en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
OkaY, SatoT N. Whole-mount single molecule FISH method for zebrafish embryo. Scientific Reports, 2015, 5: 8571
参考文献 2
GibsonT M, GersbachC A. Single-molecule analysis of myocyte differentiation reveals bimodal lineage commitment. Integrative Biology : Quantitative Biosciences from Nano to Macro, 2015, 7(6): 663-671
参考文献 3
ChouY Y, HeatonN S, GaoQ, et al. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. Plos Pathogens, 2013, 9(5): e1003358
参考文献 4
SingerZ S, YongJ, TischlerJ, et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Molecular Cell, 2014, 55(2): 319-331
参考文献 5
SinsimerK S, LeeJ J, ThibergeS Y, et al. Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Reports, 2013, 5(5): 1169-1177
参考文献 6
ArraianoC M, MaquatL E. Post-transcriptional control of gene expression: effectors of mRNA decay. Molecular Microbiology, 2003, 49(1): 267-276
参考文献 7
RegnierP, ArraianoC. Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays, 2000, 22(3): 235-244
参考文献 8
TeppeiM, KimikaM, HirojiA. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes & Development, 2006, 19(18): 2176-2186
参考文献 9
FeiJ, SinghD, ZhangQ, et al. RNA biochemistry. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science, 2015, 347(6228): 1371-1374
参考文献 10
HourvitzA, GershonE, HenneboldJ D, et al. Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library. Journal of Endocrinology, 2006, 188(3): 531-548
参考文献 11
LiW, ZhangZ, LiuX, et al. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. Journal of Clinical Investigation, 2017, 127(9): 3421-3440
参考文献 12
LubeckE, CaiL. Single cell systems biology by super-resolution imaging and combinatorial labeling. Nature Methods, 2012, 9(7): 743-748
参考文献 13
SkinnerS O, SepulvedaL A, XuH, et al. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat Protoc, 2013, 8(6): 1100-1113
参考文献 14
VanderpoolC K, GottesmanS. Noncoding RNAs at the membrane. Nature Structural & Molecular Biology, 2005, 12(12): 285-286
参考文献 15
TsuiH C, LeungH C, WinklerM E. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Molecular Microbiology, 1994, 13(1): 35-49
参考文献 16
MathewS, ChristianL, FedericoG D L, et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci USA, 2015, 112(32): E4390
参考文献 17
BeckmannB M, ArnoldG, WeberM H W, et al. Northern blot detection of endogenous small RNAs (∼14 nt) in bacterial total RNA extracts. Nucleic Acids Research, 2010, 38(14): 147
参考文献 18
TerryB, KarolM. Analysis of RNA by northern blot hybridization. Current Protocols in Human Genetics / editorial board, Jonathan L Haines [et al], 2001, Appendix3: A.3K.1-A.3K.12
参考文献 19
IramS. Northern hybridization: a proficient method for detection of small RNAs and microRNAs. Methods in Molecular Biology, 2014, 1099: 179-188
参考文献 20
McclureL V, LinY T, SullivanC S. Detection of viral microRNAs by Northern blot analysis. Methods in Molecular Biology, 2011, 721: 153-171
参考文献 21
ChmyrovA, ChmyrovA, KellerJ, et al. Nanoscopy with more than 100,000 'doughnuts'. Nature Methods, 2013, 10(8): 737-740
参考文献 22
ChenX, XiP. Hundred-Thousand light holes push nanoscopy to go parallel. Microscopy Research & Technique, 2015, 78(1): 8-10
参考文献 23
Bi-ChangC, LegantW R, KaiW, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346(6208): 1257998
目录 contents

    摘要

    细菌调节小RNA通常与靶mRNA结合,影响翻译和mRNA降解过程. 了解细菌小RNA的定量和定位信息,将有助于揭示细菌转录后水平的调控机制. 小RNA SgrS通过抑制ptsG mRNA翻译起始,参与细菌磷酸葡萄糖代谢的应激过程. 本研究应用单分子荧光原位杂交(smFISH)方法和超分辨显微技术可视化定位大肠杆菌细胞内小RNA SgrS,并初步验证伴侣分子Hfq蛋白和RNase E降解酶对小RNA SgrS定位的影响. 选取大肠杆菌模式菌MG1655(野生株)、sgrS敲除株(△sgrS)和过表达株(△sgrS-pBAD-SgrS),使用RNA印迹和smFISH方法验证SgrS的过表达. 应用smFISH方法分别在野生菌株、hfq敲除株(△hfq)和rne敲除株(△rne-710)中定位小RNA SgrS和ptsG mRNA,超分辨成像观察. 与野生株相比,△hfq和△rne-710中SgrS主要定位于近膜区域,ptsG mRNA定位于细菌胞浆中,并且这两种RNA拷贝数均极显著增加. 以上结果表明,分别敲除大肠杆菌hfqrne-710基因导致SgrS和ptsG mRNA的表达量增加. smFISH方法和超分辨技术的结合应用为细菌RNA的直观定量和定位提供了高敏感性的检测方法,可用于基因调控的功能研究.

    Abstract

    Bacterial small regulatory RNAs could influence the translation and/or mRNA degradation by binding with target mRNA. It is helpful to reveal the regulatory mechanism of bacterial post-transcriptional level for knowing quantitative and localization information of bacterial small RNA(sRNA). Small RNA SgrS is participated in the stress process of bacterial glucose phosphate metabolism by inhibiting ptsG mRNA translation initiation.In this study, Escherichia coli intracellular sRNA SgrS was located visually by smFISH method and super-resolution microscopy technology, and the effects of chaperone Hfq protein and RNase E degrading enzyme on the localization of sRNA SgrS were verified preliminarily. Over-expression of SgrS in E. coli model strain MG1655 (wild strain), sgrS knockout strain (△sgrS) and over-expression strain (△sgrS-pBAD-SgrS) were validated by Northern blot and smFISH methods. sRNA SgrS and ptsG mRNA were located respectively in the wild-type strain, the hfq knockout strain (△hfq) and the rne knockout strain (△rne-710) by smFISH method. Comparing with the wild-type strain, SgrS was mainly located nearby cell membrane, ptsG mRNA was located in bacterial cytoplasm in △hfq and △rne-710 strains by super-resolution imaging, and the copy numbers of both RNA were significantly increased (P<0.01). These results suggest that the expression levels of SgrS and ptsG mRNA were increased significantly in hfq knockout E. coli and rne-710 knockout E. coli. Integrated application of smFISH method and super-resolution technology found a highly sensitive detection method for the intuitive quantification and localization of bacterial RNA, which can be used for the research of gene regulation functional.

    非编码sRNA转录在细胞功能、分化和疾病形成等进程中扮演着重要角色,单分子荧光原位杂交(smFISH)通过细胞内转录的定位可以反映正常与疾病状态细胞表达水平的变化,这些信息对理解基因调控机制非常重[1,2]. Chou[3]使用smFISH方法以不同荧光共定位流感病毒出芽前胞质中RNA,揭示流感病毒感染周期中的时空传播规律. Singer[4]研究胚胎干细胞的DNA甲基化的动态异质性,用单分子RNA FISH方法定量分析单个胚胎干细胞基因表达以及随着时间推移呈现的动态变化,从而证明DNA甲基化在维持相对稳定状态所起的关键作用. Sinsimer[5]用smFISH方法检测果蝇发育成熟的卵母细胞中的内源mRNA,先用荧光探针定位遗传物质,再通过测定每一个探针的荧光强度定量遗传物质.

    SgrS是一个大小为227 nt的反式作用细菌非编码小RNA. 在葡萄糖磷酸化的压力下被SgrS激活表达出来,因此其在葡萄糖代谢中发挥重要的调控功能. SgrS由两套独立的机制来发挥调控功能:第一,不完全互补配对结合靶mRNA. 这种作用机制依赖于RNA分子伴侣Hfq、SgrS与靶基因ptsG mRNA的5'非翻译区结合. ptsG是大肠杆菌中磷酸转移酶系统(phosphoenolpyruvate phosphotransferase system)中编码EIICBGlc组分的葡萄糖转运蛋白基因. 当细胞中存在葡萄糖磷酸化的压力时,SgrS被转录出来,与靶mRNA配对后形成的复合体被RNase E降解复合体所降解,这直接抑制了ptsG的翻译,停止了葡萄糖转运蛋白的合成. 第二,SgrS编码一段小肽SgrT. 当这段小肽合成后,能够独立于和靶基因配对单独发挥功能. 这两种作用的功能均为阻止细菌内葡萄糖磷酸化的积累,帮助细菌克服生长抑制.

    Hfq是一种热稳定蛋白质,具有高度的保守性. 细菌Hfq蛋白的N端有一个Sm样结构域,该结构域主要参与RNA的剪切加工. Hfq蛋白的C端结构域主要作用是特异性结合mRNA,并且辅助N端的核心区结合非编码sRNA. Hfq作为sRNA的伴侣分子,起到稳定sRNA和增加sRNA活性与其靶序列配对的作用,最终干扰蛋白质的翻译和mRNA的稳定性. RNase E广泛存在于细菌中,参与RNA成熟以及mRNA降[6,7]. 当sRNA与靶mRNA结合时,内切酶RNase E的活性被激活,将靶mRNA切成小片段,然后在RNA降解体以及其他内切酶的共同作用下,进一步把sRNA同靶mRNA降解[8].

    细菌RNA在生命活动中发挥重要作用,不同时期执行不同功能,亚细胞定位不同. 荧光标记细菌中RNA并通过高分辨率显微镜成像可用来检测RNA的活性和丰度,对我们了解其相关的调控机制、确定生物学功能有非常重要的意义. 本研究应用RNA印迹(Northern blot)和smFISH分别定性定量分析SgrS过表达株的表达情况,开辟新的验证基因表达丰度的方法,同时以smFISH方法在△hfq、rne-710菌株中标记定位SgrS和ptsG mRNA,验证Hfq和RNase E参与糖代谢调控的重要作用.

  • 1 材料与方法

  • 1.1 菌株和试剂

    大肠杆菌(E. coli)野生菌株K-12 MG1655为军事医学科学院生物工程研究所王恒樑老师赠送;敲除菌株△sgrS、△hfq、△rne-710和敲除过表达菌株△sgrS-pBAD-SgrS为实验室保存.

    超纯蒸馏水(无DNAse和RNAse)和SYBR® Gold Nucleic Acid Gel Stain购自Invitrogen;DIG-11-UTP(3.5 mmol/L)、DIG Wash and Block Buffer Set、Hybridization Bags、Anti digoxigenin-AP conjugate和CDP-Star购自Roche;RNA提取试剂盒、RNA胶上样缓冲液、BrightStar-Plus膜、ULTRAhyb超灵敏杂交缓冲液和RNA CenturyTM Marker Templates购自Ambion;RNase抑制剂 购自Promega;DNase Ⅰ、T7 RNA Polymerase (20 000 U/L)和RiboLock核糖核酸酶抑制剂购自Fermentas.

  • 1.2 主要设备

    MODEL 1000型杂交炉(Robbins scientific);Hoefer UVC500交联仪(Hoefer Inc美国);TE77 PWR半干电转移系统(GE美国);GenePixTM Personal 4100A扫描仪(Axon Instruments Inc);N-SIM 超高分辨率显微镜(尼康).

  • 1.3 Northern blot验证SgrS过表达株

  • 1.3.1 RNA探针的制备

    Primer 6.0设计引物,在SgrS下游引物5’端加T7启动子序列:SgrS-NB-F 5’ GCGAAGTTGTGCTGGTTG 3’;SgrS-NB-R 5’ AATTGTAATACGACTCACTATAGGGCGATAATCTGCTGGCGGGTG 3’. 以E. coli MG1655为模板,使用设计的引物扩增探针模板,2%琼脂糖凝胶电泳检测,产物使用QIAquick PCR纯化试剂盒(QIAGEN)纯化,最后用RNase-free水溶解. 以线性DNA为模板,T7聚合酶体外转录同时进行地高辛标记(digoxigenin-11-uridine-5'-triphosphate,Roche)制备RNA探针. NanoDrop 2000测探针纯度和浓度,然后加入0.5 µl 40 U RNase抑制剂,分装后-80°C存放. 探针和等量的RNA胶上样缓冲液混匀后,95℃变性3 min,10%丙烯酰胺凝胶(dPAGE)电泳,SYBR® Gold Nucleic Acid Gel Stain避光染色30 min,凝胶成像检测探针质量.

  • 1.3.2 总RNA的提取

    活化菌液E. coli MG1655、△sgrS-pBAD、 △sgrS-pBAD-SgrS转接第二代至对数期,第三代菌培养A600至大约1.0~1.2,△sgrS-pBAD-SgrS分诱导和不诱导两支试管培养. 使用PureLink™ RNA Mini Kit提取总RNA. 取1 μl RNA样品,3 μl RNase-free水,4 μl甲酰胺,1 μl已稀释的SYBR染料(1×TBE 100倍稀释),以上液体混匀后经1.5%琼脂糖凝胶电泳,根据23 S、16 S、5 S rRNA和tRNA条带的亮度判断RNA的质量. 正常情况下,条带亮度23 S是16 S的2倍左右.

  • 1.3.3 Northern blot验证

    以RNA CenturyTM Marker Templates为模板,经反转录并标记地高辛制备RNA Marker. 根据测得的各样品RNA浓度,调整上样量,变性后加入预热的10%丙烯酰胺凝胶(dPAGE)进行电泳;准备膜和相同大小的6张滤纸,胶略小于膜,按照滤纸-膜-胶-滤纸的顺序依次放于半干电转移系统上,4℃条件下2 000 mA转膜1 h;膜经漂洗后正面朝上放于湿润的滤纸上,转移到交联炉1 200 mJ交联;将膜放于预热的杂交液中68℃预杂交30 min~1 h,然后加入含有终浓度为20~50 μg/L探针的新杂交液68℃杂交过夜;低严谨和高严谨洗液依次洗膜,封闭液室温震荡孵育30 min,抗体溶液室温震荡孵育20 min,加几滴CDP-Star浸透膜,孵育 5 min,暗室内柯达胶片压片、显影并定影,扫描存图.

  • 1.3.4 图片分析

    使用Image J软件处理3次Northern blot结果,数据经GraphPad Prism 5作图分析.

  • 1.4 smFISH和超分辨显微技术的应用

    E. coli MG1655 sRNA SgrS 9条RNA探针由北京六合通经贸有限公司合成并在3′末端标记Alexa Fluor 488,ptsG mRNA 10条探针由合肥国肽生物科技有限公司合成并在3′末端标记Alexa Fluor 647[9]. E. coli MG1655、△sgrS、△sgrS-pBAD-SgrS、△hfq和△rne-710菌液培养至对数生长期后收集沉淀,加4%甲醛溶液室温固定30 min,收集沉淀加入终浓度至70%的乙醇,并室温旋转混合 1 h以上,使细胞膜变得通透. 应用smFISH方法标记不同菌株中RNA,相同设定条件下N-SIM超分辨率显微镜观察定位和表达情况,每株菌采集3张图片,使用NIS-Elements Viewer 4.20和Microsoft Visio 2010软件整理图片,结果经Imaris x64软件进行聚类分析. 分别统计E. coli MG1655和△sgrS-pBAD-SgrS菌株中每个细菌SgrS的拷贝数,并与Northern blot验证结果相比较;观察E. coli MG1655、△hfq和△rne-710三株菌中ptsG mRNA和SgrS定位,统计菌株中每个细菌RNA拷贝数,数据使用GraphPad Prism 5作图,分析敲除株RNA拷贝数变化,确定Hfq和RNase E在大肠杆菌葡萄糖代谢中的重要作用.

  • 2 结果与分析

  • 2.1 Northern blot验证

    PCR扩增制备探针模板,产物经2%琼脂糖凝胶电泳,结果显示180 bp大小的条带,与预期一致(图1a). DNA模板经体外转录并标记地高辛,经变性胶电泳检测,可见RNA探针特异性好、条带单一、总体质量好(图1b). 使用RNA试剂盒提取各株菌的RNA,1.5%琼脂糖凝胶电泳检测RNA的质量(图1c),可以观察到清晰完整的23 S rRNA和16 S rRNA两条带,从条带的亮度可以看出, 23 S是16 S rRNA的2倍以上,证明提取的RNA质量好. 分别提取E. coli MG1655、△sgrS-pBAD、△sgrS-pBAD-SgrS未诱导和△sgrS-pBAD-SgrS诱导4株菌的RNA,经变性胶电泳后转印到膜上,使用体外转录制备的SgrS探针进行杂交,探针与RNA中的特异SgrS结合,Northern blot验证过表达情况. 结果显示,导入空载体pBAD的敲除株没有特异条带出现,野生株出现较弱的条带,敲除过表达株在没有L-阿拉伯糖诱导的情况下,不显示目的条带,经诱导的△sgrS-pBAD-SgrS过表达菌株在227 bp位置出现条带(图1d). Northern blot验证3次并扫描存图,用Image J软件分析条带的光密度值,结果显示,过表达株光密度值与野生株相比差异极显著(P<0.01)(图1e).

    Fig. 1 Verification of E. coli MG1655 sRNA SgrS over-expression by Northern blot analysis[10]

    NOTE: (a)Preparation of probe template.(b)Identification of digoxigenin-labeled RNA probe by 10% dPAGE.(c)Assessing the quality of RNA sample by 1.5% agarose gel electrophoresis.(d)Detection of over-expression of the sRNA SgrS by digoxigenin-labeled Northern blot. M:RNA Marker;1:E. coli MG1655;2:△sgrS-pBAD;3:Non-induced strain △sgrS-pBAD-SgrS;4:Induced strain △sgrS-pBAD-SgrS.(e)The results of Northern blot analysis. Error bars represent mean ± SD for triplicate experiments(**P<0.01,1-way ANOVA)[11].

  • 2.2 smFISH定性定量检测SgrS

    E. coli MG1655、△sgrS、△sgrS-pBAD-SgrS三株菌在相同设定条件下N-SIM超分辨率显微镜观察成像,清晰地显示了SgrS在细菌中的分布(图2a). 荧光簇经Imaris x64软件聚类分析,准确再现单个SgrS(图2b). 统计每个细菌SgrS拷贝数经作图分析,可见过表达株的SgrS拷贝数与野生株相比差异极显著(P<0.01)(图2c),此结果与Northern blot验证结果一致. 野生菌株E. coli MG1655经Alexa 555 WGA染色和SgrS空间定位,红色荧光勾勒出细菌形态,SgrS被标记为绿色荧光弥散分布于细菌胞浆中(图2d).

    Fig. 2 N-SIM super-resolution imaging and analysis of SgrS labeled by smFISH[12]

    NOTE: (a)SgrS was detected in E. coli MG1655,△sgrS and △sgrS-pBAD-SgrS under N-SIM super resolution microscopy at the same condition. (b)We calculated the fluorescence intensity by Imaris x64 7.7.2 software.(c)The absolute copy number of SgrS was quantified in individual cell[13]. Error bars represent mean ± SD for triplicate experiments(**P<0.01,1-way ANOVA)[11].(d)SgrS was indicated as green fluorescence granular with diffuse distribution in E. coli MG1655 cytoplasm,while cellular wall images exhibited red fluorescence upon being stained with Alexa-555 WGA.

  • 2.3 ptsG mRNA和SgrS同时定位

    smFISH标记E. coli MG1655、△hfq和△rne-710三株菌RNA经超分辨成像,ptsG mRNA被标记为蓝色,SgrS被标记为绿色,细胞壁被染成红色. 野生株E. coli MG1655中SgrS和ptsG mRNA均定位于胞浆中;敲除株△hfq和△rne-710与野生株相比,SgrS主要定位于细胞膜附近(图3a). RNA荧光簇经聚类分析,形成单个SgrS和ptsG mRNA定位3D模拟图(图3b). 分别统计野生株和敲除株每个细菌中SgrS和ptsG mRNA拷贝数并作图分析,结果可见,敲除株SgrS和ptsG mRNA拷贝数与野生株相比均极显著增多(P<0.01)(图3c).

    SgrS在细菌葡萄糖代谢过程中发挥重要的调控作用,主要是下调葡萄糖的转运,防止磷酸盐类累积导致中毒. 当细菌中糖含量升高时,伴侣分子Hfq促进转录的SgrS与ptsG mRNA结合,进一步招募RNase E降解mRNA阻碍ptsG翻译,阻止了ptsG蛋白合成,从而终止葡萄糖转运. Hfq在SgrS与ptsG mRNA结合中起着重要作用,促进其碱基配对、增加结合效率. 由于菌株缺失了hfq,SgrS与ptsG mRNA分别位于胞膜和胞浆[14]. 另外,与野生株相比,△hfq敲除株细胞形态和大小发生了改[15],Hfq可能具有参与保持细胞形态的作用. △rne-710菌株中,RNase E骨架区失活,降解功能被抑制,SgrS参与近膜区域葡萄糖转运从而被定位. Hfq招募RNase E可形成降解复合体,实现sRNA和mRNA的降解,敲除株无法形成RNase E降解体降解sRNA和mRNA,致使SgrS和ptsG mRNA拷贝数比野生株显著增多.

    Fig. 3 N-SIM super-resolution images of SgrS and ptsG mRNA labeled by smFISH[12]

    NOTE: (a)Super-resolution images of SgrS(green) and ptsG mRNA(blue)in E. coli MG1655,△hfq and △rne-710 strain by smFISH. The cell wall (red) was labeled with Alexa 555 WGA.(b)3D clustering analysis of individual clusters RNAs by density-based clustering algorithm in E. coli MG1655,△hfq and △rne-710 cells[16].(c)The absolute copy number of RNAs was quantified in individual cell[13]. Error bars represent mean ± SD for triplicate experiments(**P<0.01,2-way ANOVA)[11].

    以上结果均表明分别敲除hfqrne-710基因影响了SgrS和ptsG mRNA的表达,证明了Hfq和RNase E是SgrS和ptsG mRNA下调糖转运过程中的关键因[14].

  • 3 讨论

    Northern blot、qPCR、基因芯片等实验均能检测基因的表达,基因芯片可以成批进行操作,适于大样本的检测. Northern blot比较灵敏,最灵敏的是qPCR方法,但是Northern blot通过抗原抗体反应有较好的特异性,因此三种方法中Northern blot方法应用范围更广[17,18]. Northern blot是验证RNA的标准方法,虽然有众多的优点,但是也存在一些不足,比如信号弱、背景高等问题,需要根据不同的基因细化操作步骤,才能达到理想的结[19,20]. 探针及提取RNA的质量直接影响着Northern blot的特异性,在每步操作之后,都经电泳检测. 结果显示探针条带单一,RNA产物符合23 S/16 S的比例,纯度高. 按照常规操作,上样量5 μg,曝光时间 1 min,结果显示条带粗浓,分辨不清,并且杂带较多. 减少曝光时间为10 s,条带仍然难以分辨. 由于过表达基因丰度较高,地高辛标记显影又有信号放大的作用,因此选择减少上样量. 野生株条带较淡,上样量多达10 μg,过表达株上样量为0.5 μg. 本研究使用体外转录的RNA探针,通过提高杂交温度可以增加特异性,因此杂交温度从之前的65℃提高到68℃. 经上述上样量和杂交温度的优化,曝光时间30 s即可达到理想效果.

    smFISH技术有以下优点:荧光探针和试剂安全,并且探针稳定性好,-80℃冰箱可保存一年;操作方便、快速、特异性好,能清晰准确地定位. 应用smFISH方法分别在E. coli MG1655、△sgrS、△sgrS-pBAD-SgrS菌株中定位sRNA SgrS,采集图像观察并使用软件计算荧光值,过表达株的荧光强度与野生株相比差异极显著. 通过使用smFISH技术可视化检测过表达株,采用软件计算每个细菌拷贝数,过表达株SgrS拷贝数比野生株极显著增加;此方法直观地验证了构建的过表达株,统计结果准确可靠,与Northern blot验证的结果一致. 本研究用smFISH技术标记△hfq和△rne-710菌株中SgrS和ptsG mRNA,用于验证Hfq和RNase E参与糖代谢机制过程,为揭示基因的调控机制提供了新思路和方法.

    制备细菌样片时,由于细菌个体较小,观察时很容易流动,造成成像模糊,无法拍照,Skinner[13]报道了用1.5%琼脂糖凝胶垫固定细菌的方法. 琼脂糖凝胶厚度同载玻片,制备盖玻片~2 μl细菌悬液-胶垫-盖玻片的三明治结构. 这种方法优点是利用凝胶垫的黏附性固定细菌,方便观察拍照,缺点是制作琼脂糖凝胶垫操作复杂,费时费力,凝胶垫在4℃最多保存24 h,不能长期保存,这样只能现配现用,当天观察.

    物理学家不断将超分辨向着更清晰的方向努[21,22],显微镜技术得到更大的进步,逐步实现了定位活细胞并动态观察基因的表达水平的变[23]. 无论是观察活细胞还是固定细胞,总的方向都是通过微观的基因变化反映生物体的宏观变化,揭示生物体的致病机理以及基因参与的调节机制.

    * This work was supported by grants from National Basic Research Program of China(2014CB744405) and The Key Research Program of Hebei Province(18236609D).

    ** These authors have contributed equally to this work.

    Tel: 86-10-66948562, E-mail: hypiota@hotmail.com

  • 参 考 文 献

    • 1

      Oka Y, Sato T N. Whole-mount single molecule FISH method for zebrafish embryo. Scientific Reports, 2015, 5: 8571

    • 2

      Gibson T M, Gersbach C A. Single-molecule analysis of myocyte differentiation reveals bimodal lineage commitment. Integrative Biology : Quantitative Biosciences from Nano to Macro, 2015, 7(6): 663-671

    • 3

      Chou Y Y, Heaton N S, Gao Q, et al. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. Plos Pathogens, 2013, 9(5): e1003358

    • 4

      Singer Z S, Yong J, Tischler J, et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Molecular Cell, 2014, 55(2): 319-331

    • 5

      Sinsimer K S, Lee J J, Thiberge S Y, et al. Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Reports, 2013, 5(5): 1169-1177

    • 6

      Arraiano C M, Maquat L E. Post-transcriptional control of gene expression: effectors of mRNA decay. Molecular Microbiology, 2003, 49(1): 267-276

    • 7

      Regnier P, Arraiano C. Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays, 2000, 22(3): 235-244

    • 8

      Teppei M, Kimika M, Hiroji A. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes & Development, 2006, 19(18): 2176-2186

    • 9

      Fei J, Singh D, Zhang Q, et al. RNA biochemistry. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science, 2015, 347(6228): 1371-1374

    • 10

      Hourvitz A, Gershon E, Hennebold J D, et al. Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library. Journal of Endocrinology, 2006, 188(3): 531-548

    • 11

      Li W, Zhang Z, Liu X, et al. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. Journal of Clinical Investigation, 2017, 127(9): 3421-3440

    • 12

      Lubeck E, Cai L. Single cell systems biology by super-resolution imaging and combinatorial labeling. Nature Methods, 2012, 9(7): 743-748

    • 13

      Skinner S O, Sepulveda L A, Xu H, et al. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat Protoc, 2013, 8(6): 1100-1113

    • 14

      Vanderpool C K, Gottesman S. Noncoding RNAs at the membrane. Nature Structural & Molecular Biology, 2005, 12(12): 285-286

    • 15

      Tsui H C, Leung H C, Winkler M E. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Molecular Microbiology, 1994, 13(1): 35-49

    • 16

      Mathew S, Christian L, Federico G D L, et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci USA, 2015, 112(32): E4390

    • 17

      Beckmann B M, Arnold G, Weber M H W, et al. Northern blot detection of endogenous small RNAs (∼14 nt) in bacterial total RNA extracts. Nucleic Acids Research, 2010, 38(14): 147

    • 18

      Terry B, Karol M. Analysis of RNA by northern blot hybridization. Current Protocols in Human Genetics / editorial board, Jonathan L Haines [et al], 2001, Appendix3: A.3K.1-A.3K.12

    • 19

      Iram S. Northern hybridization: a proficient method for detection of small RNAs and microRNAs. Methods in Molecular Biology, 2014, 1099: 179-188

    • 20

      Mcclure L V, Lin Y T, Sullivan C S. Detection of viral microRNAs by Northern blot analysis. Methods in Molecular Biology, 2011, 721: 153-171

    • 21

      Chmyrov A, Chmyrov A, Keller J, et al. Nanoscopy with more than 100,000 'doughnuts'. Nature Methods, 2013, 10(8): 737-740

    • 22

      Chen X, Xi P. Hundred-Thousand light holes push nanoscopy to go parallel. Microscopy Research & Technique, 2015, 78(1): 8-10

    • 23

      Bi-Chang C, Legant W R, Kai W, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346(6208): 1257998

王净

机 构:

1. 河北北方学院动物科技学院,张家口 075131

2. 军事科学院军事医学研究院微生物流行病研究所,北京 100071

Affiliation:

1. College of Animal Science and Technology, Hebei North University, Zhangjiakou 075131, China

2. Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China

阮崇美

机 构:信阳农林学院牧医工程学院,信阳 464000

Affiliation:School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, China

白园园

机 构:河北北方学院动物科技学院,张家口 075131

Affiliation:College of Animal Science and Technology, Hebei North University, Zhangjiakou 075131, China

韩延平

机 构:军事科学院军事医学研究院微生物流行病研究所,北京 100071

Affiliation:Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China

杨瑞馥

机 构:军事科学院军事医学研究院微生物流行病研究所,北京 100071

Affiliation:Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China

html/pibbcn/20180256/alternativeImage/e25826da-64d8-4bfe-9a7b-31b7a38142b8-F001.jpg
html/pibbcn/20180256/alternativeImage/e25826da-64d8-4bfe-9a7b-31b7a38142b8-F002.jpg
html/pibbcn/20180256/alternativeImage/e25826da-64d8-4bfe-9a7b-31b7a38142b8-F003.jpg

Fig. 1 Verification of E. coli MG1655 sRNA SgrS over-expression by Northern blot analysis[10]

Fig. 2 N-SIM super-resolution imaging and analysis of SgrS labeled by smFISH[12]

Fig. 3 N-SIM super-resolution images of SgrS and ptsG mRNA labeled by smFISH[12]

image /

(a)Preparation of probe template.(b)Identification of digoxigenin-labeled RNA probe by 10% dPAGE.(c)Assessing the quality of RNA sample by 1.5% agarose gel electrophoresis.(d)Detection of over-expression of the sRNA SgrS by digoxigenin-labeled Northern blot. M:RNA Marker;1:E. coli MG1655;2:△sgrS-pBAD;3:Non-induced strain △sgrS-pBAD-SgrS;4:Induced strain △sgrS-pBAD-SgrS.(e)The results of Northern blot analysis. Error bars represent mean ± SD for triplicate experiments(**P<0.01,1-way ANOVA)[11].

(a)SgrS was detected in E. coli MG1655,△sgrS and △sgrS-pBAD-SgrS under N-SIM super resolution microscopy at the same condition. (b)We calculated the fluorescence intensity by Imaris x64 7.7.2 software.(c)The absolute copy number of SgrS was quantified in individual cell[13]. Error bars represent mean ± SD for triplicate experiments(**P<0.01,1-way ANOVA)[11].(d)SgrS was indicated as green fluorescence granular with diffuse distribution in E. coli MG1655 cytoplasm,while cellular wall images exhibited red fluorescence upon being stained with Alexa-555 WGA.

(a)Super-resolution images of SgrS(green) and ptsG mRNA(blue)in E. coli MG1655,△hfq and △rne-710 strain by smFISH. The cell wall (red) was labeled with Alexa 555 WGA.(b)3D clustering analysis of individual clusters RNAs by density-based clustering algorithm in E. coli MG1655,△hfq and △rne-710 cells[16].(c)The absolute copy number of RNAs was quantified in individual cell[13]. Error bars represent mean ± SD for triplicate experiments(**P<0.01,2-way ANOVA)[11].

  • 参 考 文 献

    • 1

      Oka Y, Sato T N. Whole-mount single molecule FISH method for zebrafish embryo. Scientific Reports, 2015, 5: 8571

    • 2

      Gibson T M, Gersbach C A. Single-molecule analysis of myocyte differentiation reveals bimodal lineage commitment. Integrative Biology : Quantitative Biosciences from Nano to Macro, 2015, 7(6): 663-671

    • 3

      Chou Y Y, Heaton N S, Gao Q, et al. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. Plos Pathogens, 2013, 9(5): e1003358

    • 4

      Singer Z S, Yong J, Tischler J, et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Molecular Cell, 2014, 55(2): 319-331

    • 5

      Sinsimer K S, Lee J J, Thiberge S Y, et al. Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Reports, 2013, 5(5): 1169-1177

    • 6

      Arraiano C M, Maquat L E. Post-transcriptional control of gene expression: effectors of mRNA decay. Molecular Microbiology, 2003, 49(1): 267-276

    • 7

      Regnier P, Arraiano C. Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays, 2000, 22(3): 235-244

    • 8

      Teppei M, Kimika M, Hiroji A. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes & Development, 2006, 19(18): 2176-2186

    • 9

      Fei J, Singh D, Zhang Q, et al. RNA biochemistry. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science, 2015, 347(6228): 1371-1374

    • 10

      Hourvitz A, Gershon E, Hennebold J D, et al. Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library. Journal of Endocrinology, 2006, 188(3): 531-548

    • 11

      Li W, Zhang Z, Liu X, et al. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. Journal of Clinical Investigation, 2017, 127(9): 3421-3440

    • 12

      Lubeck E, Cai L. Single cell systems biology by super-resolution imaging and combinatorial labeling. Nature Methods, 2012, 9(7): 743-748

    • 13

      Skinner S O, Sepulveda L A, Xu H, et al. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat Protoc, 2013, 8(6): 1100-1113

    • 14

      Vanderpool C K, Gottesman S. Noncoding RNAs at the membrane. Nature Structural & Molecular Biology, 2005, 12(12): 285-286

    • 15

      Tsui H C, Leung H C, Winkler M E. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Molecular Microbiology, 1994, 13(1): 35-49

    • 16

      Mathew S, Christian L, Federico G D L, et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci USA, 2015, 112(32): E4390

    • 17

      Beckmann B M, Arnold G, Weber M H W, et al. Northern blot detection of endogenous small RNAs (∼14 nt) in bacterial total RNA extracts. Nucleic Acids Research, 2010, 38(14): 147

    • 18

      Terry B, Karol M. Analysis of RNA by northern blot hybridization. Current Protocols in Human Genetics / editorial board, Jonathan L Haines [et al], 2001, Appendix3: A.3K.1-A.3K.12

    • 19

      Iram S. Northern hybridization: a proficient method for detection of small RNAs and microRNAs. Methods in Molecular Biology, 2014, 1099: 179-188

    • 20

      Mcclure L V, Lin Y T, Sullivan C S. Detection of viral microRNAs by Northern blot analysis. Methods in Molecular Biology, 2011, 721: 153-171

    • 21

      Chmyrov A, Chmyrov A, Keller J, et al. Nanoscopy with more than 100,000 'doughnuts'. Nature Methods, 2013, 10(8): 737-740

    • 22

      Chen X, Xi P. Hundred-Thousand light holes push nanoscopy to go parallel. Microscopy Research & Technique, 2015, 78(1): 8-10

    • 23

      Bi-Chang C, Legant W R, Kai W, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346(6208): 1257998