines: deadenylation by the Ccr4-Not and Pan2-Pan3 complexes. Biochim Biophys Acta-Gene Regul Mech, 2013, 1829(6-7): 561-570
参考文献 40
NiedzwieckaA, NilssonP, WorchR, et al. Molecular recognition of mRNA 5' cap by 3' poly(A)-specific ribonuclease (PARN) differs from interactions known for other cap-binding proteins. BBA-Proteins Proteomics, 2016, 1864(4): 331-345
参考文献 41
SchweingruberC, RufenerS C, ZundD, et al. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta-Gene Regul Mech, 2013, 1829(6-7): 612-623
参考文献 42
KurosakiT, MaquatL E. Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci, 2016, 129(3): 461-467
参考文献 43
FatscherT, BoehmV, WeicheB, et al. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA-Publ RNA Soc, 2014, 20(10): 1579-1592
参考文献 44
FatscherT, BoehmV, GehringN H. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci, 2015, 72(23): 4523-4544
参考文献 45
FatscherT, GehringN H. Harnessing short poly(A)-binding protein-interacting peptides for the suppression of nonsense-mediated mRNA decay. Sci Rep, 2016, 6: 37311
参考文献 46
JonasS, IzaurraldeE. NON-CODING RNA towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 2015, 16(7): 421-433
参考文献 47
HuntzingerE, Kuzuoglu-OzturkD, BraunJ E, et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res, 2013, 41(2): 978-994
参考文献 48
ZekriL, HuntzingerE, HeimstadtS, et al. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol, 2009, 29(23): 6220-6231
参考文献 49
HuntzingerE, BraunJ E, HeimstadtS, et al. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. Embo J, 2010, 29(24): 4146-4160
参考文献 50
BraunJ E, HuntzingerE, IzaurraldeE. The role of GW182 proteins in miRNA-mediated gene silencing [M]//CHAN E K L, FRITZLER M J. Ten Years of Progress in Gw/P Body Research. New York; Springer. 2013: 147-163
参考文献 51
ZekriL, Kuzuoglu-OzturkD, IzaurraldeE. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. Embo J, 2013, 32(7): 1052-1065
参考文献 52
MauriM, KirchnerM, AharoniR, et al. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Res, 2017, 45(2): 938-950
参考文献 53
MorettiF, KaiserC, Zdanowicz-SpechtA, et al. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol, 2012, 19(6): 603-608
参考文献 54
FabianM R, MathonnetG, SundermeierT, et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell, 2009, 35(6): 868-880
参考文献 55
RisslandO S, SubtelnyA O, WangM, et al. The influence of microRNAs and poly(A) tail length on endogenous mRNA-protein complexes. Genome Biol, 2017, 18(1): 211
参考文献 56
WakiyamaM, OgamiK, IwaokaR, et al. MicroRNP-mediated translational activation of nonadenylated mRNAs in a mammalian cell-free system. Genes Cells, 2018, 23(5): 332-344
参考文献 57
OzturkS, UysalF. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Reprod Fertil Dev, 2017, 29(10): 1890-1901
参考文献 58
OzturkS, SozenB, DemirN. Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries. J Assist Reprod Genet, 2015, 32(1): 137-146
参考文献 59
UysalF, OzturkS. Embryonic poly(A)-binding protein is differently expressed and interacts with the messenger RNAs in the mouse oocytes and early embryos. J Cell Biochem, 2019, 120(3): 4694-4709
参考文献 60
GorgoniB, RichardsonW A, BurgessH M, et al. Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proc Natl Acad Sci U S A, 2011, 108(19): 7844-7849
参考文献 61
KimuraM, IshidaK, KashiwabaraS I, et al. Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol Reprod, 2009, 80(3): 545-554
参考文献 62
WuY Y, XuK B, QiH Y. Domain-functional analyses of PIWIL1 and PABPC1 indicate their synergistic roles in protein translation via 3'-UTRs of meiotic mRNAs. Biol Reprod, 2018, 99(4): 773-788
参考文献 63
OzturkS, UysalF. Potential roles of the poly(A)-binding proteins in translational regulation during spermatogenesis. J Reprod Dev, 2018, 64(4): 289-296
参考文献 64
OzturkS, SozenB, UysalF, et al. The poly(A)-binding protein genes, EPAB, PABPC1, and PABPC3 are differentially expressed in infertile men with non-obstructive azoospermia. J Assist Reprod Genet, 2016, 33(3): 335-348
参考文献 65
VerlaetM, DeregowskiV, DenisG, et al. Genetic imbalances in preleukemic thymuses. Biochem Biophys Res Commun, 2001, 283(1): 12-18
参考文献 66
ZhuJ, DingH, WangX H, et al. PABPC1 exerts carcinogenesis in gastric carcinoma by targeting miR-34c. Int J Clin Exp Pathol, 2015, 8(4): 3794-3802
参考文献 67
ZhangH, ShengC, YinY J, et al. PABPC1 interacts with AGO2 and is responsible for the microRNA mediated gene silencing in high grade hepatocellular carcinoma. Cancer Lett, 2015, 367(1): 49-57
参考文献 68
OhshimaK, KantoK, HatakeyamaK, et al. Exosome-mediated extracellular release of polyadenylate-binding protein 1 in human metastatic duodenal cancer cells. Proteomics, 2014, 14(20): 2297-2306
参考文献 69
TakashimaN, IshiguroH, KuwabaraY, et al. Expression and prognostic roles of PABPC1 in esophageal cancer: correlation with tumor progression and postoperative survival. Oncol Rep, 2006, 15(3): 667-671
参考文献 70
DizinE, GressierC, MagnardC, et al. BRCA1 interacts with poly(A)-binding protein - Implication of BRCA1 in translation regulation. J Biol Chem, 2006, 281(34): 24236-24246
参考文献 71
Guzeloglu-KayisliO, PauliS, DemirH, et al. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod, 2008, 14(10): 581-588
目录 contents

    摘要

    多聚腺苷酸结合蛋白(poly(A) binding protein,PABP)家族通常被认为是mRNA poly(A)尾的一种保护屏障. 其中细胞质多聚腺苷酸结合蛋白1(cytoplasmic poly(A) binding protein-1,PABPC1)在高亲和力作用下能够与mRNA中富含腺苷酸的序列结合,在基因转录后调控中发挥着重要作用. 同时PABPC1还参与mRNA的许多代谢通路,包括腺苷酸多聚化/脱腺苷酸化、mRNA转运、mRNA翻译、降解及mircoRNA相关调控. 近年来关于PABPC1与生殖细胞的发育、心肌肥大和肿瘤的发生发展的报道屡见不鲜,可见PABPC1与细胞的生长发育有密切联系. 本文将主要介绍PABPC1的结构、表达调控、功能及其生物学作用.

    Abstract

    Poly(A) binding protein (PABP) family is commonly considered a protective barrier for the mRNA poly(A) tail. As a member of PABP family, cytoplasmic poly(A) binding protein-1(PABPC1) binds to A-rich mRNA sequences with high affinity and plays an important role in the post-transcriptional regulation. In addition, PABPC1 also participates in many metabolic pathways of mRNA, including polyadenylation/deadenylation, mRNA transport, mRNA translation, degradation and microRNA-associated regulation. Recently, numerous studies demonstrate that PABPC1 associated with the growth of germ cells, the hypertrophy of myocardium and the development of tumors, suggesting a close relationship between PABPC1 and the growth and development of cells. In this review, we will mainly summarize the structure, expression regulation, function and biological function of PABPC1.

    多聚腺苷酸结合蛋白(poly(A)binding protein,PABP)是一类高度保守的RNA结合蛋白,普遍存在于真核生物中,能够特异性地识别并结合多聚腺苷酸序列. PABP家族按照其在细胞中的定位主要分为两种:细胞核PABP(nuclear poly(A)binding protein,PABPN)和细胞质PABP(cytoplasmic poly(A) binding protein,PABPC). 这些家族成员本身缺乏催化活性,但能够在细胞中结合poly(A)尾巴并与其他蛋白质相互作用,使得它们在各式各样的细胞活动中发挥重要功能. 而PABPC1是目前研究最多的一类细胞质PABP,它参与了mRNA代谢、细胞生长发育和肿瘤的发生发展等诸多重要的生命活[1,2].

  • 1 PABPC1的结构

    PABPC1的N端有4个标准的RNA结合结构域,称之为RNA识别基序(RNA recognition motifs,RRMs),它们由重复性的短序列串联连[3]. RRMs通常由90~100个氨基酸组成,与poly(A)尾巴结合时其结合位点最少需要12个腺苷酸,结合后的PABPC1可以保护多达27个核苷酸不受核糖核酸酶作[4,5]. 其中这4个RRMs是高度保守的,RRM1、RRM2能够与真核生物起始因子4G(eukaryotic initiation factor 4G,eIF4G)、PABP结合蛋白1(PABP-interacting protein 1,PAIP1)等结合,同时与poly(A)的亲和力[6],而RRM3和RRM4虽然与poly(A)的亲和力降低,但它们能结合富含AU的RNA序[7].

    PABPC1的C端结构域大约由75个氨基酸组成,称为PABC或MLLE(C-terminal domain of PABP),它通过富含脯氨酸和谷氨酰胺的“接头”连接到连串的RRM[8]. MLLE通过PABPC1相互作用基序2(PABP-interacting motif 2,PAM2)与PABP或其他蛋白质结合,例如真核翻译终止因子3(eukaryotic release factor 3,eRF3)和脱腺苷酸酶[9,10,11].

  • 2 PABPC1的表达调控

    PABPC1广泛分布在细胞质中,在主要的翻译区聚集产生生物学效应,此外在生物应激状态下(如热休[12]、UV照[13]或病毒感[14]等)能进入细胞核. PABPC1的合成可以发生在翻译起始的调控,在PABPC1 mRNA的5′-UTR包含有两种调控序列:末端寡嘧啶轨道(terminal oligopyrimidine track,TOP)和富含腺嘌呤的自调节序列(adenine-rich autoregulatory sequence,ARS). 有证据表明:与完整的PABPC1 5'-UTR相比,缺失更多5'端的相互作用位点会导致PABPC1表达显著增[15]. 目前普遍认为ARS是细胞中控制PABPC1合成的重要序列,它由61个长腺苷酸组成,PABPC1通过结合ARS特异性地抑制自身mRNA的翻译来降低自身含[15,16],而且PABPC1对ARS的亲和力低于它们对poly(A)尾巴的结合亲和力,一旦PABPC1表达达到高水平时,自调节机制将发挥作[17],以限制40 S亚基的移动,同时防止60 S亚基加入形成核糖体复合[18]. 此外,也有报道UNR(upstream of N-ras)和胰岛素样生长因子mRNA结合蛋白1(insulin-like growth factor Ⅱ mRNA binding protein-1,IGFBP1)能与PABPC1在ARS结合形成阻遏复合物,达到抑制PABPC1 mRNA的翻[17,18,19].

    TOP介导的PABPC1 mRNA翻译调节不同于ARS,PABPC1 mRNA是TOP mRNA家族中的一员,其5′端携带的寡嘧啶基序主要受到细胞生长发育信号的控制. 虽然mRNA翻译与哺乳动物雷帕霉素靶向基因1(mammalian target of rapamycin complex 1,mTORC1)信号通路的激活相伴随,但是含有TOP的mRNA的翻译调控机制目前还不明[20,21],有研究表明mTOR在氨基酸激活的TOP mRNA翻译中并不依赖于mTORC1和mTORC2这两个典型复合物,可能存在尚未确定的其他复合物或复杂方式进行调[21],但Fonseca[22]发现mTORC1以La相关蛋白1(La-related protein 1,LARP1)为靶点,通过它们的5′TOP基序与TOP mRNA结合能抑制翻译.

    poly(A)尾巴长度的动态变化也可以调节特定mRNA的翻译. 通常情况下mRNA以一定长度的poly(A)尾巴(大约250个腺苷)离开细胞核并逐渐缩短,直到mRNA更新激活时又开始延[23]. 成年人和小鼠心脏中PABPC1由于poly(A)尾巴长度缩短,导致PABPC1蛋白含量低,而在运动或心脏疾病的作用下,poly(A)尾巴变长,PABPC1蛋白表达增加. 可见PABPC1也存在poly(A)尾的调节机制来控制自身mRNA的翻[24].

  • 3 PABPC1在mRNA代谢中的功能

    PABPC1与细胞中mRNA的各种活动密切相关,包括mRNA的多聚腺苷酸化/脱腺苷酸化、mRNA的翻译、降解等.

  • 3.1 PABPC1与mRNA的多聚腺苷酸化/脱腺苷酸化

    PABPC1在mRNA的“保尾”和“去尾”中扮演着双重角色. 3'端多聚腺苷酸化是大多数真核生物mRNA成熟的先决条件之一,而mRNA poly(A)尾巴通常与两个重要的poly(A)结合蛋白(PABPs)结合:分别是定位于细胞质和细胞核的PABPC1和PABPN1. 通常认为PABPN1结合后的mRNA在出细胞核后被PABPC1所取代,随后调控翻[25]. 而有研究表明PABPC1也能进入细胞核,在核内发挥与PABPN1类似的作用,结合前体mRNA并参与3'端的多聚腺苷酸[26]. 它存在一种整合模式方便其“穿梭”于细胞核,包括α输入蛋白的依赖性入核与mRNA的依赖性出核,除此之外还有与翻译延伸因子1α(translation elongation factor 1α,eEF1α)、Tip 相关蛋白(Tip-associated protein,TAP)或桩蛋白(paxillin)等结合的mRNA非依赖性出核方式,不过PABPC1不会促进mRNA出核(图1a[27,28].

    图1
                            PABPC1与mRNA的多聚腺苷酸化/脱腺苷酸化

    图1 PABPC1与mRNA的多聚腺苷酸化/脱腺苷酸化

    Fig. 1 PABPC1 and polyadenylation/deadenylation of mRNA

    注:(a)PABPC1“穿梭”于细胞核的整合模式,包括了α输入蛋白的依赖性入核、mRNA的依赖性出核及与其他蛋白质结合的mRNA非依赖性出核方式. (b)PABPC1与eRF3相互作用促进mRNA poly(A)尾巴的脱腺苷酸化. ①核糖体未到达UAG,eRF3与PABPC1结合催化PABPC1脱落;②核糖体到达UAG与eRF1结合,eRF1结合eRF3间接诱导PABPC1脱落.

    另一方面,PABPC1又可以促进mRNA poly(A)尾巴的脱腺苷酸化. PABPC1与eRF3相互作用,而eRF3是一种GTP酶,它可以增强真核翻译终止因子eRF1的活性,催化翻译终[29,30]. 此时有两种情形:a.当核糖体未到达终止密码子,而eRF3与PABPC1结合,这时可催化PABPC1从poly(A)尾巴脱落;b.当核糖体到达终止密码子时与eRF1结合,而eRF1通过结合eRF3间接结合到PABPC1,同样诱导其从poly(A)尾巴脱落(图1b). poly(A)尾巴由于缺乏PABPC1的保护,最终在各种核糖核酸外切酶的作用下脱腺苷酸[31]. 因此,可以看到PABPC1在保护多聚腺苷酸化与促进脱腺苷酸化两种反差中展现出的复杂调控机制.

  • 3.2 PABPC1与mRNA的翻译

    目前的研究普遍认为PABPC1与poly(A)尾巴的结合能激活翻译起始,其具体机制已有相当多的报道. mRNA调控序列元件相关的真核起始因子(eukaryotic initiation factors,eIFs)控制mRNA在各种刺激状态下的表[32]. 最近有研究表明,某些编码细胞增殖和生存/凋亡调节蛋白的mRNA主要利用内部核糖体进入位点(internal ribosome entry site,IRES)介导翻译,eIF3能与PABPC1结合诱导核糖体的募集来激活翻译(图2b[33]. 而大多数的mRNA 5´端结合eIF4E,同时与eIF3、eIF4G和ATP依赖的RNA解旋酶eIF4A组成帽结合起始复合物eIF4F,募集40S核糖体亚基,PABPC1的RRM1-2能够与eIF4G结合,以eIF4G作为锚定物,直接将mRNA的帽尾连接起来形成一种“闭环”结构,有效地防止了mRNA末端的“去帽”与“去尾”,增加了mRNA的稳定性,促进翻译起始同时利于核糖体的循环利用(图2a[34]. 而且Li[35]发现以多胺介导组装的多蛋白信使核糖核酸蛋白(messenger ribonucleic acid protein,mRNP)复合物能进一步增强mRNA的稳定性和蛋白质翻译效率. 不仅如此,RNA的存在能够促进PABPC1与eIF4G的亲和力,当利用核糖核酸酶移除或分离PABPC1与mRNA的结合时,PABPC1与外源性的eIF4G结合减[1,36]. 可见靶mRNA的翻译与相应蛋白质的结合是一种互补的选择,一方面RNA增加PABPC1与其他蛋白质的结合力,另一方面PABPC1的结合提高mRNA的翻译效率.

    图2
                            PABPC1与mRNA的翻译

    图2 PABPC1与mRNA的翻译

    Fig. 2 PABPC1 and translation of mRNA

    注:(a)PABPC1与eIF4E、eIF3、eIF4G、eIF4A等结合募集40 S核糖体,将mRNA的帽尾连接成“闭环”结构. (b)凋亡抑制蛋白的mRNA利用IRES介导翻译,其中eIF3复合体可能通过PAIP1与PABPC1结合诱导40 S核糖体的募集.

  • 3.3 PABPC1与mRNA的降解

    细胞中存在若干种mRNA的降解途径,最常见的包括mRNA脱腺苷酸化、脱帽以及随后发生的核酸外切酶诱导下的切割,而PABPC1也参与到这一系列的过程当中.

    哺乳动物细胞中主要存在三种特异性poly(A)尾的核糖核酸外切酶活动,包括CCR4-NOT复合物(CNOT)、PABP依赖的多聚腺苷酸特异型核糖核酸酶2/3(PABP-dependent poly(A)-specific ribonuclease 2/3,PAN2-PAN3)和多聚腺苷酸特异型核糖核酸酶(poly(A)-specific ribonuclease,PARN),它们都具有脱腺苷酸酶活性. PABPC1结合TOB1/2(transducer of erbB-2 1/2)间接募集CCR4-NOT复合物,其中CNOT的催化亚基CAF1和CCR4在脱腺苷酸化中扮演不同角色,CAF1修剪未结合PABPC1的poly(A)尾并被PABPC1阻断,而CCR4被PABPC1激活后促进PABPC1的脱[37,38];与PAN3的直接连接可以募集PAN2/PAN3复合物(图3a)[39];而PARN则是在含有胞质多聚腺苷酸化成分(cytoplasmic polyadenylation element,CPE)的mRNA中发挥作用,而且与5'端帽的结合能促进其酶的活[40]. PABPC1与eRF3结合发挥脱腺苷酸化功能的同时,协调介导核酸外切酶消化未被保护的poly(A)尾[31],随后触发mRNA的降解机制.

    图3
                            PABPC1与mRNA的降解

    图3 PABPC1与mRNA的降解

    Fig. 3 PABPC1 and degradation of mRNA

    注:(a)①PABPC1结合TOB募集CNOT;②PABPC1结合PAN2-PAN3都能促进mRNA脱腺苷酸化,触发降解. (b)PABPC1与UPF1竞争性地结合eRF3,抑制NMD;mRNA 3’UTR长度过长,UPF1结合eRF3,激活NMD. (c)PABPC1参与microRNA介导的翻译抑制:①GW182募集RISC并诱导CCR4-NOT复合物的结合,减弱PABPC1与eIF4G的结合;②PABPC1刺激RISC与靶mRNA结合,RISC刺激PABPC1脱落; ③RISC影响mRNP复合物的组装,随后募集DDX6与CCR4-NOT复合物,最终触发降解.

    在调节和触发无义介导的mRNA降解(nonsense mediated mRNA decay,NMD)机制里,PABPC1也发挥着独特的作用. 通常具有提前终止密码子(premature termination codon,PTC)的异常mRNA,其降解途径是NMD,它防止毒害性截短蛋白的产生,是真核生物重要的mRNA监视机制. NMD激活的关键蛋白质包括了上移码蛋白1(up frameshift protein,UPF1)和外显子连接复合体(exon junction complex,EJC). 目前存在几种机制阐述PABPC1与NMD之间的关系. 首先,PABPC1能够与UPF1竞争性地结合eRF3,而且当过量的PABPC1存在于胞质当中时,可以阻遏UPF1与eRF3的结合,从而抑制NMD. 其次,当PABPC1比EJC的结合位点更靠近终止密码子时,它缩短了与eRF3之间的距离,同样能够与UPF1竞争,阻止mRNA降解. 除此之外,有些mRNA 3'UTR的长度过长则会增加PABPC1与终止密码子间的距离,虽然PABPC1与eIF4G的结合能形成“闭环”结构,但是无法起到抑制NMD的作用(图3b[41,42,43]. Fatscher[44]则认为eRF3、PABPC1和eIF4G的级联相互作用所导致的翻译终止,可能是抑制NMD的必要机制. 而最近也有研究表明,包含PAM2的多肽能募集PABPC1靠近终止密码子来抑制NMD[45].

    近年来,PABPC1在参与依赖microRNA的翻译抑制和mRNA的降解方面也引起了人们的广泛关注. microRNA是一种非编码RNA,长度为20~24 nt,它与Ago蛋白组装形成RNA诱导的沉默复合物(RISC),其单链通过碱基配对互补原则与靶mRNA结合,利用多种途径沉默靶mRNA,最终导致靶mRNA降[46]. 有些人认为PABPC1主要在microRNA介导的翻译抑制起作用,而其他人则认为它对mRNA的降解很重要. 对于PABPC1的作用目前存在着几种不同的说法:a. 靶mRNA上的锚定蛋白GW182不仅能募集RISC,同时它能与eIF4G竞争性地结合PABPC1,减弱eIFs与PABPC1间的联系,而PABPC1通过TOB1/2募集CCR4-NOT复合物使mRNA脱腺苷酸[47,48,49,50],不过也有人认为是GW182募集CCR4-NOT复合物,导致PABPC1从poly(A)尾释[51,52],最终诱导mRNA的降解;b. PABPC1能够刺激RISC与靶mRNA的结合,随后在没有发生脱腺苷酸化的情况下PABPC1从poly(A)尾脱落,最终在RISC的作用下可能导致翻译抑[53,54];c. microRNA介导的降解途径会影响mRNP复合物的组装,如PABPC1和eIF4G的减少,随后募集衰减因子DDX6(dead box protein 6)与CCR4–NOT复合物结合,诱导mRNA的降解(图3c[55]. 不仅如此,最近有研究发现虽然microRNA主要抑制靶mRNA的翻译,但它也能增强特定类型的靶mRNA的翻译,PABPC1也同样参与到翻译激活的这个机制[56].

  • 4 PABPC1的生物学作用

  • 4.1 PABPC1与生殖细胞的发育

    PABPC1是脊椎动物卵母细胞和早期胚胎翻译调控所必需的,它能与poly(A)尾巴或母系储存的mRNA中的特定序列结合,保护它们免于降解并促进它们的翻译活性. 在小鼠和人的卵母细胞中,囊胚期PABPC1 mRNA的表达显著高于生殖泡期和MⅡ[57];在出生后的小鼠卵巢中,除了 1周龄的卵巢外,PABPC1的转录在青春前期和青春期的小鼠卵巢中明显高于其他阶段发育[58]. Uysal[59]的研究表明,PABPC1能协同ePAB参与在卵子发生和早期胚胎发育过程中母体mRNAs的翻译控制. 而且在非洲爪蟾的研究中也发现关于缺乏PABPC1的早期发育缺陷,对PABPC1基因敲除后会导致非洲爪蟾胚胎前、后肢表型的缺陷及胚胎死亡,其他的PABPs如ePAB(embryonic poly(A) binding protein)和PABP4都不能完全挽救PABPC1敲除的表[60]. 除了卵母细胞外,也有人发现PABPC1的表达在精子形成过程中是一种动态变化的过程. 精原细胞的减数分裂期PABPC1表达增加,并在减数分裂早期达到高峰,随后在精子形成结束时下降到不能检测到的水平,同时它能非特异性结合到poly(A)尾并与一些翻译因子如eIF4G1、PAIP1、PAIP2和PIWIL1相互作[61,62,63]. 同时在Ozturk[64]的研究中发现,在不同类型的非梗阻性无精症患者的睾丸活检样本和离体精母细胞中,PABPC1的mRNA与蛋白质水平都出现显著降低,这表明了PABP基因的表达改变可能对生精过程会产生不利影响.

  • 4.2 PABPC1与心肌肥大

    心脏的生理性和病理性肥大都需要新的蛋白质合成,而最近有学者发现poly(A)尾的翻译控制也参与心肌细胞生长. 研究发现poly(A)尾长度缩短能抑制成熟心肌细胞中PABPC1 mRNA的翻译,从而降低了成年心脏总蛋白质的合成速[24]. 在耐力运动或主动脉缩窄的刺激下能够延长PABPC1 mRNA的poly(A)尾,使编码的PABPC1蛋白含量增加,随后与eIF4G相互作用刺激整体mRNA翻译,导致心肌细胞内蛋白质合成代谢增强,满足心肌细胞的肥大需求,并且在转基因小鼠模型中心肌特异性上调PABPC1也发现心肌蛋白质合成增加并出现生理性肥[24],但PABPC1在心脏病理性肥大的发生发展中是否也具有功能作用尚不清楚.

  • 4.3 PABPC1与肿瘤的发生发展

    鉴于PABPC1在控制mRNA翻译及蛋白质合成中发挥的重要作用,关于PABPC1与癌症之间的关联也越来越受到重视. 早期就有研究发现,在癌症的早期阶段细胞内PABPC1水平增加,表明生长控制与PABPC1水平之间存在一定联[65]. 大部分的研究发现了在不受控制的增殖、侵袭性和转移性的癌细胞中,PABPC1的表达水平都出现了异常上[66,67,68]. 如Zhu[66]发现上调的PABPC1通过抑制胃癌细胞中miR-34c的表达而发挥致癌作用;Zhang[67]的研究表明在肝细胞癌中过量表达的PABPC1与胞质中的AGO2相互作用,导致mRNA向RISC的募集增加并提高miRNA的抑制效率,导致一些抑癌基因被抑制;而Takashima[69]则发现PABPC1的水平下调可能会促进肿瘤生长,导致患者的生存期更短;Dizin[70]则认为在乳腺癌中,PABPC1与BRCA1的结合可能发挥其抑癌功能(表1).

    表1 PABPC1在不同肿瘤细胞中的表达

    Table1 Expression of PABPC1 in different cancer cells

    表达水平作用因子作为生物标志物

    参考

    文献

    胃癌升高miR-34c推荐[66]
    肝细胞癌升高AGO2推荐[67]
    转移性十二指肠癌症升高-推荐[68]
    食管癌降低-推荐[69]
    乳腺癌-BRCA1-[70]
  • 5 小结与展望

    近年来,随着对PABPC1研究的深入,其参与调控的复杂机制也越来越受到关注. 一方面由于PABPC1结构的特殊性与多元性,使得它能够与多种分子相互结合并发挥不同的作用. 因此PABPC1的功能不仅包括mRNA翻译与稳定性,还参与到mRNA的转运与降解、mircoRNA的相关调控等. 另一方面,PABPC1也展现出自身调控的复杂性以及在某些功能中的双面性,未来对PABPC1的作用机制还有待进一步地深入研究. 另外,因为与蛋白质的合成密切相关,除了发现PABPC1在生殖细胞中具有重要作用,人们也开始发现它与心脏肥大、肿瘤细胞增殖之间的关联,并且有学者发现了PABPC1在肝、胰腺、胸腺等体细胞中表[71],可见PABPC1在其他组织或细胞中的作用还有待研究. 除此之外,虽然PABPC1是目前研究最多的一类细胞质PABP,但家族中其他细胞质成员的作用也日趋显著,如人体中还包括了PABPC3、PABPC4、PABPC4L,这些同系物如何作用,是否会引起功能过剩等问题还有待考察.

    尽管到目前为止已经出现很多关于PABPC1的研究,但PABPC1在细胞中许多方面的功能仍然是模糊不清的,特别是与心脏肥大之间的关系. 2017年Chorghade[24]研究发现,特异性上调心肌细胞中PABPC1的含量能够诱导蛋白质合成增加及生理性的心肌肥大,而耐力运动或高血压诱导的不同类型的心肌肥大中是PABPC1通过调控自身mRNA poly(A)尾巴长度完成的,但仍存在一些亟待解决的问题:a. 不同运动强度诱导的心脏肥大模型中PABPC1的调控机制是否一致?b. 存在心脏重塑、纤维化等差异的生理性和病理性的心脏肥大中,PABPC1的蛋白质表达趋势、mRNA poly(A)尾巴长度等特征一致,PABPC1是否也在心肌成纤维细胞或血管内皮细胞中发挥功能导致病理性心脏肥大?c. 作为蛋白质合成的调节者,PABPC1可能影响心脏的某一信号通路蛋白导致心脏肥大的类型不同?

    鉴于PABPC1在心脏、肿瘤细胞的生物学作用,PABPC1可能是一种潜在的靶向治疗手段,但目前还需要对其有更进一步的认识. 随着细胞研究技术的不断进步,未来的研究仍需要集中在PABPC1如何参与mRNA的翻译和/或降解的问题上,以明确PABPC1在调节基因表达及其他生物过程中发挥的作用.

    Tel: 86-591-87981730,E-mail:guoxinni@fjmu.edu.cn

  • 参 考 文 献

    • 1

      Kuhn U, Wahle E. Structure and function of poly(A) binding proteins. Biochim Biophys Acta, 2004, 1678(2-3): 67-84

    • 2

      Goss D J, Kleiman F E. Poly(A) binding proteins: are they all created equal? Wiley Interdiscip Rev RNA, 2013, 4(2): 167-179

    • 3

      Deo R C, Bonanno J B, Sonenberg N, et al. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell, 1999, 98(6): 835-845

    • 4

      Kuhn U, Pieler T. Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J Mol Biol, 1996, 256(1): 20-30

    • 5

      Baer B W, Kornberg R D. The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J Cell Biol, 1983, 96(3): 717-721

    • 6

      Gray N K, Coller J M, Dickson K S, et al. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J, 2000, 19(17): 4723-4733

    • 7

      Sladic R T, Lagnado C A, Bagley C J, et al. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur J Biochem, 2004, 271(2): 450-457

    • 8

      Kozlov G, Trempe J F, Khaleghpour K, et al. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc Natl Acad Sci U S A, 2001, 98(8): 4409-4413

    • 9

      Derry M C, Yanagiya A, Martineau Y, et al. Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol, 2006, 71: 537-543

    • 10

      Kozlov G, Menade M, Rosenauer A, et al. Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. J Mol Biol, 2010, 397(2): 397-407

    • 11

      Siddiqui N, Mangus D A, Chang T C, et al. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J Biol Chem, 2007, 282(34): 25067-25075

    • 12

      Ma S, Bhattacharjee R B, Bag J. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J, 2009, 276(2): 552-570

    • 13

      Burgess H M, Richardson W A, Anderson R C, et al. Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs. J Cell Sci, 2011, 124(19): 3344-3355

    • 14

      Mure F, Panthu B, Zanella-Cleon I, et al. Epstein-Barr virus protein EB2 stimulates translation initiation of mRNAs through direct interactions with both poly(A)-binding protein and eukaryotic initiation factor 4G. J Virol, 2018, 92(3): e01917-17

    • 15

      Kini H K, Silverman I M, Ji X J, et al. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. Rna, 2016, 22(1): 61-74

    • 16

      Hornstein E, Harel H, Levy G, et al. Overexpression of poly(A)-binding protein down-regulates the translation or the abundance of its own mRNA. FEBS Lett, 1999, 457(2): 209-213

    • 17

      Patel G P, Ma S H, Bag J. The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res, 2005, 33(22): 7074-7089

    • 18

      Bag J. Feedback inhibition of poly(A)-binding protein mRNA translation-A possible mechanism of translation arrest by stalled 40 S ribosomal subunits. J Biol Chem, 2001, 276(50): 47352-47360

    • 19

      Patel G P, Bag J. IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KHIII-IV domain. Febs J, 2006, 273(24): 5678-5690

    • 20

      Hornstein E, Git A, Braunstein I, et al. The expression of poly(A)-binding protein gene is translationally regulated in a growth-dependent fashion through a 5'-terminal oligopyrimidine tract motif. J Biol Chem, 1999, 274(3): 1708-1714

    • 21

      Patursky-Polischuk I, Kasir J, Miloslavski R, et al. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs. Plos One, 2014, 9(10): e109410

    • 22

      Fonseca B D, Zakaria C, Jia J J, et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J Biol Chem, 2015, 290(26): 15996-16020

    • 23

      Burgess H M, Gray N K. mRNA-specific regulation of translation by poly(A)-binding proteins. Biochem Soc Trans, 2010, 38(6): 1517-1522

    • 24

      Chorghade S, Seimetz J, Emmons R, et al. Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. eLife, 2017, 6: e24139.

    • 25

      Kuhn U, Gundel M, Knoth A, et al. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem, 2009, 284(34): 22803-22814

    • 26

      Hosoda N, Lejeune F, Maquat L E. Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. Mol Cell Biol, 2006, 26(8): 3085-3097

    • 27

      Burgess H M, Gray N K. An integrated model for the nucleo-cytoplasmic transport of cytoplasmic poly(A)-binding proteins. Commun Integr Biol, 2012, 5(3): 243-247

    • 28

      Gray N K, Hrabalkova L, Scanlon J P, et al. Poly(A)-binding proteins and mRNA localization: who rules the roost? Biochem Soc Trans, 2015, 43(6): 1277-1284

    • 29

      Kisselev L, Ehrenberg M, Frolova L. Termination of translation: interplay of mRNA, rRNAs and release factors? Embo J, 2003, 22(2): 175-182

    • 30

      Ivanov A, Mikhailova T, Eliseev B, et al. PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res, 2016, 44(16): 7766-7776

    • 31

      Brook M, Gray N K. The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem Soc Trans, 2012, 40(4): 856-864

    • 32

      Sonenberg N, Hinnebusch A G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 2009, 136(4): 731-745

    • 33

      Thakor N, Smith M D, Roberts L, et al. Cellular mRNA recruits the ribosome via eIF3-PABP bridge to initiate internal translation. RNA Biol, 2017, 14(5): 553-567

    • 34

      Smith R W P, Anderson R C, Larralde O, et al. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc Natl Acad Sci U S A, 2017, 114(24): 6310-6315

    • 35

      Li J H, He Y P, Wang W D, et al. Polyamine-mediated stoichiometric assembly of ribonucleoproteins for enhanced mRNA delivery. Angew Chem-Int Edit, 2017, 56(44): 13709-13712

    • 36

      Eliseeva I A, Lyabin D N, Ovchinnikov L P. Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochem-Moscow, 2013, 78(13): 1377-1391

    • 37

      Yi H, Park J, Ha M, et al. PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol Cell, 2018, 70(6): 1081-1088

    • 38

      Webster M W, Chen Y H, Stowell J a W, et al. mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4-Not nucleases. Mol Cell, 2018, 70(6): 1089-1100

    • 39

      Wahle E, Winkler G S. RNA decay machines: deadenylation by the Ccr4-Not and Pan2-Pan3 complexes. Biochim Biophys Acta-Gene Regul Mech, 2013, 1829(6-7): 561-570

    • 40

      Niedzwiecka A, Nilsson P, Worch R, et al. Molecular recognition of mRNA 5' cap by 3' poly(A)-specific ribonuclease (PARN) differs from interactions known for other cap-binding proteins. BBA-Proteins Proteomics, 2016, 1864(4): 331-345

    • 41

      Schweingruber C, Rufener S C, Zund D, et al. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta-Gene Regul Mech, 2013, 1829(6-7): 612-623

    • 42

      Kurosaki T, Maquat L E. Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci, 2016, 129(3): 461-467

    • 43

      Fatscher T, Boehm V, Weiche B, et al. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA-Publ RNA Soc, 2014, 20(10): 1579-1592

    • 44

      Fatscher T, Boehm V, Gehring N H. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci, 2015, 72(23): 4523-4544

    • 45

      Fatscher T, Gehring N H. Harnessing short poly(A)-binding protein-interacting peptides for the suppression of nonsense-mediated mRNA decay. Sci Rep, 2016, 6: 37311

    • 46

      Jonas S, Izaurralde E. NON-CODING RNA towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 2015, 16(7): 421-433

    • 47

      Huntzinger E, Kuzuoglu-Ozturk D, Braun J E, et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res, 2013, 41(2): 978-994

    • 48

      Zekri L, Huntzinger E, Heimstadt S, et al. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol, 2009, 29(23): 6220-6231

    • 49

      Huntzinger E, Braun J E, Heimstadt S, et al. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. Embo J, 2010, 29(24): 4146-4160

    • 50

      Braun J E, Huntzinger E, Izaurralde E. The role of GW182 proteins in miRNA-mediated gene silencing [M]//CHAN E K L, FRITZLER M J. Ten Years of Progress in Gw/P Body Research. New York; Springer. 2013: 147-163

    • 51

      Zekri L, Kuzuoglu-Ozturk D, Izaurralde E. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. Embo J, 2013, 32(7): 1052-1065

    • 52

      Mauri M, Kirchner M, Aharoni R, et al. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Res, 2017, 45(2): 938-950

    • 53

      Moretti F, Kaiser C, Zdanowicz-Specht A, et al. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol, 2012, 19(6): 603-608

    • 54

      Fabian M R, Mathonnet G, Sundermeier T, et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell, 2009, 35(6): 868-880

    • 55

      Rissland O S, Subtelny A O, Wang M, et al. The influence of microRNAs and poly(A) tail length on endogenous mRNA-protein complexes. Genome Biol, 2017, 18(1): 211

    • 56

      Wakiyama M, Ogami K, Iwaoka R, et al. MicroRNP-mediated translational activation of nonadenylated mRNAs in a mammalian cell-free system. Genes Cells, 2018, 23(5): 332-344

    • 57

      Ozturk S, Uysal F. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Reprod Fertil Dev, 2017, 29(10): 1890-1901

    • 58

      Ozturk S, Sozen B, Demir N. Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries. J Assist Reprod Genet, 2015, 32(1): 137-146

    • 59

      Uysal F, Ozturk S. Embryonic poly(A)-binding protein is differently expressed and interacts with the messenger RNAs in the mouse oocytes and early embryos. J Cell Biochem, 2019, 120(3): 4694-4709

    • 60

      Gorgoni B, Richardson W A, Burgess H M, et al. Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proc Natl Acad Sci U S A, 2011, 108(19): 7844-7849

    • 61

      Kimura M, Ishida K, Kashiwabara S I, et al. Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol Reprod, 2009, 80(3): 545-554

    • 62

      Wu Y Y, Xu K B, Qi H Y. Domain-functional analyses of PIWIL1 and PABPC1 indicate their synergistic roles in protein translation via 3'-UTRs of meiotic mRNAs. Biol Reprod, 2018, 99(4): 773-788

    • 63

      Ozturk S, Uysal F. Potential roles of the poly(A)-binding proteins in translational regulation during spermatogenesis. J Reprod Dev, 2018, 64(4): 289-296

    • 64

      Ozturk S, Sozen B, Uysal F, et al. The poly(A)-binding protein genes, EPAB, PABPC1, and PABPC3 are differentially expressed in infertile men with non-obstructive azoospermia. J Assist Reprod Genet, 2016, 33(3): 335-348

    • 65

      Verlaet M, Deregowski V, Denis G, et al. Genetic imbalances in preleukemic thymuses. Biochem Biophys Res Commun, 2001, 283(1): 12-18

    • 66

      Zhu J, Ding H, Wang X H, et al. PABPC1 exerts carcinogenesis in gastric carcinoma by targeting miR-34c. Int J Clin Exp Pathol, 2015, 8(4): 3794-3802

    • 67

      Zhang H, Sheng C, Yin Y J, et al. PABPC1 interacts with AGO2 and is responsible for the microRNA mediated gene silencing in high grade hepatocellular carcinoma. Cancer Lett, 2015, 367(1): 49-57

    • 68

      Ohshima K, Kanto K, Hatakeyama K, et al. Exosome-mediated extracellular release of polyadenylate-binding protein 1 in human metastatic duodenal cancer cells. Proteomics, 2014, 14(20): 2297-2306

    • 69

      Takashima N, Ishiguro H, Kuwabara Y, et al. Expression and prognostic roles of PABPC1 in esophageal cancer: correlation with tumor progression and postoperative survival. Oncol Rep, 2006, 15(3): 667-671

    • 70

      Dizin E, Gressier C, Magnard C, et al. BRCA1 interacts with poly(A)-binding protein - Implication of BRCA1 in translation regulation. J Biol Chem, 2006, 281(34): 24236-24246

    • 71

      Guzeloglu-Kayisli O, Pauli S, Demir H, et al. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod, 2008, 14(10): 581-588

颜志鹏

机 构:福建医科大学附属第一医院康复科,福州 350005

Affiliation:Department of Rehabilitation, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China

曾妮

机 构:福建医科大学附属第一医院康复科,福州 350005

Affiliation:Department of Rehabilitation, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China

吴頔

机 构:福建医科大学附属第一医院康复科,福州 350005

Affiliation:Department of Rehabilitation, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China

倪国新

机 构:福建医科大学附属第一医院康复科,福州 350005

Affiliation:Department of Rehabilitation, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China

角 色:通讯作者

Role:Corresponding author

Profile:

html/pibbcn/20180253/alternativeImage/19f52936-2221-4688-ab6d-90b13c1a3545-F001.png
html/pibbcn/20180253/alternativeImage/19f52936-2221-4688-ab6d-90b13c1a3545-F002.png
html/pibbcn/20180253/alternativeImage/19f52936-2221-4688-ab6d-90b13c1a3545-F003.png
表达水平作用因子作为生物标志物

参考

文献

胃癌升高miR-34c推荐[66]
肝细胞癌升高AGO2推荐[67]
转移性十二指肠癌症升高-推荐[68]
食管癌降低-推荐[69]
乳腺癌-BRCA1-[70]

图1 PABPC1与mRNA的多聚腺苷酸化/脱腺苷酸化

Fig. 1 PABPC1 and polyadenylation/deadenylation of mRNA

图2 PABPC1与mRNA的翻译

Fig. 2 PABPC1 and translation of mRNA

图3 PABPC1与mRNA的降解

Fig. 3 PABPC1 and degradation of mRNA

表1 PABPC1在不同肿瘤细胞中的表达

Table1 Expression of PABPC1 in different cancer cells

image /

(a)PABPC1“穿梭”于细胞核的整合模式,包括了α输入蛋白的依赖性入核、mRNA的依赖性出核及与其他蛋白质结合的mRNA非依赖性出核方式. (b)PABPC1与eRF3相互作用促进mRNA poly(A)尾巴的脱腺苷酸化. ①核糖体未到达UAG,eRF3与PABPC1结合催化PABPC1脱落;②核糖体到达UAG与eRF1结合,eRF1结合eRF3间接诱导PABPC1脱落.

(a)PABPC1与eIF4E、eIF3、eIF4G、eIF4A等结合募集40 S核糖体,将mRNA的帽尾连接成“闭环”结构. (b)凋亡抑制蛋白的mRNA利用IRES介导翻译,其中eIF3复合体可能通过PAIP1与PABPC1结合诱导40 S核糖体的募集.

(a)①PABPC1结合TOB募集CNOT;②PABPC1结合PAN2-PAN3都能促进mRNA脱腺苷酸化,触发降解. (b)PABPC1与UPF1竞争性地结合eRF3,抑制NMD;mRNA 3’UTR长度过长,UPF1结合eRF3,激活NMD. (c)PABPC1参与microRNA介导的翻译抑制:①GW182募集RISC并诱导CCR4-NOT复合物的结合,减弱PABPC1与eIF4G的结合;②PABPC1刺激RISC与靶mRNA结合,RISC刺激PABPC1脱落; ③RISC影响mRNP复合物的组装,随后募集DDX6与CCR4-NOT复合物,最终触发降解.

无注解

  • 参 考 文 献

    • 1

      Kuhn U, Wahle E. Structure and function of poly(A) binding proteins. Biochim Biophys Acta, 2004, 1678(2-3): 67-84

    • 2

      Goss D J, Kleiman F E. Poly(A) binding proteins: are they all created equal? Wiley Interdiscip Rev RNA, 2013, 4(2): 167-179

    • 3

      Deo R C, Bonanno J B, Sonenberg N, et al. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell, 1999, 98(6): 835-845

    • 4

      Kuhn U, Pieler T. Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J Mol Biol, 1996, 256(1): 20-30

    • 5

      Baer B W, Kornberg R D. The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J Cell Biol, 1983, 96(3): 717-721

    • 6

      Gray N K, Coller J M, Dickson K S, et al. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J, 2000, 19(17): 4723-4733

    • 7

      Sladic R T, Lagnado C A, Bagley C J, et al. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur J Biochem, 2004, 271(2): 450-457

    • 8

      Kozlov G, Trempe J F, Khaleghpour K, et al. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc Natl Acad Sci U S A, 2001, 98(8): 4409-4413

    • 9

      Derry M C, Yanagiya A, Martineau Y, et al. Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol, 2006, 71: 537-543

    • 10

      Kozlov G, Menade M, Rosenauer A, et al. Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. J Mol Biol, 2010, 397(2): 397-407

    • 11

      Siddiqui N, Mangus D A, Chang T C, et al. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J Biol Chem, 2007, 282(34): 25067-25075

    • 12

      Ma S, Bhattacharjee R B, Bag J. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J, 2009, 276(2): 552-570

    • 13

      Burgess H M, Richardson W A, Anderson R C, et al. Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs. J Cell Sci, 2011, 124(19): 3344-3355

    • 14

      Mure F, Panthu B, Zanella-Cleon I, et al. Epstein-Barr virus protein EB2 stimulates translation initiation of mRNAs through direct interactions with both poly(A)-binding protein and eukaryotic initiation factor 4G. J Virol, 2018, 92(3): e01917-17

    • 15

      Kini H K, Silverman I M, Ji X J, et al. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. Rna, 2016, 22(1): 61-74

    • 16

      Hornstein E, Harel H, Levy G, et al. Overexpression of poly(A)-binding protein down-regulates the translation or the abundance of its own mRNA. FEBS Lett, 1999, 457(2): 209-213

    • 17

      Patel G P, Ma S H, Bag J. The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res, 2005, 33(22): 7074-7089

    • 18

      Bag J. Feedback inhibition of poly(A)-binding protein mRNA translation-A possible mechanism of translation arrest by stalled 40 S ribosomal subunits. J Biol Chem, 2001, 276(50): 47352-47360

    • 19

      Patel G P, Bag J. IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KHIII-IV domain. Febs J, 2006, 273(24): 5678-5690

    • 20

      Hornstein E, Git A, Braunstein I, et al. The expression of poly(A)-binding protein gene is translationally regulated in a growth-dependent fashion through a 5'-terminal oligopyrimidine tract motif. J Biol Chem, 1999, 274(3): 1708-1714

    • 21

      Patursky-Polischuk I, Kasir J, Miloslavski R, et al. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs. Plos One, 2014, 9(10): e109410

    • 22

      Fonseca B D, Zakaria C, Jia J J, et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J Biol Chem, 2015, 290(26): 15996-16020

    • 23

      Burgess H M, Gray N K. mRNA-specific regulation of translation by poly(A)-binding proteins. Biochem Soc Trans, 2010, 38(6): 1517-1522

    • 24

      Chorghade S, Seimetz J, Emmons R, et al. Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. eLife, 2017, 6: e24139.

    • 25

      Kuhn U, Gundel M, Knoth A, et al. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem, 2009, 284(34): 22803-22814

    • 26

      Hosoda N, Lejeune F, Maquat L E. Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. Mol Cell Biol, 2006, 26(8): 3085-3097

    • 27

      Burgess H M, Gray N K. An integrated model for the nucleo-cytoplasmic transport of cytoplasmic poly(A)-binding proteins. Commun Integr Biol, 2012, 5(3): 243-247

    • 28

      Gray N K, Hrabalkova L, Scanlon J P, et al. Poly(A)-binding proteins and mRNA localization: who rules the roost? Biochem Soc Trans, 2015, 43(6): 1277-1284

    • 29

      Kisselev L, Ehrenberg M, Frolova L. Termination of translation: interplay of mRNA, rRNAs and release factors? Embo J, 2003, 22(2): 175-182

    • 30

      Ivanov A, Mikhailova T, Eliseev B, et al. PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res, 2016, 44(16): 7766-7776

    • 31

      Brook M, Gray N K. The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem Soc Trans, 2012, 40(4): 856-864

    • 32

      Sonenberg N, Hinnebusch A G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 2009, 136(4): 731-745

    • 33

      Thakor N, Smith M D, Roberts L, et al. Cellular mRNA recruits the ribosome via eIF3-PABP bridge to initiate internal translation. RNA Biol, 2017, 14(5): 553-567

    • 34

      Smith R W P, Anderson R C, Larralde O, et al. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc Natl Acad Sci U S A, 2017, 114(24): 6310-6315

    • 35

      Li J H, He Y P, Wang W D, et al. Polyamine-mediated stoichiometric assembly of ribonucleoproteins for enhanced mRNA delivery. Angew Chem-Int Edit, 2017, 56(44): 13709-13712

    • 36

      Eliseeva I A, Lyabin D N, Ovchinnikov L P. Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochem-Moscow, 2013, 78(13): 1377-1391

    • 37

      Yi H, Park J, Ha M, et al. PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol Cell, 2018, 70(6): 1081-1088

    • 38

      Webster M W, Chen Y H, Stowell J a W, et al. mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4-Not nucleases. Mol Cell, 2018, 70(6): 1089-1100

    • 39

      Wahle E, Winkler G S. RNA decay machines: deadenylation by the Ccr4-Not and Pan2-Pan3 complexes. Biochim Biophys Acta-Gene Regul Mech, 2013, 1829(6-7): 561-570

    • 40

      Niedzwiecka A, Nilsson P, Worch R, et al. Molecular recognition of mRNA 5' cap by 3' poly(A)-specific ribonuclease (PARN) differs from interactions known for other cap-binding proteins. BBA-Proteins Proteomics, 2016, 1864(4): 331-345

    • 41

      Schweingruber C, Rufener S C, Zund D, et al. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta-Gene Regul Mech, 2013, 1829(6-7): 612-623

    • 42

      Kurosaki T, Maquat L E. Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci, 2016, 129(3): 461-467

    • 43

      Fatscher T, Boehm V, Weiche B, et al. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA-Publ RNA Soc, 2014, 20(10): 1579-1592

    • 44

      Fatscher T, Boehm V, Gehring N H. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci, 2015, 72(23): 4523-4544

    • 45

      Fatscher T, Gehring N H. Harnessing short poly(A)-binding protein-interacting peptides for the suppression of nonsense-mediated mRNA decay. Sci Rep, 2016, 6: 37311

    • 46

      Jonas S, Izaurralde E. NON-CODING RNA towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 2015, 16(7): 421-433

    • 47

      Huntzinger E, Kuzuoglu-Ozturk D, Braun J E, et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res, 2013, 41(2): 978-994

    • 48

      Zekri L, Huntzinger E, Heimstadt S, et al. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol, 2009, 29(23): 6220-6231

    • 49

      Huntzinger E, Braun J E, Heimstadt S, et al. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. Embo J, 2010, 29(24): 4146-4160

    • 50

      Braun J E, Huntzinger E, Izaurralde E. The role of GW182 proteins in miRNA-mediated gene silencing [M]//CHAN E K L, FRITZLER M J. Ten Years of Progress in Gw/P Body Research. New York; Springer. 2013: 147-163

    • 51

      Zekri L, Kuzuoglu-Ozturk D, Izaurralde E. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. Embo J, 2013, 32(7): 1052-1065

    • 52

      Mauri M, Kirchner M, Aharoni R, et al. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Res, 2017, 45(2): 938-950

    • 53

      Moretti F, Kaiser C, Zdanowicz-Specht A, et al. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol, 2012, 19(6): 603-608

    • 54

      Fabian M R, Mathonnet G, Sundermeier T, et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell, 2009, 35(6): 868-880

    • 55

      Rissland O S, Subtelny A O, Wang M, et al. The influence of microRNAs and poly(A) tail length on endogenous mRNA-protein complexes. Genome Biol, 2017, 18(1): 211

    • 56

      Wakiyama M, Ogami K, Iwaoka R, et al. MicroRNP-mediated translational activation of nonadenylated mRNAs in a mammalian cell-free system. Genes Cells, 2018, 23(5): 332-344

    • 57

      Ozturk S, Uysal F. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Reprod Fertil Dev, 2017, 29(10): 1890-1901

    • 58

      Ozturk S, Sozen B, Demir N. Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries. J Assist Reprod Genet, 2015, 32(1): 137-146

    • 59

      Uysal F, Ozturk S. Embryonic poly(A)-binding protein is differently expressed and interacts with the messenger RNAs in the mouse oocytes and early embryos. J Cell Biochem, 2019, 120(3): 4694-4709

    • 60

      Gorgoni B, Richardson W A, Burgess H M, et al. Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proc Natl Acad Sci U S A, 2011, 108(19): 7844-7849

    • 61

      Kimura M, Ishida K, Kashiwabara S I, et al. Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol Reprod, 2009, 80(3): 545-554

    • 62

      Wu Y Y, Xu K B, Qi H Y. Domain-functional analyses of PIWIL1 and PABPC1 indicate their synergistic roles in protein translation via 3'-UTRs of meiotic mRNAs. Biol Reprod, 2018, 99(4): 773-788

    • 63

      Ozturk S, Uysal F. Potential roles of the poly(A)-binding proteins in translational regulation during spermatogenesis. J Reprod Dev, 2018, 64(4): 289-296

    • 64

      Ozturk S, Sozen B, Uysal F, et al. The poly(A)-binding protein genes, EPAB, PABPC1, and PABPC3 are differentially expressed in infertile men with non-obstructive azoospermia. J Assist Reprod Genet, 2016, 33(3): 335-348

    • 65

      Verlaet M, Deregowski V, Denis G, et al. Genetic imbalances in preleukemic thymuses. Biochem Biophys Res Commun, 2001, 283(1): 12-18

    • 66

      Zhu J, Ding H, Wang X H, et al. PABPC1 exerts carcinogenesis in gastric carcinoma by targeting miR-34c. Int J Clin Exp Pathol, 2015, 8(4): 3794-3802

    • 67

      Zhang H, Sheng C, Yin Y J, et al. PABPC1 interacts with AGO2 and is responsible for the microRNA mediated gene silencing in high grade hepatocellular carcinoma. Cancer Lett, 2015, 367(1): 49-57

    • 68

      Ohshima K, Kanto K, Hatakeyama K, et al. Exosome-mediated extracellular release of polyadenylate-binding protein 1 in human metastatic duodenal cancer cells. Proteomics, 2014, 14(20): 2297-2306

    • 69

      Takashima N, Ishiguro H, Kuwabara Y, et al. Expression and prognostic roles of PABPC1 in esophageal cancer: correlation with tumor progression and postoperative survival. Oncol Rep, 2006, 15(3): 667-671

    • 70

      Dizin E, Gressier C, Magnard C, et al. BRCA1 interacts with poly(A)-binding protein - Implication of BRCA1 in translation regulation. J Biol Chem, 2006, 281(34): 24236-24246

    • 71

      Guzeloglu-Kayisli O, Pauli S, Demir H, et al. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod, 2008, 14(10): 581-588