en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
GillS R, PopM, DeboyR T, et al. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778): 1355-1359
参考文献 2
QinJ, LiR, RaesJ, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65
参考文献 3
De J R D-PV, ForlenzaA S, ForlenzaO V. Relevance of gutmicrobiota in cognition, behaviour and Alzheimer's disease. Pharmacol Res, 2018, 136: 29-34
参考文献 4
SharonG, SampsonT R, GeschwindD H, et al. The central nervous system and the gut microbiome. Cell, 2016, 167(4): 915-932
参考文献 5
SunM F, ShenY Q. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev, 2018, 45: 53-61
参考文献 6
PetschowB, DoreJ, HibberdP, et al. Probiotics, prebiotics, and the host microbiome: the science of translation. Ann N Y Acad Sci, 2013, 1306(1): 1-17
参考文献 7
HamerH M, JonkersD, VenemaK, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther, 2008, 27(2): 104-119
参考文献 8
HaghikiaA, JorgS, DuschaA, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 2016, 44(4): 951-953
参考文献 9
WangL, ChristophersenC T, SorichM J, et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci, 2012, 57(8): 2096-2102
参考文献 10
UngerM M, SpiegelJ, DillmannK U, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord, 2016, 32: 66-72
参考文献 11
SunM F, ZhuY L, ZhouZ L, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: Gut microbiota, glial reaction and TLR4/TNF-alpha signaling pathway. Brain Behav Immun, 2018, 70: 48-60
参考文献 12
ColonnaM, ButovskyO. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol, 2017, 35: 441-468
参考文献 13
DaiJ N, ZongY, ZhongL M, et al. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. Plos One, 2011, 6(7): e21891
参考文献 14
MartindaleJ L, HolbrookN J. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 2002, 192(1): 1-15
参考文献 15
SalterM W, StevensB. Microglia emerge as central players in brain disease. Nat Med, 2017, 23(9): 1018-1027
参考文献 16
LuY, FanC, LiP, et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep, 2016, 6: 37589
参考文献 17
BlockM L, ZeccaL, HongJ S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 2007, 8(1): 57-69
参考文献 18
Frank-CannonT C, AltoL T, McalpineF E, et al. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener, 2009, 4: 47
参考文献 19
ErnyD, Hrabe De AngelisA L, JaitinD, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 2015, 18(7): 965-977
参考文献 20
MiyakeS, KimS, SudaW, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. Plos One, 2015, 10(9): e0137429
参考文献 21
TianY, XuQ, SunL, et al. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. J Nutr Biochem, 2018, 57: 103-109
参考文献 22
KasubuchiM, HasegawaS, HiramatsuT, et al. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 2015, 7(4): 2839-2849
参考文献 23
FuS P, LiS N, WangJ F, et al. BHBA suppresses LPS-induced inflammation in BV-2 cells by inhibiting NF-kappaB activation. Mediators Inflamm, 2014, 2014: 983401
参考文献 24
MolteniM, GemmaS, RossettiC. The role of Toll-like receptor 4 in infectious and noninfectious inflammation. Mediators Inflamm, 2016, 2016: 6978936
参考文献 25
CouturierJ, StancuI C, SchakmanO, et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J Neuroinflammation, 2016, 13: 20
参考文献 26
BaldwinA S, Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996, 14: 649-683
参考文献 27
MoonD O, ParkS Y, LeeK J, et al. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol, 2007, 7(8): 1092-1101
参考文献 28
GustinA, KirchmeyerM, KoncinaE, et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. Plos One, 2015, 10(6): e0130624
目录 contents

    摘要

    本研究的主要目的是探讨适宜浓度短链脂肪酸(short chain fatty acids,SCFAs)混合物对炎症环境下小胶质细胞的抑炎作用及其机制. 采用脂多糖(LPS)刺激小鼠小胶质细胞系BV-2细胞建立神经炎症模型,并利用CCK8试剂盒检测不同浓度单一的乙酸钠、丙酸钠、丁酸钠处理后的细胞活力. 设计选取这三种SCFAs对细胞活力无影响、且有抑炎效果的特定浓度进行组合(SCFAs mix),进一步检测SCFAs mix对LPS刺激下BV-2细胞炎症反应的影响及机制,包括:a. 用一氧化氮(NO)试剂盒检测NO的释放;b. 用ELISA检测炎症因子TNF-α、IL-6的释放;c. 用qRT-PCR和Western blot检测炎症因子TNF-α、IL-6、炎症小体NLRP3、炎症通路相关蛋白TLR4、NF-κB等的表达变化. 结果表明LPS刺激BV-2细胞4 h后,在体系中添加特定浓度的单一SCFA处理12 h后,不能缓解BV-2细胞的炎症反应,而将上述SCFAs配制成同等终浓度的SCFAs mix处理12 h却能显著降低细胞培养上清液中NO、TNF-α和IL-6(均P<0.001)的量,还能抑制BV-2细胞内iNOS、TNF-α、IL-6和NLRP3 mRNA的升高(均P<0.001);通过对炎症信号通路关键分子的检测发现,SCFAs mix可以抑制LPS诱导的BV-2细胞内TLR4、MyD88、TRAF6和NF-κB蛋白的表达升高. 综上可见:适宜浓度的混合SCFAs可通过调控TLR4/MyD88/TRAF6/NF-κB炎症通路抑制LPS诱导的小胶质细胞的炎症反应,而起到抗炎的保护作用.

    Abstract

    To investigate the anti-inflammatory effect and mechanism of proper concentration of short-chain fatty acids (SCFAs) mixture (SCFAs mix) on microglia under inflammatory environment. In this study, the murine microglial cell line BV-2 treated with lipopolysaccharide (LPS) was used as an inflammatory cell model. BV-2 cells were treated with different concentrations of sodium acetate, sodium propionate and sodium butyrate, and SCFAs mix, the cell viability were detected by CCK8 kit. The concentrations of each SCFA and SCFAs mixture (SCFAs mix) will be selected by double standard: having no effect on cell viability and having the anti-inflammation effect. The examination of anti-inflammation effect and its mechanism of SCFAs mix in proper concentration on LPS-stimulated BV-2 cells include: (a) the production of NO of BV-2 cells was detected by NO kit, (b) the inflammatory factors such as TNF-α and IL-6 released into the culture supernatant by BV-2 cells were detected by ELISA, (c) the expression of inflammatory factors such as TNF-α and IL-6, inflammasome NLRP3 and some key factors within inflammatory pathways such as TLR4 and NF-κB, were detected by qRT-PCR and Western-blot. We found that after 4 hours of LPS stimulation on BV-2 cells, the addition of a certain concentration of single SCFA to the system for 12 h could not alleviate the inflammatory response of BV-2 cells, but SCFAs mix with the same terminal concentration of each SCFAs could significantly reduce the levels of NO (P<0.001), TNF-α (P<0.001) and IL-6 (P<0.001) in cell culture supernatants. Simultaneously, SCFAs mix inhibited the increase of iNOS, TNF-α, IL-6 (P<0.001) and inflammasome NLRP3 (P<0.001) mRNA in BV-2 cells induced by LPS. Further study showed that SCFAs mix could inhibit LPS-induced high expression of TLR4, MyD88, TRAF6 and NF-κB proteins, which were the key molecules of the inflammatory signaling pathway in BV-2 cells. In conclusion, proper concentration of SCFAs mix could function as a protective role to inhibit LPS-induced microglial inflammatory responses by regulation of the TLR4/MyD88/TRAF6/NF-κB signaling pathway.

    适宜浓度短链脂肪酸混合物对小胶质细胞炎症抑制及机制研*

    贾雪1) 周芝1) 张博1) 赵丽1) 乔晨1) 孙孟1) 孙秀2) 陈永1)1)** 申延1)**

    1)江南大学无锡医学院,无锡 2141222)江南大学生物工程学院,无锡 214122)

    近年来,越来越多的研究表明,肠道菌群对宿主的健康有重大影响,它们不但参与调节肠道的稳态,也影响着宿主的脑功[1,2]. 肠道菌群的失调与人类多种疾病相关,如炎症性肠病、肠易激综合征、肥胖、Ⅱ型糖尿病、结肠癌、肝癌[3]. 最近的研究表明,某些中枢神经系统疾病如帕金森病、阿尔茨海默病、自闭症等患者的肠道菌群也存在着菌群紊[4]. 肠道菌群可通过“肠脑轴”作用于中枢神经系统,该“轴”主要包含了迷走神经、神经内分泌和免疫三条主要途径,而肠道菌群的主要代谢物:短链脂肪酸(short chain fatty acids,SCFAs)可能参与了“肠脑轴”的调[5,6].

    SCFAs主要包括乙酸、丙酸和丁酸. 当中枢神经系统出现障碍时,血脑屏障的通透性增加,SCFAs可以通过血液循环到达脑内,进而影响中枢神经系[5],但是具体的机制仍不明确. 研究发现,特定浓度的单一或混合SCFAs具有抑制机体炎症的作用:外源补充SCFAs可以治疗炎症性肠道疾[7]. 在自身免疫性脑脊髓炎小鼠模型中,SCFAs增加了有抑炎作用的Treg细胞的数量,抑制Th17细胞的分[8]. 有趣的是,某些疾病患者粪菌中SCFAs浓度也可发生异常变化:帕金森病和自闭症患者粪便中SCFAs的水平与正常相比有显著差[9,10];本课题组前期研究中发现,帕金森小鼠也存在肠道菌群紊乱,肠道菌群紊乱可诱发神经炎症,并且帕金森小鼠粪便中的SCFAs与对照组也存在显著差[11]. 上述研究揭示了SCFAs与神经炎症的相关性,且不同浓度的SCFAs可能诱发截然不同的病理表现.

    小胶质细胞是中枢神经系统的常驻免疫细[12],激活的小胶质细胞释放多种促炎因子,如TNF-α、IL-6等导致神经元的损伤甚至死亡,也可以通过释放一氧化氮(nitric oxid,NO)介导过氧化物和活性氧的生成促进神经元的死[13,14]. 已经证明激活的小胶质细胞和多种神经炎症参与的神经系统疾病,包括阿尔茨海默病、帕金森病、多发性硬化等相[15].

    目前的研究多基于单一SCFA对小胶质细胞的影响,而在体内是多种SCFAs的协同作用,关于不同浓度SCFAs混合物对小胶质细胞和神经炎症的影响及其作用机制尚不明确. 本研究从特定浓度SCFAs混合物对炎症环境下小胶质细胞的影响着手,研究SCFAs对小胶质细胞炎症反应的作用及相关机制.

    1 材料与方法

    1.1 主要试剂和仪器

    乙酸盐、丙酸盐、丁酸盐和LPS购于Sigma公司;DMEM高糖培养基、双抗、PBS(pH 7.4)和0.05%胰蛋白酶购于Gibco公司;胎牛血清购于Lonsera公司;ECL化学发光试剂和PVDF膜购自Millipore公司;RIPA裂解液和NO检测试剂盒购自碧云天公司;CCK8检测试剂盒购于MedchemExpress公司;TNF-α ELISA试剂盒和 IL-6 ELISA试剂盒购于博士德生物公司;RNA提取试剂盒购于Biomiga公司;qRT-PCR相关试剂购自TAKARA公司;电泳仪购自Bio-Rad公司; NF-κB、TRAF6和MyD88抗体购于CST公司; β-Tubulin、GAPDH、TLR4抗体购于Proteintec公司;低温高速离心机、二氧化碳培养箱、6孔板、12孔板、96孔板和100 mm培养皿购于Thermo公司.

    1.2 细胞培养

    小鼠BV-2小胶质细胞系购于国家细胞资源共享平台. 细胞培养于含10%胎牛血清和1%双抗的DMEM高糖培养基中,置于37℃,5% CO2 培养箱中培养.

    将BV-2细胞以2×105个/孔接种于24孔板,培养24 h后,分为4组,接受LPS和SCFA浓度组合(SCFAs mix)的处理. LPS浓度为0.01 mg/L,溶剂是PBS;SCFAs mix的浓度为:乙酸钠为 20 mmol/L、丙酸钠为1 mmol/L、丁酸钠为 1 mmol/L,溶剂是PBS.

    细胞分为4组. a. 空白对照组:PBS加入培养体系4 h后,再加入PBS继续处理12 h;b. LPS组:LPS处理BV-2细胞4 h后,向培养体系中加入PBS继续处理12 h;c. LPS+SCFAs mix组:LPS处理BV-2细胞4 h后,向培养体系中加入SCFAs mix继续培养12 h;d. SCFAs mix组:PBS加入培养体系4 h后,再加入SCFAs mix继续处理12 h.

    1.3 CCK8法检测细胞活力

    向96孔板中每孔加入10 μl的CCK8试剂,置于37℃、5% CO2培养箱中培养2 h,使用微孔板分光光度计在450 nm处检测A值,然后根据公式:细胞存活率=[(实验孔吸光度-空白孔吸光度)/(对照孔吸光度-空白孔吸光度)]×100%,计算细胞的活力.

    1.4 一氧化氮试剂盒检测细胞上清液NO的含量

    收集步骤1.2中4组细胞的培养基上清液,4℃、1 000 r/min、离心5 min收集上清液保存于 -80℃冰箱. 根据试剂盒说明书检测各组细胞上清液NO的含量.

    1.5 ELISA法检测BV-2细胞培养上清液中的TNF-α、IL-6的含量

    收集上述4组细胞上清,方法同1.4. 参照 TNF-α和IL-6 ELISA试剂盒说明书,稀释标准品,依次为15.6、31.2、62.5、125、250、500、 1000 ng/L,设空白孔、显色液孔和待测样品孔,按一定比例稀释样品后根据说明书进行操作,最后在450 nm处测定各孔吸光度值.

    1.6 qRT-PCR检测BV-2细胞内炎症信号的变化

    收集上述4组细胞,按照RNA提取试剂盒说明书提取细胞总RNA,然后用Nano-Drop测定RNA的浓度;使用随机引物和PrimeScriptTM RT Master Mix生成cDNA链;使用SYBR Premix Ex TaqTM Ⅱ进行qRT-PCR反应. 使用的引物有iNOS、TNF-α、IL-6、NLRP3和GAPDH. 引物序列见表1.

    Table 1 The primer sequences of iNOS,TNF-α,IL-6,NLRP3 and GAPDH

    GeneSequences(5'-3')Length / bp
    iNOS(F) CCTCCTCCACCCTACCAAGT160
    (R)CACCCAAAGTGCTTCAGTCA
    TNF-α(F) CGTCAGCCGATTTGCTATCT167
    (R)CGGACTCCGCAAAGTCTAAG
    IL-6(F) AACGATGATGCACTTGCAGA244
    (R)GAGCATTGGAAATTGGGGTA
    NLRP3(F) ATGCTGCTTCGACATCTCCT157
    (R)AACCAATGCGAGATCCTGAC
    GAPDH(F) AGGTCGGTGTGAACGGATTTG120
    (R) TGTAGACCATGTAGTTGAGGTCA

    1.7 Western blot检测蛋白质表达

    收集上述各组细胞,用RIPA裂解液裂解细胞获取蛋白质,通过BCA法检测蛋白质浓度后,进行Western blot检测. 一抗NF-κB(1∶1 000)、TLR4(1∶1 000)、MyD88(1∶1 000)、TRAF6(1∶2 000)、β-Tubulin(1∶1 000)、GAPDH(1∶1 000),二抗IgG羊抗兔、羊抗鼠(1∶4 000).

    1.8 统计学分析

    使用SPSS 22.0软件进行统计学分析,多组之间的分析使用单因素方差分析,数据以mean±SEM表示,将P<0.05设定为显著性阈值(*P<0.05,**P<0.01,***P<0.001).

    2 结果

    2.1 SCFAs mix浓度设定

    我们采用CCK8细胞活力实验检测不同浓度SCFAs对BV-2细胞的毒性,以筛选适宜浓度的SCFAs组合. 结果显示:乙酸钠的浓度梯度设置为5、10、15、20、25 mmol/L,5~20 mmol/L均为不影响细胞活力、无细胞毒性的“安全浓度”, 20 mmol/L乙酸钠为处理12 h和24 h均不影响细胞活力的最高安全浓度(图1a,d);丙酸钠的浓度梯度设置为1、4、6、8、10 mmol/L,1~8 mmol/L丙酸钠均为安全浓度(图1b);丁酸钠的浓度梯度设置为0.2、0.6、1.0、1.4、2.0 mmol/L,0.2~ 1 mmol/L均为安全浓度(图1c). 由于在机体内,丙酸盐和丁酸盐的浓度比例通常是1∶1[16],而 1 mmol/L的丙酸钠和1 mmol/L的丁酸钠在处理 12 h和24 h时均无细胞毒性(图1b,c,d),所以我们最终选择混合SCFAs mix的浓度配比为:乙酸钠20 mmol/L、丁酸钠1 mmol/L、丙酸钠 1 mmol/L. 该浓度配比的SCFAs mix处理细胞12 h同样不影响细胞活力(图1d).

    Fig. 1 Effects of single SCFA with different concentrations and SCFAs mix on the BV-2 cells viability

    NOTE: (a, b, c)CCK8 Kit was used to test the toxicity of different concentrations of sodium acetate (NaA), sodium propionate (NaP) and sodium butyrate (NaB) on BV-2 cells after 24 h-treatment. (d)CCK8 Kit was used to test the toxicity of different concentrations of NaA, NaP, NaB and SCFAs mix on BV-2 cells after 12 h-treatment. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD, N=5-6, *P<0.05, **P<0.01, ***P<0.001.

    2.2 SCFAs mix可以抑制LPS刺激的BV-2细胞NO的产生

    NO的产生可以作为评估小胶质细胞激活程度的指标. 利用NO检测试剂盒检测发现,BV-2细胞上清液中NO的生成量在LPS组显著上升;与之相比,LPS+SCFAs mix组则显著下降(图2a,P<0.001),但单一的乙酸钠(20 mmol/L)、丙酸钠(1 mmol/L)、丁酸钠(1 mmol/L)不能降低LPS刺激BV-2细胞产生的NO(图2a). 一氧化氮合酶(iNOS)是NO合成的限速酶,其表达也可以间接反映小胶质细胞合成NO的水平. LPS组的BV-2细胞高表达iNOS mRNA,而与LPS组相比,LPS+SCFAs mix组的iNOS mRNA显著下降(图2b, P<0.001). 表明适宜浓度的SCFAs mix可以削弱LPS诱导的小胶质细胞的激活,具有抑制小胶质细胞介导的炎症反应的效应.

    Fig. 2 Effects of SCFAs mix on secretion of NO and the expression of iNOS of BV-2 cells under LPS treatment

    NOTE: (a)High release of NO from BV-2 cells into the culture supernatant induced by LPS-treatment was inhibited by SCFAs mix, but not single SCFA. The relative mRNA level was normalized to GAPDH mRNA. (b)High expression of iNOS mRNA in BV-2 cells induced by LPS-treatment was inhibited by SCFAs mix. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD,N=6-8,*P<0.05,**P<0.01, ***P<0.001.

    2.3 SCFAs mix可以降低LPS刺激的BV-2细胞内促炎因子和炎症小体的产生

    促炎因子(TNF-α和IL-6)和炎症小体(NLRP3)在炎症的产生中起重要作用,是小胶质细胞参与炎症反应的重要介质. 为了研究SCFAs mix是否可以抑制关键炎症介质的产生,我们检测了上述因子的释放和表达情况. ELISA结果显示,与空白组相比,LPS组细胞上清液中的TNF-α和IL-6显著上升(图3a-b,P<0.001);qRT-PCR结果显示,LPS组BV-2细胞内TNF-α、IL-6和NLRP3在mRNA水平的表达也明显增高(图3c-e,P<0.001). 而给予SCFAs mix处理(LPS+SCFAs mix组)可以有效抑制TNF-α和IL-6的释放,并降低细胞内TNF-α、IL-6和NLRP3的水平(图3a-e).

    Fig. 3 Effects of SCFAs mix on the secretion or expression of proinflammatory cytokines (TNF-α,IL-6) and the inflammasome (NLRP3) of BV-2 cells under LPS stimulation

    NOTE: (a,b)High release of TNF-α and IL-6 protein into the supernatant of BV-2 cells culture medium induced by LPS-stimulation were inhibited by SCFAs mix. The expression of protein of TNF-α and IL-6 were determined by ELISA.(c-e)High expression of TNF-α,IL-6 and NLRP3 mRNA in BV-2 cells induced by LPS-stimulation were inhibited by SCFAs mix. The relative mRNA level was normalized to GAPDH mRNA. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD,N=6,*P<0.05,**P<0.01,***P<0.001.

    2.4 SCFAs mix通过抑制小胶质细胞的TLR4-NF-κB通路发挥抑炎作用

    为了进一步探究SCFAs mix抑制LPS诱发的BV-2细胞炎症反应的机制,我们通过Western blot检测了BV-2细胞内TLR4炎症通路的重要分子:TLR4、MyD88、TRAF6和NF-κB的表达(图4). 结果表明,LPS刺激使BV-2细胞内上述分子的表达均显著上升,而当给予SCFAs mix处理后,BV-2细胞内上述分子的表达均下降(图4). 这表明SCFAs mix可能是通过TLR4-MyD88-TRAF6-NF-κB通路发挥其抑制炎症的作用.

    Fig. 4 SCFAs mix alleviates LPS-induced neuroinflammation by suppressing the TLR4/MyD88 /TRAF6/NF-κB signaling pathway

    NOTE: (a)Representative Western blot for TLR4, MyD88, TRAF6 and NF-κB expression of BV-2 cells. (b-e)LPS-induced high expression of TLR4(b), MyD88(c), TRAF6(d) and NF-κB(e) were suppressed by SCFAs mix treatment in BV-2 cells. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD, N=6, *P<0.05, **P<0.01, ***P<0.001.

    3 讨论

    研究表明,在神经炎症相关的神经系统疾病的病理进展中,小胶质细胞的激活可以释放促炎因子,这些促炎因子会加重神经元的损伤、甚至导致神经元的死[17];另一方面,神经元的损伤又会促进小胶质细胞释放更多的神经毒性因子,造成恶性循[18]. 因此抑制小胶质细胞激活引发的神经炎症可能是减少神经元死亡的潜在治疗策略.

    SCFAs受体缺陷的无菌小鼠脑内的小胶质细胞存在缺陷,说明SCFAs对小胶质细胞的成熟起重要作[19]. SCFAs在某些神经炎症参与的神经系统疾病中也可能起作用:与健康的研究对象相比,多发性硬化病人粪便中某些产SCFAs的细菌数量相对降[20];帕金森病人粪便中SCFAs的浓度与健康的研究对象相比更低,各SCFAs的比例也发生了变[10]. 这些提示我们探讨不同浓度SCFAs对小胶质细胞及其炎症反应的影响和作用机制.

    我们的研究以LPS刺激的小胶质细胞BV-2细胞系为体外神经炎症模型,通过细胞活力实验和抑制炎症因子(NO)释放实验寻找可以抑制小胶质细胞炎症反应的SCFAs mix的安全、有效的最佳浓度组合. 结果表明,与LPS组及单一SCFA处理组相比,通过SCFAs mix的处理,可以有效降低LPS刺激BV-2细胞产生的NO,降低细胞内TNF-α、IL-6和炎症小体NLRP3的水平、并降低促炎因子向细胞外的释放,这表明适宜浓度的SCFAs mix对于LPS诱导的小胶质细胞炎症反应有一定的治疗作用. 而不适宜浓度的SCFAs,如在帕金森病和自闭症患者粪便中检测到的SCFAs水平异常,可能是导致神经炎症及神经元死亡的重要因素. 机体适宜浓度及比例的SCFAs是一种对抗神经炎症的保护机制. SCFAs mix的抑炎作用在其他疾病中也有研究:研究人员对炎症相关的结直肠癌模型小鼠喂食乙酸盐、丙酸盐、丁酸盐混合物后发现,结肠组织SCFAs的受体GPR43表达明显升高,同时,肿瘤细胞的增殖受到抑制,结肠TNF-α、IL-6等炎症因子也都明显降低. 因此,喂食SCFAs的抑癌和抑炎作用可能与体内SCFAs浓度升高、从而激活了结肠GPR43受体相[21]. 在本研究中,特定浓度的单一SCFA可能由于未能激活特定受体而无法发挥抑炎效应,而GPR43、GPR109a等SCFAs受体均可以被多种SCFAs激[22],因此与单一SCFA终浓度相同的多种SCFAs混合物就可能协同激活特定受体,从而实现了对下游炎症通路的调控. 具体机制有待我们的后续实验进一步阐明.

    LPS是细菌内毒素,常被用于诱导小胶质细胞的神经炎症模[23]. LPS可以识别小胶质细胞上的TLR4受体,通过MyD88依赖和MyD88非依赖通路激活NF-κB,介导炎症反[24],而NF-κB是最重要的促炎因子调节基因之[23,25]. 研究表明,在小胶质细胞中抑制NF-κB转录因子的活性后可以抑制iNOS的表达以及促炎因子如TNF-α、IL-6的表[26,27]. 因此,在我们的研究中,SCFAs mix可能是通过抑制TLR4-MyD88-TRAF6-NF-κB通路、进而抑制iNOS、TNF-α和IL-6的表达实现抑炎效果的. 我们的研究还发现,SCFAs mix对LPS诱导的炎症小体NLRP3的增高也有抑制作用,NLRP3炎症小体是小胶质细胞介导炎症反应的关键因[28],SCFAs mix也可能通过NLRP3-Caspase 1途径起到抑制炎症的效果.

    综上所述,安全、有效的适宜浓度SCFAs mix通过对TLR4-MyD88-TRAF6-NF-κB通路的调控可以抑制LPS刺激的小胶质细胞产生iNOS、TNF-α和IL-6,并且抑制了炎症小体NLRP3的表达,从而发挥抑制小胶质细胞介导的神经炎症的作用;而对体内SCFAs的精确干预可能会对神经炎症有防治意义.

    CUI Chun. E-mail: cuichun@jiangnan.edu.cn

    SHEN Yan-Qin. E-mail: shenyanqin@jiangnan.edu.cn

  • 参 考 文 献

    • 1

      Gill S R, Pop M, Deboy R T, et al. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778): 1355-1359

    • 2

      Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65

    • 3

      De J R D-P V, Forlenza A S, Forlenza O V. Relevance of gutmicrobiota in cognition, behaviour and Alzheimer's disease. Pharmacol Res, 2018, 136: 29-34

    • 4

      Sharon G, Sampson T R, Geschwind D H, et al. The central nervous system and the gut microbiome. Cell, 2016, 167(4): 915-932

    • 5

      Sun M F, Shen Y Q. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev, 2018, 45: 53-61

    • 6

      Petschow B, Dore J, Hibberd P, et al. Probiotics, prebiotics, and the host microbiome: the science of translation. Ann N Y Acad Sci, 2013, 1306(1): 1-17

    • 7

      Hamer H M, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther, 2008, 27(2): 104-119

    • 8

      Haghikia A, Jorg S, Duscha A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 2016, 44(4): 951-953

    • 9

      Wang L, Christophersen C T, Sorich M J, et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci, 2012, 57(8): 2096-2102

    • 10

      Unger M M, Spiegel J, Dillmann K U, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord, 2016, 32: 66-72

    • 11

      Sun M F, Zhu Y L, Zhou Z L, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: Gut microbiota, glial reaction and TLR4/TNF-alpha signaling pathway. Brain Behav Immun, 2018, 70: 48-60

    • 12

      Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol, 2017, 35: 441-468

    • 13

      Dai J N, Zong Y, Zhong L M, et al. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. Plos One, 2011, 6(7): e21891

    • 14

      Martindale J L, Holbrook N J. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 2002, 192(1): 1-15

    • 15

      Salter M W, Stevens B. Microglia emerge as central players in brain disease. Nat Med, 2017, 23(9): 1018-1027

    • 16

      Lu Y, Fan C, Li P, et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep, 2016, 6: 37589

    • 17

      Block M L, Zecca L, Hong J S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 2007, 8(1): 57-69

    • 18

      Frank-Cannon T C, Alto L T, Mcalpine F E, et al. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener, 2009, 4: 47

    • 19

      Erny D, Hrabe De Angelis A L, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 2015, 18(7): 965-977

    • 20

      Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. Plos One, 2015, 10(9): e0137429

    • 21

      Tian Y, Xu Q, Sun L, et al. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. J Nutr Biochem, 2018, 57: 103-109

    • 22

      Kasubuchi M, Hasegawa S, Hiramatsu T, et al. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 2015, 7(4): 2839-2849

    • 23

      Fu S P, Li S N, Wang J F, et al. BHBA suppresses LPS-induced inflammation in BV-2 cells by inhibiting NF-kappaB activation. Mediators Inflamm, 2014, 2014: 983401

    • 24

      Molteni M, Gemma S, Rossetti C. The role of Toll-like receptor 4 in infectious and noninfectious inflammation. Mediators Inflamm, 2016, 2016: 6978936

    • 25

      Couturier J, Stancu I C, Schakman O, et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J Neuroinflammation, 2016, 13: 20

    • 26

      Baldwin A S, Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996, 14: 649-683

    • 27

      Moon D O, Park S Y, Lee K J, et al. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol, 2007, 7(8): 1092-1101

    • 28

      Gustin A, Kirchmeyer M, Koncina E, et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. Plos One, 2015, 10(6): e0130624

崔春
申延琴
GeneSequences(5'-3')Length / bp
iNOS(F) CCTCCTCCACCCTACCAAGT160
(R)CACCCAAAGTGCTTCAGTCA
TNF-α(F) CGTCAGCCGATTTGCTATCT167
(R)CGGACTCCGCAAAGTCTAAG
IL-6(F) AACGATGATGCACTTGCAGA244
(R)GAGCATTGGAAATTGGGGTA
NLRP3(F) ATGCTGCTTCGACATCTCCT157
(R)AACCAATGCGAGATCCTGAC
GAPDH(F) AGGTCGGTGTGAACGGATTTG120
(R) TGTAGACCATGTAGTTGAGGTCA
html/pibbcn/20180310/alternativeImage/d1e30016-f2fe-4608-8e32-f62d5b88da25-F001.jpg
html/pibbcn/20180310/alternativeImage/d1e30016-f2fe-4608-8e32-f62d5b88da25-F002.jpg
html/pibbcn/20180310/alternativeImage/d1e30016-f2fe-4608-8e32-f62d5b88da25-F003.jpg
html/pibbcn/20180310/alternativeImage/d1e30016-f2fe-4608-8e32-f62d5b88da25-F004.jpg

Table 1 The primer sequences of iNOS,TNF-α,IL-6,NLRP3 and GAPDH

Fig. 1 Effects of single SCFA with different concentrations and SCFAs mix on the BV-2 cells viability

Fig. 2 Effects of SCFAs mix on secretion of NO and the expression of iNOS of BV-2 cells under LPS treatment

Fig. 3 Effects of SCFAs mix on the secretion or expression of proinflammatory cytokines (TNF-α,IL-6) and the inflammasome (NLRP3) of BV-2 cells under LPS stimulation

Fig. 4 SCFAs mix alleviates LPS-induced neuroinflammation by suppressing the TLR4/MyD88 /TRAF6/NF-κB signaling pathway

image /

无注解

(a, b, c)CCK8 Kit was used to test the toxicity of different concentrations of sodium acetate (NaA), sodium propionate (NaP) and sodium butyrate (NaB) on BV-2 cells after 24 h-treatment. (d)CCK8 Kit was used to test the toxicity of different concentrations of NaA, NaP, NaB and SCFAs mix on BV-2 cells after 12 h-treatment. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD, N=5-6, *P<0.05, **P<0.01, ***P<0.001.

(a)High release of NO from BV-2 cells into the culture supernatant induced by LPS-treatment was inhibited by SCFAs mix, but not single SCFA. The relative mRNA level was normalized to GAPDH mRNA. (b)High expression of iNOS mRNA in BV-2 cells induced by LPS-treatment was inhibited by SCFAs mix. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD,N=6-8,*P<0.05,**P<0.01, ***P<0.001.

(a,b)High release of TNF-α and IL-6 protein into the supernatant of BV-2 cells culture medium induced by LPS-stimulation were inhibited by SCFAs mix. The expression of protein of TNF-α and IL-6 were determined by ELISA.(c-e)High expression of TNF-α,IL-6 and NLRP3 mRNA in BV-2 cells induced by LPS-stimulation were inhibited by SCFAs mix. The relative mRNA level was normalized to GAPDH mRNA. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD,N=6,*P<0.05,**P<0.01,***P<0.001.

(a)Representative Western blot for TLR4, MyD88, TRAF6 and NF-κB expression of BV-2 cells. (b-e)LPS-induced high expression of TLR4(b), MyD88(c), TRAF6(d) and NF-κB(e) were suppressed by SCFAs mix treatment in BV-2 cells. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD, N=6, *P<0.05, **P<0.01, ***P<0.001.

  • 参 考 文 献

    • 1

      Gill S R, Pop M, Deboy R T, et al. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778): 1355-1359

    • 2

      Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65

    • 3

      De J R D-P V, Forlenza A S, Forlenza O V. Relevance of gutmicrobiota in cognition, behaviour and Alzheimer's disease. Pharmacol Res, 2018, 136: 29-34

    • 4

      Sharon G, Sampson T R, Geschwind D H, et al. The central nervous system and the gut microbiome. Cell, 2016, 167(4): 915-932

    • 5

      Sun M F, Shen Y Q. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev, 2018, 45: 53-61

    • 6

      Petschow B, Dore J, Hibberd P, et al. Probiotics, prebiotics, and the host microbiome: the science of translation. Ann N Y Acad Sci, 2013, 1306(1): 1-17

    • 7

      Hamer H M, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther, 2008, 27(2): 104-119

    • 8

      Haghikia A, Jorg S, Duscha A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 2016, 44(4): 951-953

    • 9

      Wang L, Christophersen C T, Sorich M J, et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci, 2012, 57(8): 2096-2102

    • 10

      Unger M M, Spiegel J, Dillmann K U, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord, 2016, 32: 66-72

    • 11

      Sun M F, Zhu Y L, Zhou Z L, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: Gut microbiota, glial reaction and TLR4/TNF-alpha signaling pathway. Brain Behav Immun, 2018, 70: 48-60

    • 12

      Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol, 2017, 35: 441-468

    • 13

      Dai J N, Zong Y, Zhong L M, et al. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. Plos One, 2011, 6(7): e21891

    • 14

      Martindale J L, Holbrook N J. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 2002, 192(1): 1-15

    • 15

      Salter M W, Stevens B. Microglia emerge as central players in brain disease. Nat Med, 2017, 23(9): 1018-1027

    • 16

      Lu Y, Fan C, Li P, et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep, 2016, 6: 37589

    • 17

      Block M L, Zecca L, Hong J S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 2007, 8(1): 57-69

    • 18

      Frank-Cannon T C, Alto L T, Mcalpine F E, et al. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener, 2009, 4: 47

    • 19

      Erny D, Hrabe De Angelis A L, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 2015, 18(7): 965-977

    • 20

      Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. Plos One, 2015, 10(9): e0137429

    • 21

      Tian Y, Xu Q, Sun L, et al. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. J Nutr Biochem, 2018, 57: 103-109

    • 22

      Kasubuchi M, Hasegawa S, Hiramatsu T, et al. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 2015, 7(4): 2839-2849

    • 23

      Fu S P, Li S N, Wang J F, et al. BHBA suppresses LPS-induced inflammation in BV-2 cells by inhibiting NF-kappaB activation. Mediators Inflamm, 2014, 2014: 983401

    • 24

      Molteni M, Gemma S, Rossetti C. The role of Toll-like receptor 4 in infectious and noninfectious inflammation. Mediators Inflamm, 2016, 2016: 6978936

    • 25

      Couturier J, Stancu I C, Schakman O, et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J Neuroinflammation, 2016, 13: 20

    • 26

      Baldwin A S, Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996, 14: 649-683

    • 27

      Moon D O, Park S Y, Lee K J, et al. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol, 2007, 7(8): 1092-1101

    • 28

      Gustin A, Kirchmeyer M, Koncina E, et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. Plos One, 2015, 10(6): e0130624