en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
AkramM. Mini-review on glycolysis and cancer. J Cancer Educ, 2013, 28(3): 454-457
参考文献 2
HsuC C, TsengL M, LeeH C. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood), 2016, 241(12): 1281-1295
参考文献 3
SrinivasanS, GuhaM, KashinaA, et al. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochim Biophys Acta Bioenerg, 2017, 1858(8): 602-614
参考文献 4
LiuY, HuoY, WangD, et al. MiR-216a-5p/Hexokinase 2 axis regulates uveal melanoma growth through modulation of Warburg effect Biochem Biop Commun 2018, 501(4): 885-892
参考文献 5
DongG, MaoQ, XiaW, et al. PKM2 and cancer: The function of PKM2 beyond glycolysis. Oncol Lett, 2016, 11(3): 1980-1986
参考文献 6
GoldbergM S, SharpP A. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. The Journal of Experimental Medicine, 2012, 209(2): 217-224
参考文献 7
MazurekS. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. The International Journal of Biochemistry & Cell Biology, 2011, 43(7): 969-980
参考文献 8
MathupalaS P, KoY H, PedersenP L. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Seminars in Cancer Biology, 2009, 19(1): 17-24
参考文献 9
Ganapathy-KanniappanS, GeschwindJ F. Tumor glycolysis as a target for cancer therapy: progress and prospects. Molecular Cancer, 2013, 12(1): 152-162
参考文献 10
TavakoliS, D J, DownsK, et al. Differential regulation of macrophage glucose metabolism by macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: implications for 18F FDG PET imaging of vessel wall inflammation. Radiology, 2017, 283(1): 87-97
参考文献 11
WardP S, ThompsonC B. Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol, 2012, 4(7): a006783
参考文献 12
WeiR, MaoL, XuP, et al. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct, 2018, 9(11):5682-5696
参考文献 13
YangL, WuQ, XuL, et al. Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma. BMC Cancer, 2015, 15(1): 67-77
参考文献 14
TamimiR M, BruggeJ S, FreedmanM L, et al. Circulating colony stimulating factor-1 and breast cancer risk. Cancer Res, 2008, 68(1): 18-21
参考文献 15
ElstromR L, BauerD E, BuzzaiM, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res, 2004, 64(11): 3892-3899
参考文献 16
MarracheS, DharS. The energy blocker inside the power house: Mitochondria targeted delivery of 3-bromopyruvate. Chem Sci, 2015, 6(3): 1832-1845
参考文献 17
LiZ, YangP, LiZ. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim Biophys Acta, 2014, 1846(2): 285-296
参考文献 18
LuJ, ChenM, GaoS, et al. LY294002 inhibits the Warburg effect in gastric cancer cells by downregulating pyruvate kinase M2. Oncol Lett, 2018, 15(4): 4358-4364
参考文献 19
ShimuraT, NomaN, SanoY, et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol, 2014, 112(2): 302-307
参考文献 20
TahirS A, YangG, GoltsovA, et al. Caveolin-1-LRP6 signaling module stimulates aerobic glycolysis in prostate cancer. Cancer Res, 2013, 73(6): 1900-1911
参考文献 21
Ganapathy-KanniappanS, ValiM, KunjithapathamR, et al. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol, 2010, 11(5): 510-517
目录 contents

    摘要

    本文探讨巨噬细胞集落刺激因子(M-CSF)对人乳腺癌MCF-7细胞糖代谢的影响及其机制. 构建胞质稳定转染 M-CSF的MCF-7细胞(MCF-7-M);ATP检测试剂盒检测MCF-7和MCF-7-M细胞的ATP生成;葡萄糖测定试剂盒、乳酸测试盒检测MCF-7和MCF-7-M细胞的葡萄糖摄取和乳酸分泌情况;蛋白质印迹法检测在糖酵解抑制剂2-脱氧葡萄糖(2-DG)和氧化磷酸化抑制剂OLIG处理后,M-CSF对MCF-7细胞的糖酵解关键酶:己糖激酶2(HK2)、丙酮酸激酶M2(PKM2)及葡萄糖转运体1(GLUT-1)表达的影响;MTT法检测在ATP消耗剂3-溴丙酮酸(3-BrPA)处理后,MCF-7和MCF-7-M细胞对5-FU敏感性的变化. 结果发现:MCF-7-M细胞的ATP水平显著高于MCF-7细胞(P<0.05);2-DG降低了MCF-7和MCF-7-M细胞的ATP水平,并且降低MCF-7-M细胞ATP的效果更明显(P<0.01);MCF-7-M细胞的糖摄取能力和乳酸分泌量显著高于MCF-7细胞(P<0.01),经API-2处理后,MCF-7和MCF-7-M细胞葡萄糖消耗和乳酸分泌量均显著减少(P<0.01);MCF-7-M细胞GLUT-1、HK2和PKM2的表达显著高于MCF-7细胞(P<0.01);LY294002和API-2均可抑制MCF-7-M细胞GLUT-1的表达(P<0.05);用3-BrPA处理后,MCF-7-M和MCF-7细胞对5-FU的药物敏感性显著增强(P<0.01). 综上,得出

  • 结论

    胞质M-CSF通过诱导GLUT-1、HK2和PKM2的表达,活化MCF-7细胞糖酵解途径;PI3K/AKT信号通路参与胞质M-CSF活化MCF-7细胞的糖酵解途径.

  • Abstract

    To explore the effect and mechanisms of cytoplasmic M-CSF on glucose metabolism in human breast cancer MCF-7 cells, MCF-7 cells stable expressing cytoplasmic M-CSF were constructed. Relative ATP content was measured by ATP assay kit, glucose was measured using glucose assay kit and lactate was measured using lactate acid assay kit. The expression of HK2, PKM2 and GLUT-1 in three kinds of cell with LY294002 or API-2 was detected by West-blotting. The sensitivity of MCF-7 and MCF-7-M cells to 5-FU with the treatment of ATP depletion by 3-BrPA was observed by MTT assay. It was found that the ATP level of MCF-7-M cells was significantly higher than that of MCF-7 cells (P<0.05); 2-DG decreases the ATP level of MCF-7 and MCF-7-M cells, and the effect of lowering the ATP level of MCF-7-M cells is more obvious (P<0.01). The glucose uptake and lactate secretion of MCF-7-M cells were significantly higher than those of MCF-7 cells (P<0.01). After the treatment with API-2, the glucose consumption and lactate secretion of MCF-7 and MCF-7-M cells were significantly reduced (P<0.01). The expressions of GLUT-1, HK2 and PKM2 in MCF-7-M cells were significantly higher than those in MCF-7 cells (P<0.01). Both LY294002 and API-2 inhibited the expression of GLUT-1 in MCF-7-M cells (P<0.05). After the treatment with 3-BrPA, the drug sensitivity of MCF-7-M and MCF-7 cells to 5- FU was significantly enhanced (P<0.01). In conclusion, cytoplasmic M-CSF activates glycolysis by induce GLUT-1, HK2 and PKM2 protein expression in MCF-7 cells; PI3K/AKT signaling involves the pathway that glycolysis was activated by cytoplasmic M-CSF in MCF-7 cells.

    唐圣松. 通信作者:Tel: 0745-2377102, E-mail: tangss111@163.com;

    莫中成. Tel: 0745-2377102, E-mail: zhchmo@hotmail.com

    研究发[1,2,3],肿瘤细胞的糖酵解代谢异常活跃,但其线粒体氧化磷酸化功能减弱. 在肿瘤细胞的糖酵解过程中,葡萄糖转运体(glucose transporter,GLUT)的活性决定了肿瘤细胞对葡萄糖的摄取能力. 己糖激酶2(Hexokinase 2,HK2)是糖酵解的初始和限速步骤,在许多人类癌症中过度表达,与不良的临床预后相[4];丙酮酸激酶M2(pyruvate kinase M2,PKM2)是一种限制糖酵解酶,它催化糖酵解的最后一步,是肿瘤代谢和生长的关[5]. 肿瘤细胞HK2和PKM2的表达决定糖酵解速[6,7,8]. 此外,也可以通过观测葡萄糖摄入量和细胞外乳酸的分泌量来监测肿瘤细胞糖酵解速[9]. 巨噬细胞集落刺激因子(macrophage colony stimulating factor,M-CSF)是一种具有多种生物学功能的细胞因子. 有文献报道,M-CSF刺激的巨噬细胞更容易发生糖酵解作[10],但肿瘤细胞 M-CSF的表达与糖代谢之间的具体联系尚不明确. 本研究构建了胞质M-CSF稳定表达的人乳腺癌MCF-7细胞(MCF-7-M),观察胞质M-CSF对MCF-7细胞糖代谢的影响,以期探讨M-CSF调控肿瘤细胞糖代谢的机制及其意义.

  • 1 材料与方法

  • 1.1 材料

  • 1.1.1 细胞系

    人乳腺癌MCF-7细胞购自Abcam公司.

  • 1.1.2 主要试剂与仪器

    ATP检测试剂盒和LY294002购自碧云天生物技术研究所,葡萄糖和乳酸检测试剂盒购自南京建成生物工程研究所,2-脱氧葡萄糖(2-DG)、3-溴丙酮酸(3-BrPA)和5-氟尿嘧啶(5-FU)购自Sigma公司,API-2购自Adooq公司,GLUT-1抗体和PKM2 抗体购自Abcam公司,HK2 抗体购自Proteintech公司,荧光倒置显微镜购自OLYMPUS公司,synergy HT多功能微孔板检测仪购自Bio-Tek公司.

  • 1.2 方法

  • 1.2.1 体外培养人乳腺癌MCF-7和MCF-7-M细胞

    人乳腺癌MCF-7细胞、稳定转染M-CSF的MCF-7细胞(MCF-7-M),用含10%新生牛血清的高糖型DMEM培养基,置于 37℃含 5% CO2 培养箱中常规培养.

  • 1.2.2 胞内ATP的检测

    取5.0×104个/ml的MCF-7和MCF-7-M细胞以500 μl/孔种植于24孔培养板,培养12 h;加入 20 μl终浓度为20 mmol/L的糖酵解抑制剂2-DG;弃培养液,冰PBS洗两次,加入100 μl/孔裂解液裂解,荧光倒置显微镜下观察直到细胞充分裂解逐渐失去细胞形态;吸取裂解液,4°C,12 000 r/min,离心10 min;吸取样本上清,按ATP检测试剂盒说明书配制ATP检测液,化学发光法检测样本ATP浓度. 重复检测3次.

  • 1.2.3 蛋白质印迹检测

    提取各组细胞蛋白质,测定蛋白质浓度;取蛋白质样品30 μl进行SDS-PAGE电泳,转膜,封闭;加入一抗(1∶1 000)4℃孵育过夜,TBST液洗膜;加入二抗(1∶2 000)常温孵育 1 h,TBST液洗膜;用电化学发光(electro-chemiluminescence,ECL)化学发光试剂反应,曝光后扫描,采用 AlphaImager2200软件进行蛋白质条带灰度值分析.重复检测3次.

  • 1.2.4 细胞葡萄糖摄入量的检测

    取3.5×105个/ml的MCF-7和MCF-7-M细胞以500 μl/孔种植于24孔培养板,培养12 h;提取 20 μl的培养液,设阴性对照组(NC组)和空白组,按葡萄糖测试盒说明书检测各组葡萄糖含量;多功能酶标仪(505 nm)测吸光度(A)值. 计算公式:葡萄糖摄入量/(mmol·L-1)= NC 组葡萄糖含量/(mmol·L-1)-[(样本A值-空白A值)/(标准品A值-空白A值)×标准品浓度(5.55 mmol/L)].重复检测3次.

  • 1.2.5 细胞外乳酸分泌量的检测

    取3.5×105个/ml的MCF-7和MCF-7-M细胞以500 μl /孔种植于24孔培养板;分别在6、12、18、24 h提取孔板内培养液20 μl,设空白组,按乳酸测试盒说明书分别检测各组乳酸含量;多功能酶标仪(530 nm)测A值. 计算公式:乳酸含量/(mmol·L-1)=(样本A值-空白A值)/(标准品A值-空白A值)×标准品浓度(3 mmol/L)×样本稀释倍数. 重复检测3次.

  • 1.2.6 MTT检测

    以5×103个/孔的MCF-7-M细胞接种至96孔板,设NC组和空白组,培养12 h;弃培养液,样本组加入200 μl终浓度为30 μmol/L 的3-BrPA,NC组和空白组加入培养液200 μl,培养24 h;弃培养液,样本组加入200 μl终浓度分别为0、6、60、600、6 000、60 000 μmol/L的5-FU,NC组和空白组加入培养液200 μl,培养24 h;不弃培养液,每孔加入20 μl MTT(5 g/L)溶液,培养 4 h;弃培养液,每孔加入150 μl的二甲基亚砜(DMSO)溶解,多功能酶标仪(570 nm)测A值. 计算公式:细胞存活率=(样本组A值-空白组A值)/(NC组A值-空白组A值).实验重复检测3次.

  • 1.2.7 统计学分析

    采用 SPSS20.0软件进行统计,所有数据采用单因素方差分析(one way ANOVA),两组均数比较采用t检验,数据用均数±标准差(x±SD)表示.

  • 2 结果

  • 2.1 胞质M-CSF对MCF-7细胞ATP水平的影响

    为了解胞质M-CSF对MCF-7细胞ATP水平的影响,我们常规培养MCF-7和MCF-7-M细胞12 h,用ATP检测试剂盒、化学发光法检测两组细胞ATP的含量. 结果显示,MCF-7和MCF-7-M 细胞的ATP含量分别为(2.153±0.079)μmol/L和(3.765±0.371)μmol/L,MCF-7-M细胞ATP水平明显高于MCF-7细胞(图1,P<0.05). 结果提示,胞质 M-CSF诱导了MCF-7细胞ATP的产生.

    Fig. 1 Cytoplasmic M-CSF induces MCF-7 cells to produce ATP

    NOTE: x¯ ± SDn = 3*P<0.05.

  • 2.2 胞质M-CSF对MCF-7糖代谢的影响

    肿瘤细胞主要通过糖酵解和氧化磷酸化两个途径产生ATP,为了解胞质M-CSF诱导MCF-7细胞产生ATP的主要代谢途径,我们分别用浓度为 20 mmol/L的糖酵解抑制剂2-DG和氧化磷酸化抑制剂OLIG处理MCF-7和MCF-7-M细胞6 h,对照组细胞用DMSO处理,检测各组细胞的ATP水平(表1). 与未做任何处理的MCF-7和MCF-7-M细胞比较,糖酵解抑制剂2-DG降低了MCF-7的ATP水平(图2,P<0.05),显著降低了MCF-7-M细胞的ATP水平(图2,P<0.01),而氧化磷酸化抑制剂OLIG和DMSO对MCF-7和MCF-7-M细胞的ATP水平影响均不显著(图2,P>0.05). 结果提示,糖酵解是MCF-7细胞和MCF-7-M细胞产生ATP的主要途径,氧化磷酸化是次要途径,胞质M-CSF诱导MCF-7细胞主要通过糖酵解途径产生ATP.

    Table 1 Effects of cytoplasmic M-CSF on glucose metabolism in MCF-7 cells

    GROUPATP/ (μmol·L-1)
    MCF-73.891±0.307
    MCF-7-M7.680±0.145
    MCF-7+2-DG2.154±0.033*
    MCF-7-M+2-DG3.098±0.035**
    MCF-7+OLIG3.112±0.197
    MCF-7-M+OLG6.596±0.416
    MCF-7+DMSO3.750±0.200
    MCF-7-M+DMSO7.135±0.445

    NOTE: *P<0.05,MCF-7 vs MCF-7+2-DG;**P<0.01,MCF-7-M vs MCF-7-M+2-DG.

    Fig. 2 Effects of cytoplasmic M-CSF on glucose metabolism in MCF-7 cells

    NOTE: x¯ ± SDn = 3,*P < 0.05,**P < 0.01,NS means no significant difference.

  • 2.3 胞质M-CSF调控MCF-7细胞糖酵解的机制

  • 2.3.1 胞质M-CSF对MCF-7细胞葡萄糖摄取和乳酸分泌的影响

    糖酵解能力较强的肿瘤细胞,需要提高其葡萄糖摄取量,同时又会造成其最终代谢产物乳酸的胞外堆积,为探讨胞质M-CSF对MCF-7细胞葡萄糖摄取和乳酸分泌的影响,我们检测了MCF-7和MCF-7-M细胞的葡萄糖摄取和乳酸分泌情况. 结果显示:MCF-7细胞的葡萄糖摄取量为(3.019±0.565)mmol/L,MCF-7-M细胞的葡萄糖摄取量为(6.702±0.045)mmol/L,MCF-7-M细胞的葡萄糖摄取能力显著高于MCF-7细胞(图3a,P<0.01); MCF-7-M细胞在6、12、18、24 h的乳酸分泌量显著高于MCF-7细胞(表2、图3b,P<0.01).结果提示,胞质M-CSF增强了MCF-7细胞的葡萄糖摄取和乳酸分泌.

    Fig. 3 Effect of cytoplasmic M-CSF on glucose uptake and lactate secretion in MCF-7 cells

    NOTE: x¯ ± SDn = 3,**P<0.01. (a)The glucose consumption of MCF-7 cells and MCF-7-M cells. (b)The lactate secretion of MCF-7 cells and MCF-7-M cells at 0,6,12,18 and 24 h,respectively.

    Table 2 Effect of cytoplasmic M-CSF on lactate secretion in MCF-7 cells

    Time/hLactate Secretion/(mmol·L-1
    MCF-7MCF-7-M
    01.261±0.0451.304±0.018
    61.909±0.0153.609±0047**
    122.689±0.0435.589±0.045**
    183.678±0.09210.527±0.090**
    244.792±0.04813.864±0.050**

    NOTE: **P<0.01,MCF-7 vs MCF-7-M.

  • 2.3.2 胞质M-CSF对MCF-7细胞糖酵解关键酶HK2和PKM2表达的影响

    己糖激酶2(HK2)和丙酮酸激酶M2(PKM2)是细胞糖酵解途径的关键酶,胞质 M-CSF是否通过对HK2和PKM2的诱导来影响MCF-7细胞的糖酵解途径,本实验室使用pCMV/myc/cyto-M-CSF稳定转染MCF-7细胞(MCF-7-M),以转染空载体pCMV/myc/cyto的MCF-7细胞(MCF-7-C)和MCF-7细胞作为对照,用蛋白质印迹法(Western-blotting)检测了各组细胞HK2和PKM2的表达情况. 结果显示,HK2在MCF-7-M细胞的表达高于MCF-7和MCF-7-C细胞(图4,P<0.05),PKM2在MCF-7-M细胞的表达显著高于MCF-7和MCF-7-C细胞(图4,P<0.01),MCF-7与MCF-7-C细胞HK2、PKM2的表达无明显差异(图4,P >0.05). 结果提示,胞质M-CSF诱导了MCF-7细胞糖酵解关键酶HK2和PKM2的表达.

    Fig. 4 Cytoplasmic M-CSF induces the expression of HK2 and PKM2 in MCF-7 cells

    NOTE: x¯ ± SDn = 3,* P <0.05,**P<0.01. (a)Western blot showing the protein levels of HK2 and PKM2 from MCF-7 cells,MCF-7-C cells and MCF-7-M cells extracts,β-actin was used as an endogenous control. (b)Significant difference is determined using t-test.

  • 2.3.3 AKT抑制剂API-2对胞质M-CSF诱导

    MCF-7细胞葡萄糖摄取和乳酸分泌的影响

    文献证实,PI3K/AKT信号通路能够提升肿瘤细胞糖摄取和乳酸分泌能力,可以直接诱导肿瘤细胞转为有氧糖酵解代谢表型进而促进肿瘤的发展,为探究PI3K/ATK信号通路是否参与胞质M-CSF上调MCF-7细胞的有氧糖酵解,我们用浓度为 20 μmol/L的AKT抑制剂API-2预处理MCF-7和MCF-7-M细胞24 h,对照细胞用DMSO处理,检测各组细胞的葡萄糖摄取量和乳酸分泌量(表3). 结果显示,MCF-7和MCF-7-M细胞经API-2处理后葡萄糖摄取量和乳酸分泌量均显著降低 (图5,P<0.01),对照组无明显变化(图5,P >0.05). 结果提示,API-2可抑制胞质M-CSF诱导MCF-7细胞的葡萄糖摄取和乳酸的分泌,PI3K/AKT信号通路在胞质M-CSF诱导MCF-7细胞糖酵解过程中发挥着重要作用.

    Table 3 Effect of API-2 on glucose uptake and lactate secretion in MCF-7 and MCF-7-M cells

    GroupGlucose uptake/(mmol·L-1Lactate secretion/(mmol·L-1
    MCF-7+DMSO5.681±0.1215.001±0.195
    MCF-75.211±0.2434.550±0.235
    MCF-7+API-22.222±0.936**2.050±0.023**
    MCF-7-M+DMSO10.492±0.65511.294±0.148
    MCF-7-M10.582±0.12111.832±0.498
    MCF-7-M+API-25.511±0.918**3.346±0.2110 **

    NOTE: **P<0.01,MCF-7 vs MCF-7+API-2;**P<0.01,MCF-7-M vs MCF-7-M+API-2.

    Fig. 5 Effect of API-2 on glucose uptake and lactate secretion in MCF-7 and MCF-7-M cells

    NOTE: x¯ ± SDn = 3,**P<0.01,NS means no significant difference.

  • 2.3.4 PI3K抑制剂LY294002和AKT抑制剂API-2对MCF-7细胞GLUT-1表达的影响

    在肿瘤细胞的糖酵解途径中,葡萄糖需要通过存在于细胞膜上的葡萄糖转运体(GLUT)的跨膜转运作用才能进入细胞内,因此GLUT的活性决定了葡萄糖的摄取能力.为探究PI3K/AKT信号通路是否参与胞质M-CSF诱导MCF-7细胞GLUT-1的表达. 我们分别用DMSO、PI3K抑制剂LY294002和AKT抑制剂API-2预处理MCF-7和MCF-7-M细胞1 h,蛋白质印迹法(Western-blotting)检测各组细胞GLUT-1的表达. 结果显示:MCF-7-M细胞GLUT-1的表达显著高于MCF-7和MCF-7-C细胞(图6,P<0.05);LY294002和API-2显著抑制了MCF-7-M细胞GLUT-1的表达(图6,P<0.05),DMSO组则变化不明显(图6,P >0.05). 结果提示,胞质M-CSF可诱导MCF-7细胞GLUT-1的表达,PI3K/AKT信号通路参与胞质M-CSF诱导MCF-7细胞的有氧糖酵解.

    Fig. 6 Effect of LY294002 and API-2 on the expression of GLUT-1 in MCF-7 cells

    NOTE: x¯ ± SDn = 3,*P<0.05,NS means no significant difference. (a)Western blot showing the protein levels of GLUT-1 from different cell team extracts,β-actin was used as an endogenous control. (b)Significant difference is determined using t-test.

  • 2.3.5 ATP消耗剂3-BrPA增强MCF-7细胞对5-FU的敏感性

    本实验室前期已证明胞质M-CSF可以促进MCF-7细胞对5-FU耐药,目前认为肿瘤细胞对抗化疗药物的杀灭过程中均需要ATP的消耗,为探究胞质M-CSF诱导MCF-7细胞对5-FU耐药是否与有氧糖酵解产生大量的ATP有关,我们用浓度为20 μmol/L的ATP消耗剂3-BrPA预处理MCF-7和MCF-7-M细胞24 h,加入不同浓度梯度的5-FU检测细胞存活率. 结果显示,在5-FU作用下,经 3-BrPA预处理的MCF-7和MCF-7-M细胞存活率均出现了明显下降(图7、表4,P<0.01). 结果提示,3-BrPA可显著增强MCF-7细胞和MCF-7-M细胞对5-FU的敏感性.

    Fig. 7 Effect of 3-BrPA on MCF-7 and MCF-7-M cells sensitivity to 5-FU

    NOTE: x¯ ± SDn = 3,**P<0.01. The fractional suvival of MCF-7 cells (a)and MCF-7-M cells (b)to 5-FU with or without the treatment of ATP depletion by 3-BrPA was observed by MTT assay.

    Table 4 Effect of 3-BrPA on MCF-7 and MCF-7-M cells sensitivity to 5-FU

    GroupIC50/(μmol·L-1
    MCF-74144.693 ± 185.609
    MCF-7+3-BrPA462.601 ± 8.481**
    MCF-7-M24285.802 ± 2444.784
    MCF-7-M+3-BrPA1347.306 ± 97.111**

    NOTE: **P<0.01,MCF-7 vs MCF-7+3-BrPA;**P<0.01,MCF-7-M vs MCF-7-M+3-BrPA

  • 3 讨论

    糖代谢是肿瘤细胞获取ATP的主要途径,包括糖酵解和氧化磷酸化两个途径.在肿瘤细胞的发生发展过程中,往往会通过自然选择强化糖酵解功能而弱化线粒体氧化磷酸化功能,这是因为糖酵解非常适应肿瘤细胞生长、增殖需要快速大量生成ATP的要求. 此外,肿瘤细胞通过糖酵解代谢中间产物的积累可以增加还原型辅酶Ⅱ(NADPH)和核糖的产生,这有助于形成肿瘤细胞生长和增殖所必需的生物大分子. 因此,糖酵解的能量供应以及合成代谢对肿瘤细胞生长和分裂是关键因[11],可以通过抑制参与糖酵解途径的关键酶和抑制糖代谢来发挥抗肿瘤作[12]. 研究证实,M-CSF在多种癌细胞中高度表[13]. M-CSF可以促进乳腺癌的发生发展,在癌变的乳腺细胞中高表达,而在正常的乳腺细胞中低表[14]. 有趣的是,肿瘤糖代谢已被认为是肿瘤细胞促生长促增殖的主要原因之[15]. M-CSF是否可以调控肿瘤细胞的糖代谢?本实验室使用pCMV/myc/cyto-M-CSF稳定转染MCF-7细胞(MCF-7-M),以转染空载体pCMV/myc/cyto的MCF-7细胞(MCF-7-C)和MCF-7细胞作为对照,结果发现胞质M-CSF诱导了MCF-7细胞的ATP产生. 为了进一步探究胞质M-CSF是对MCF-7细胞糖代谢的哪个代谢途径产生了影响才最终使ATP产生量增加,我们分别用糖酵解抑制剂2-DG和氧化磷酸化抑制剂OLIG处理MCF-7和MCF-7-M细胞,发现2-DG显著降低了MCF-7和MCF-7-M细胞的ATP水平,而OLIG对MCF-7和MCF-7-M细胞的ATP水平影响均不显著. 因此我们认为,胞质M-CSF诱导MCF-7细胞ATP的产生主要通过糖酵解途径,线粒体氧化磷酸化是辅助途径.

    HK2和PKM2是糖酵解途径中的两个关键酶,HK2的蛋白质表达升高会使癌细胞的糖酵解能力增[16], PKM2同样直接起到维持肿瘤细胞糖酵解表型的功[17] ,HK2和PKM2的表达是评价糖酵解活性的主要标准. 我们通过实验发现,胞质 M-CSF上调了MCF-7细胞HK2的表达,显著上调了PKM2的表达,而且胞质M-CSF显著促进了MCF-7细胞的葡萄糖摄取和乳酸分泌. 这些结果充分证明,胞质M-CSF上调了MCF-7细胞的糖酵解.

    胞质M-CSF活化PI3K/AKT信号通路是本实验室前期的成果. 众多研究发[18,19,20],PI3K抑制剂LY294002和AKT抑制剂API-2可以通过调控肿瘤细胞的糖酵解途径以影响肿瘤的发生发展. 为了探究PI3K/ATK信号通路是否参与胞质M-CSF上调MCF-7细胞的糖酵解途径,我们使用AKT抑制剂API-2处理MCF-7和MCF-7-M细胞,发现API-2可抑制胞质M-CSF诱导MCF-7细胞的葡萄糖摄取和乳酸分泌,提示AKT参与MCF-7和MCF-7-M细胞有氧糖酵解的调控. 进一步实验发现,MCF-7-M细胞GLUT-1的表达显著高于MCF-7和MCF-7-C细胞,而LY294002和API-2可以显著抑制MCF-7-M细胞GLUT-1的表达,提示PI3K/AKT信号通路参与胞质M-CSF诱导MCF-7细胞GLUT-1的蛋白质表达增加. 综上所述,我们认为PI3K/AKT信号通路参与胞质M-CSF诱导MCF-7细胞的糖酵解途径.

    目前认为,癌细胞面对化疗药物的杀灭,至少会有一种应对方式:增加药物排出、降低胞内药物活性、强化DNA损伤修复和激活抗凋亡基因的表达等,所有的这些应对方式都要消耗ATP. 我们推测胞质M-CSF诱导MCF-7细胞对5-FU耐药的重要原因是胞质M-CSF通过活化MCF-7细胞的糖酵解而显著增加胞内ATP水平,从而将大量的ATP用于应对5-FU杀灭. 为验证这种假设,我们用ATP消耗剂3-溴丙酮[21]处理MCF-7和MCF-7-M细胞.结果发现,3-BrPA可显著增强MCF-7细胞和 MCF-7-M细胞对5-FU的敏感性. 因此我们推定,糖酵解的提升增加了MCF-7细胞ATP的生成,降低了对5-FU的药物敏感性,从而促进了MCF-7细胞的生存能力.

    综上所述,我们证实胞质M-CSF通过上调HK2、PKM2和GLUT-1的表达,增加葡萄糖摄取,促进ATP的产生,产生药物抵抗,使乳腺癌细胞生存能力得到极大增强,从而降低治疗预后.研发能够靶向抑制乳腺癌细胞相关糖酵解酶或ATP的抗癌药物,或是未来乳腺癌治疗的一个新的切入点.

    TANG Sheng-Song. corresponding author:Tel: 86-745-2377102, E-mail: tangss111@163.comMO Zhong-Cheng. Tel: 86-745-2377102, E-mail: zhchmo@hotmail.com

  • 参 考 文 献

    • 1

      Akram M. Mini-review on glycolysis and cancer. J Cancer Educ, 2013, 28(3): 454-457

    • 2

      Hsu C C, Tseng L M, Lee H C. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood), 2016, 241(12): 1281-1295

    • 3

      Srinivasan S, Guha M, Kashina A, et al. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochim Biophys Acta Bioenerg, 2017, 1858(8): 602-614

    • 4

      Liu Y, Huo Y, Wang D, et al. MiR-216a-5p/Hexokinase 2 axis regulates uveal melanoma growth through modulation of Warburg effect Biochem Biop Commun 2018, 501(4): 885-892

    • 5

      Dong G, Mao Q, Xia W, et al. PKM2 and cancer: The function of PKM2 beyond glycolysis. Oncol Lett, 2016, 11(3): 1980-1986

    • 6

      Goldberg M S, Sharp P A. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. The Journal of Experimental Medicine, 2012, 209(2): 217-224

    • 7

      Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. The International Journal of Biochemistry & Cell Biology, 2011, 43(7): 969-980

    • 8

      Mathupala S P, Ko Y H, Pedersen P L. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Seminars in Cancer Biology, 2009, 19(1): 17-24

    • 9

      Ganapathy-Kanniappan S, Geschwind J F. Tumor glycolysis as a target for cancer therapy: progress and prospects. Molecular Cancer, 2013, 12(1): 152-162

    • 10

      Tavakoli S, D J, Downs K, et al. Differential regulation of macrophage glucose metabolism by macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: implications for 18F FDG PET imaging of vessel wall inflammation. Radiology, 2017, 283(1): 87-97

    • 11

      Ward P S, Thompson C B. Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol, 2012, 4(7): a006783

    • 12

      Wei R, Mao L, Xu P, et al. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct, 2018, 9(11):5682-5696

    • 13

      Yang L, Wu Q, Xu L, et al. Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma. BMC Cancer, 2015, 15(1): 67-77

    • 14

      Tamimi R M, Brugge J S, Freedman M L, et al. Circulating colony stimulating factor-1 and breast cancer risk. Cancer Res, 2008, 68(1): 18-21

    • 15

      Elstrom R L, Bauer D E, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res, 2004, 64(11): 3892-3899

    • 16

      Marrache S, Dhar S. The energy blocker inside the power house: Mitochondria targeted delivery of 3-bromopyruvate. Chem Sci, 2015, 6(3): 1832-1845

    • 17

      Li Z, Yang P, Li Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim Biophys Acta, 2014, 1846(2): 285-296

    • 18

      Lu J, Chen M, Gao S, et al. LY294002 inhibits the Warburg effect in gastric cancer cells by downregulating pyruvate kinase M2. Oncol Lett, 2018, 15(4): 4358-4364

    • 19

      Shimura T, Noma N, Sano Y, et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol, 2014, 112(2): 302-307

    • 20

      Tahir S A, Yang G, Goltsov A, et al. Caveolin-1-LRP6 signaling module stimulates aerobic glycolysis in prostate cancer. Cancer Res, 2013, 73(6): 1900-1911

    • 21

      Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, et al. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol, 2010, 11(5): 510-517

田云

机 构:

2. 长治医学院组织学与胚胎学教研室,长治 046000

3. 南华大学药物药理研究所,组织学与胚胎学教研室,衡阳 421001

Affiliation:

2. Department of Histology and Embryology, Changzhi Medical College, Changzhi 046000, China

3. Insitute of Pharmacy and Pharmacology, Department of Histology and Embryology, University of South China, Hengyang 421001, China

刘臻

机 构:南华大学药物药理研究所,组织学与胚胎学教研室,衡阳 421001

Affiliation:Insitute of Pharmacy and Pharmacology, Department of Histology and Embryology, University of South China, Hengyang 421001, China

宁倩

机 构:湖南医药学院新型抗体药物及其智能运输系统湖南省重点实验室,怀化 418000

Affiliation:Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China

莫中成

机 构:南华大学药物药理研究所,组织学与胚胎学教研室,衡阳 421001

Affiliation:Insitute of Pharmacy and Pharmacology, Department of Histology and Embryology, University of South China, Hengyang 421001, China

张蒙夏

机 构:湖南中医药大学组织胚胎学教研室,长沙 410208

Affiliation:Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410208, China

唐圣松

机 构:

1. 湖南医药学院新型抗体药物及其智能运输系统湖南省重点实验室,怀化 418000

3. 南华大学药物药理研究所,组织学与胚胎学教研室,衡阳 421001

Affiliation:

1. Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China

3. Insitute of Pharmacy and Pharmacology, Department of Histology and Embryology, University of South China, Hengyang 421001, China

html/pibbcn/20180299/alternativeImage/e8096816-40f1-4298-9cb4-71fd3891d1ee-F001.jpg
GROUPATP/ (μmol·L-1)
MCF-73.891±0.307
MCF-7-M7.680±0.145
MCF-7+2-DG2.154±0.033*
MCF-7-M+2-DG3.098±0.035**
MCF-7+OLIG3.112±0.197
MCF-7-M+OLG6.596±0.416
MCF-7+DMSO3.750±0.200
MCF-7-M+DMSO7.135±0.445
html/pibbcn/20180299/alternativeImage/e8096816-40f1-4298-9cb4-71fd3891d1ee-F002.jpg
html/pibbcn/20180299/alternativeImage/e8096816-40f1-4298-9cb4-71fd3891d1ee-F003.jpg
Time/hLactate Secretion/(mmol·L-1
MCF-7MCF-7-M
01.261±0.0451.304±0.018
61.909±0.0153.609±0047**
122.689±0.0435.589±0.045**
183.678±0.09210.527±0.090**
244.792±0.04813.864±0.050**
html/pibbcn/20180299/alternativeImage/e8096816-40f1-4298-9cb4-71fd3891d1ee-F004.jpg
GroupGlucose uptake/(mmol·L-1Lactate secretion/(mmol·L-1
MCF-7+DMSO5.681±0.1215.001±0.195
MCF-75.211±0.2434.550±0.235
MCF-7+API-22.222±0.936**2.050±0.023**
MCF-7-M+DMSO10.492±0.65511.294±0.148
MCF-7-M10.582±0.12111.832±0.498
MCF-7-M+API-25.511±0.918**3.346±0.2110 **
html/pibbcn/20180299/alternativeImage/e8096816-40f1-4298-9cb4-71fd3891d1ee-F005.jpg
html/pibbcn/20180299/alternativeImage/e8096816-40f1-4298-9cb4-71fd3891d1ee-F006.jpg
html/pibbcn/20180299/alternativeImage/e8096816-40f1-4298-9cb4-71fd3891d1ee-F007.jpg
GroupIC50/(μmol·L-1
MCF-74144.693 ± 185.609
MCF-7+3-BrPA462.601 ± 8.481**
MCF-7-M24285.802 ± 2444.784
MCF-7-M+3-BrPA1347.306 ± 97.111**

Fig. 1 Cytoplasmic M-CSF induces MCF-7 cells to produce ATP

Table 1 Effects of cytoplasmic M-CSF on glucose metabolism in MCF-7 cells

Fig. 2 Effects of cytoplasmic M-CSF on glucose metabolism in MCF-7 cells

Fig. 3 Effect of cytoplasmic M-CSF on glucose uptake and lactate secretion in MCF-7 cells

Table 2 Effect of cytoplasmic M-CSF on lactate secretion in MCF-7 cells

Fig. 4 Cytoplasmic M-CSF induces the expression of HK2 and PKM2 in MCF-7 cells

Table 3 Effect of API-2 on glucose uptake and lactate secretion in MCF-7 and MCF-7-M cells

Fig. 5 Effect of API-2 on glucose uptake and lactate secretion in MCF-7 and MCF-7-M cells

Fig. 6 Effect of LY294002 and API-2 on the expression of GLUT-1 in MCF-7 cells

Fig. 7 Effect of 3-BrPA on MCF-7 and MCF-7-M cells sensitivity to 5-FU

Table 4 Effect of 3-BrPA on MCF-7 and MCF-7-M cells sensitivity to 5-FU

image /

x¯ ± SDn = 3*P<0.05.

*P<0.05,MCF-7 vs MCF-7+2-DG;**P<0.01,MCF-7-M vs MCF-7-M+2-DG.

x¯ ± SDn = 3,*P < 0.05,**P < 0.01,NS means no significant difference.

x¯ ± SDn = 3,**P<0.01. (a)The glucose consumption of MCF-7 cells and MCF-7-M cells. (b)The lactate secretion of MCF-7 cells and MCF-7-M cells at 0,6,12,18 and 24 h,respectively.

**P<0.01,MCF-7 vs MCF-7-M.

x¯ ± SDn = 3,* P <0.05,**P<0.01. (a)Western blot showing the protein levels of HK2 and PKM2 from MCF-7 cells,MCF-7-C cells and MCF-7-M cells extracts,β-actin was used as an endogenous control. (b)Significant difference is determined using t-test.

**P<0.01,MCF-7 vs MCF-7+API-2;**P<0.01,MCF-7-M vs MCF-7-M+API-2.

x¯ ± SDn = 3,**P<0.01,NS means no significant difference.

x¯ ± SDn = 3,*P<0.05,NS means no significant difference. (a)Western blot showing the protein levels of GLUT-1 from different cell team extracts,β-actin was used as an endogenous control. (b)Significant difference is determined using t-test.

x¯ ± SDn = 3,**P<0.01. The fractional suvival of MCF-7 cells (a)and MCF-7-M cells (b)to 5-FU with or without the treatment of ATP depletion by 3-BrPA was observed by MTT assay.

**P<0.01,MCF-7 vs MCF-7+3-BrPA;**P<0.01,MCF-7-M vs MCF-7-M+3-BrPA

  • 参 考 文 献

    • 1

      Akram M. Mini-review on glycolysis and cancer. J Cancer Educ, 2013, 28(3): 454-457

    • 2

      Hsu C C, Tseng L M, Lee H C. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood), 2016, 241(12): 1281-1295

    • 3

      Srinivasan S, Guha M, Kashina A, et al. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochim Biophys Acta Bioenerg, 2017, 1858(8): 602-614

    • 4

      Liu Y, Huo Y, Wang D, et al. MiR-216a-5p/Hexokinase 2 axis regulates uveal melanoma growth through modulation of Warburg effect Biochem Biop Commun 2018, 501(4): 885-892

    • 5

      Dong G, Mao Q, Xia W, et al. PKM2 and cancer: The function of PKM2 beyond glycolysis. Oncol Lett, 2016, 11(3): 1980-1986

    • 6

      Goldberg M S, Sharp P A. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. The Journal of Experimental Medicine, 2012, 209(2): 217-224

    • 7

      Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. The International Journal of Biochemistry & Cell Biology, 2011, 43(7): 969-980

    • 8

      Mathupala S P, Ko Y H, Pedersen P L. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Seminars in Cancer Biology, 2009, 19(1): 17-24

    • 9

      Ganapathy-Kanniappan S, Geschwind J F. Tumor glycolysis as a target for cancer therapy: progress and prospects. Molecular Cancer, 2013, 12(1): 152-162

    • 10

      Tavakoli S, D J, Downs K, et al. Differential regulation of macrophage glucose metabolism by macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: implications for 18F FDG PET imaging of vessel wall inflammation. Radiology, 2017, 283(1): 87-97

    • 11

      Ward P S, Thompson C B. Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol, 2012, 4(7): a006783

    • 12

      Wei R, Mao L, Xu P, et al. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct, 2018, 9(11):5682-5696

    • 13

      Yang L, Wu Q, Xu L, et al. Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma. BMC Cancer, 2015, 15(1): 67-77

    • 14

      Tamimi R M, Brugge J S, Freedman M L, et al. Circulating colony stimulating factor-1 and breast cancer risk. Cancer Res, 2008, 68(1): 18-21

    • 15

      Elstrom R L, Bauer D E, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res, 2004, 64(11): 3892-3899

    • 16

      Marrache S, Dhar S. The energy blocker inside the power house: Mitochondria targeted delivery of 3-bromopyruvate. Chem Sci, 2015, 6(3): 1832-1845

    • 17

      Li Z, Yang P, Li Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim Biophys Acta, 2014, 1846(2): 285-296

    • 18

      Lu J, Chen M, Gao S, et al. LY294002 inhibits the Warburg effect in gastric cancer cells by downregulating pyruvate kinase M2. Oncol Lett, 2018, 15(4): 4358-4364

    • 19

      Shimura T, Noma N, Sano Y, et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol, 2014, 112(2): 302-307

    • 20

      Tahir S A, Yang G, Goltsov A, et al. Caveolin-1-LRP6 signaling module stimulates aerobic glycolysis in prostate cancer. Cancer Res, 2013, 73(6): 1900-1911

    • 21

      Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, et al. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol, 2010, 11(5): 510-517