en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
KahnS E, HullR L, UtzschneiderK M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121): 840-846
参考文献 2
BodenG. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997, 46(1): 3-10
参考文献 3
RodenM, PriceT B, PerseghinG, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest, 1996, 97(12): 2859-2865
参考文献 4
LumengC N, SaltielA R. Inflammatory links between obesity and metabolic disease. J Clin Invest, 2011, 121(6): 2111-2117
参考文献 5
MussoG, GambinoR, CassaderM. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med, 2011, 62: 361-380
参考文献 6
FrazierT H, DibaiseJ K, McclainC J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr, 2011, 35(5 Suppl): 14S-20S
参考文献 7
ZhouF, ZhangY, ChenJ, et al. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol, 2016, 791: 735-740
参考文献 8
EhrmannR L, GeyG O. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J Natl Cancer Inst, 1956, 16(6): 1375-1403
参考文献 9
VolpattiL R, YetisenA K. Commercialization of microfluidic devices. Trends Biotechnol, 2014, 32(7): 347-350
参考文献 10
SackmannE K, FultonA L, BeebeD J. The present and future role of microfluidics in biomedical research. Nature, 2014, 507(7491): 181-189
参考文献 11
BhatiaS N, IngberD E. Microfluidic organs-on-chips. Nat Biotechnol, 2014, 32(8): 760-772
参考文献 12
DehneE M, HasenbergT, MarxU. The ascendance of microphysiological systems to solve the drug testing dilemma. Future Sci OA, 2017, 3(2): FSO185
参考文献 13
MaschmeyerI, LorenzA K, SchimekK, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip, 2015, 15(12): 2688-2699
参考文献 14
MillerP G, ShulerM L. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol Bioeng, 2016, 113(10): 2213-2227
参考文献 15
OleagaC, BernabiniC, SmithA S, et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep, 2016, 6: 20030
参考文献 16
LuS, DuganC E, KennedyR T. Microfluidic chip with integrated electrophoretic immunoassay for investigating cell-cell interactions. Anal Chem, 2018, 90(8): 5171-5178
参考文献 17
NguyenD T, Van NoortD, JeongI K, et al. Endocrine system on chip for a diabetes treatment model. Biofabrication, 2017, 9(1): 015021
参考文献 18
BauerS, Wennberg HuldtC, KanebrattK P, et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci Rep, 2017, 7(1): 14620
参考文献 19
GomesJ M G, CostaJ A, AlfenasR C G. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism, 2017, 68: 133-144
参考文献 20
Arana MdeJ, VallespiM G, ChineaG, et al. Inhibition of LPS-responses by synthetic peptides derived from LBP associates with the ability of the peptides to block LBP-LPS interaction. J Endotoxin Res, 2003, 9(5): 281-291
参考文献 21
DaiY, DaiD, WangX, et al. DPP-4 inhibitors repress NLRP3 inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway. Cardiovasc Drugs Ther, 2014, 28(5): 425-432
参考文献 22
KnudsenL B, NielsenP F, HuusfeldtP O, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem, 2000, 43(9): 1664-1669
参考文献 23
KrasnerN M, IdoY, RudermanN B, et al. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. Plos One, 2014, 9(5): e97554
参考文献 24
GonzalezL L, GarrieK, TurnerM D. Type 2 diabetes - an autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(11): 3805-3823
参考文献 25
ShimodaM, KandaY, HamamotoS, et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia, 2011, 54(5): 1098-1108
参考文献 26
ShirakiA, OyamaJ, KomodaH, et al. The glucagon-like peptide 1 analog liraglutide reduces TNF-alpha-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis, 2012, 221(2): 375-382
目录 contents

    摘要

    2型糖尿病是一种全身性代谢性疾病,通常涉及多个组织和器官之间因相互作用而导致胰岛素抵抗以及胰岛功能衰竭的最终状态. 本文建立了脂肪3D器官芯片、胰岛3D器官芯片及其联合应用的模型,可对2型糖尿病的发病过程和药物治疗进行多重评价. 设计了一种双通道复合式微流控芯片,将脂肪器官分泌的细胞因子以及脂多糖(LPS)共同引入胰岛器官的芯片培养室,芯片通道连续灌流以模拟体液交换. 通过分析脂肪细胞和胰岛细胞的脂联素(ADP)、白介素6(IL-6)和白介素1β(IL-1β)等炎症因子的分泌情况,以及胰岛细胞的胰岛素分泌能力与对照组细胞相比较所产生的变化,分析胰岛细胞的损伤情况以及系统内炎症反应情况. 结果表明,LPS可以引起胰岛细胞的炎症反应以及功能性变化,且脂肪组织的存在能一定程度上加重这种反应,利拉鲁肽(liraglutide)通过减少脂肪和胰岛细胞的炎症反应,能够减轻LPS以及脂肪组织对胰岛细胞的刺激,以改善胰岛细胞的功能. 基于微流控芯片的脂肪器官和胰岛器官联合应用的平台可应用于由不同组织之间的相互作用而产生的多器官疾病反应,有望成为2型糖尿病等全身代谢类疾病药物评价的有力工具.

    Abstract

    Type 2 diabetes is a systematic metabolic disease that involves complex interplay of multiple organs, of which adipose tissue and pancreatic islet are two key organs related to its pathogenesis. In this paper, models of fat 3D organ chip, islet 3D organ chip and their combination were established, which can be used to study the pathogenesis and to assess the mechanism of hypoglycemic agents for treatment of type 2 diabetes. A two-channel composite microfluidic chip was designed to study the effects of lipopolysaccharide (LPS) first on fat cells in one chip chamber and on islet cell in a seperate chip culture chamber. The chip channel was continuously perfused to simulate constantly changes in contents of the body fluid. The secretion of inflammatory factors such as adiponectin (ADP), interleukin-6 (IL-6) and interleukin-1β (IL-1β) from adipocytes and islet cells, the insulin secretion from islet cells, and islet cell survival rate in medium flashed with LPS or LPS/liraglutide were compared with those from cells flashed with the control medium. The results showed that LPS decreased ADP production from fat 3D organ chip, in islet 3D organ chip, and in fat/islet 3D double organ chip, LPS promoted IL-1β and IL-6 production from fat 3D organ chip and 3D fat/islet double organ chip, but not from islet 3D organ chip. Liraglutide could improve the production of ADP, and decreased IL-1β, IL-6 from fat 3D organ chip and fat/islet 3D double organ chip, but no effects on islet 3D organ chip. LPS and liraglutide separate or in combination had no effect on insulin production from islet 3D organ chip, but LPS decreased insulin production from fat/islet 3D double organ chip, liraglutide improved the decreased insulin production from fat/islet double organ chip due to LPS. The platform for the combined application of the fat organ and the islet organ based on the microfluidic chip can be applied to the multi-organ disease reaction caused by the interaction between different tissues and is expected to be a powerful tool for drug evaluation of systemic metabolic diseases such as type 2 diabetes.

    刘立朝. Tel: 17709870297, E-mail:59610527@qq.com

    近年来,由于全球肥胖或超重人群数量的逐年增加,导致胰岛素抵抗和2型糖尿病(type 2 diabetes mellitus,T2DM)等代谢性疾病的发病率明显上升. 在T2DM中,肥胖和超重被认为是重要的环境因素,是发展中国家糖尿病发病率急剧升高的主要原[1]. 游离脂肪酸(NEFA)的释放可能是调节胰岛素敏感性的最关键因素. 在肥胖和2型糖尿病患者中观察到NEFA水平增[2],胰岛素抵抗发生在人体血浆NEFA水平急剧增加的数小时[3]. 慢性低度炎症是肥胖诱导的胰岛素抵抗的重要原[4]. 无论是动物实验还是人体研究均显示,脂多糖(LPS)作为一种抗原,可以激活免疫系统,在与慢性炎症反应相关的代谢性疾病比如肥胖、胰岛素抵抗、2型糖尿病以及血脂代谢异常的病理生理过程中发挥重要作[5,6]. 胰高血糖素样肽1(GLP-1)是由小肠分泌的一种肠促胰素,可以刺激胰岛素的释放,2型糖尿病患者存在GLP-1分泌的下降. 有研究表明,GLP-1类似物具有抗炎和免疫调节的作[7].

    目前关于2型糖尿病药物体外评价方式多采用传统的二维细胞培养方法,随着研究的深入,二维细胞培养技术不断得到改进,但这种单层、平板式的体外静态细胞培养平台终是难以重现体内复杂的三维生理环境. 为了能在体外重现细胞-细胞、细胞-细胞间质相互作用的复杂过程,体外三维(3D)细胞培养技术得到了广泛的应[8]. 微流控芯片技术因具有结构设计灵活和规模集成的特点逐渐成为细胞研究的重要手段,是组织、器官仿真的有力工具,广泛应用于体外疾病诊断和药物筛[9,10]. 模仿某一组织或器官的生理特征或功能的微流控芯片被称之为“器官芯片(organ-on-chip)[11],这种细胞培养平台通常具有毫米级别的细胞培养室,能提供可控的细胞培养环境,实现多种细胞长期共培养. 全身性疾病通过破坏两个或更多器官之间的稳态而发展,为了模拟这种器官之间的相互作用,微流控芯片平台旨在开发在独立的培养隔室中进行不同类器官的共培养,以微流体通道相互连[12,13,14,15]. Lu[16]用一种微流体系统,通过将脂肪细胞与胰岛细胞相连接来模拟类似于体内循环的相互作用. 结果显示,将β-细胞暴露于由脂肪细胞所产生的全部分泌物中产生的影响,比相当量的游离脂肪酸对β-细胞产生的影响更复杂. 也就是说,在进行2型糖尿病的相关研究中,由于各器官之间相互作用而产生的影响是不能忽视的. 已有2型糖尿病的相关芯片研究,小肠-胰[17]联用芯片、肝脏-胰[18]联用芯片均从不同角度评价了与2型糖尿病相关的器官串扰对彼此功能的影响. 脂肪是糖尿病发展进程中非常重要的组织之一,尚未见到将脂肪与胰岛共同作用以研究二者在病理状态下的相互影响以及药物评价的研究报道.

    我们用3T3-L1小鼠脂肪细胞和Min6小鼠胰岛瘤细胞,组成脂肪3D器官芯片、胰岛3D器官芯片及其共培养芯片,以模拟它们的生理学串扰,以观察由脂肪组织生物来源的炎症因子驱动的胰岛细胞炎症反应;另一方面,我们在不同层面多重评价了利拉鲁肽对胰岛细胞胰岛素分泌以及炎症反应的影响. 该芯片系统是进一步发展成可靠的模拟人类T2DM病理生理模型的基础.

  • 1 材料与方法

  • 1.1 材料

  • 1.1.1 实验材料

    本实验中所涉及的细胞系:3T3-L1细胞(小鼠前脂肪细胞)购于中国医学科学院基础医学研究所细胞资源中心;Min6细胞(小鼠胰岛瘤细胞系)购于北纳生物公司.

    本实验中所使用的35 mm细胞培养皿和细胞冻存管购自美国康宁公司(Corning Incorporated);1 μm孔径聚碳酸酯多孔膜购于美国沃特曼公司;蠕动泵软管购自法国圣戈班公司,内径0.25 mm,壁厚0.8 mm;蠕动泵购自英国WatsonMarlow公司.

  • 1.1.2 实验试剂

    小牛血清NCBS、胎牛血清FBS购自美国Gibco公司;IMDM培养基购自中国医学科学院基础医学研究所细胞资源中心;青霉素/链霉菌素购自美国Hyclone公司;3-异丁基-l-甲基黄嘌呤(IBMX)、地塞米松、葡萄糖、脂多糖(LPS)购自Sigma公司;利拉鲁肽(liraglutide)注射液购自Novonordisk公司;mouse INS ELISA KIT购自上海朗顿生物公司;mouse IL-6 ELISA KIT、mouse IL-1β ELISA KIT、mouse ADP ELISA KIT购自Abbkine公司;进口牛胰岛素、油红O染色液购自北京索莱宝公司;KRBH缓冲液购自Coolaber公司;基底膜样物质(BME)(type 2)、BME(stem cell)购自Biotechne公司;钙黄绿素(Calcein-AM)、碘化丙啶(PI)购自凯基生物科技发展有限公司.

    SU-8 3035光刻胶购自MICROCHEM公司;异丙醇、乳酸乙酯购自国药集团化学试剂有限公司;聚二甲基硅氧烷(PDMS)A液、PDMS固化剂购自SYLGARD公司;单面抛光硅片购自哈尔滨特博科技有限公司.

  • 1.2 实验方法

  • 1.2.1 微流控芯片的制作

    本文中描述的微流控芯片装置均使用经典的软光刻方法制作,材质为PDMS,制作过程主要包括掩膜设计、模板制作和芯片加工,完成后续裁剪、打孔等处理. PDMS垫片浸泡于75% (v/v)乙醇溶液中,抽真空使通道内注满乙醇溶液,消毒后于无菌台中晾干待用.

  • 1.2.2 细胞系的培养及分化

    3T3-L1小鼠前脂肪细胞,用含10%小牛血清的IMDM培养液在5% CO2培养箱中培养,每2~3 d更换一次培养液,显微镜下观察细胞的生长状况,细胞融合度达到80%时,用0.25%胰酶消化传代.

    培养至接触抑制2 d后,第1天开始对3T3-L1进行诱导分化,更换诱导液Ⅰ(含10% FBS、10 g/L 胰岛素、1 μmol/L地塞米松、0.5 mmol/L IBMX的IMDM培养基). 第3天,吸弃旧的培养基,更换诱导液Ⅱ(含10% FBS、10 g/L胰岛素的IMDM培养基)培养. 第5天,吸弃旧的培养基,更换诱导液Ⅲ(含10% FBS的IMDM培养基)培养. 第7天和第9天用诱导液Ⅲ换液,至第11天收集细胞,使用油红O染色液,按照试剂盒说明书进行染色,倒置显微镜下拍照,有85%以上的细胞有红色油滴产生即证明脂肪细胞分化成功.

    Min6胰岛瘤细胞,用含10% FBS的IMDM培养液在5% CO2培养箱中培养,每2~3 d更换一次培养液,显微镜下观察细胞的生长状况,细胞融合度达到80%时,用0.5%胰酶消化传代.

  • 1.2.3 细胞在芯片的加载和培养

    培养至对数生长期的3T3-L1前脂肪细胞和Min6胰岛瘤细胞分别使用0.25%胰蛋白酶和0.5%胰酶消化,1 000 r/min离心5 min,用移液枪小心吸弃上清. 将细胞沉淀分别与BME(stem cell)和BME(type 2)充分混匀,调整细胞密度为 1×106/ml和1×107/ml. 操作要轻柔,以免混合物中产生气泡难于除去. 使用移液枪小心加入细胞与BME(stem cell)以及BME(type 2)的混合物于脂肪细胞和胰岛细胞的培养室内,脂肪细胞每个培养室50 μl,胰岛细胞每个培养室70 μl,芯片转移至恒温细胞培养箱内放置30~45 min,待其凝固成胶状后在培养室上方滴加1 ml培养液,此过程注意无菌操作. 放入温度为37℃、CO2浓度为5%、湿度为95%且气体交换良好的恒温细胞培养箱内稳定培养12 h. 脂肪芯片在48 h后,分别在第0、2、4、6、8天更换Ⅰ、Ⅱ、Ⅲ培养液进行诱导分化,用移液枪小心将培养室上方的旧培养液吸弃,加入1 ml新的诱导培养基. 第10天将芯片装置拆下取出BME与细胞混合物进行油红O染色判断细胞分化情况. 分化完成后细胞培养室上部铺加一层孔径为10 μm的聚碳酸酯膜. 最后将芯片流体通道层对应放置于最上层,芯片使用亚克力板固定,并加载蠕动泵调整液体流速,脂肪3D器官芯片在 0.3 μl/min,胰岛3D器官芯片在0.6 μl/min,脂肪-胰岛联合芯片在0.6 μl/min条件下进行循环流动培养.

  • 1.2.4 脂肪3D器官芯片和胰岛3D器官芯片

    在两种不同的流速(0.3 μl/min和0.6 μl/min)下分别对脂肪芯片和胰岛芯片进行流动培养. 在培养期间将细胞培养物置于37℃,5% CO2细胞培养箱中. 对照组通入正常培养液,LPS组通入含有 1 mg/L LPS的培养液,利拉鲁肽组先通入含有 100 μmol/L利拉鲁肽12 h后,再通入含有1 mg/L LPS的培养液,24 h后收集上清液.

  • 1.2.5 脂肪-胰岛联合芯片

    在脂肪-胰岛联合芯片上的两个单独的室中分别培养分化好的3T3-L1和Min6细胞,同时通过内部通道将3T3-L1室的出口连接到Min6室的入口. 对照组通入正常培养液,LPS组通入含有1 mg/L LPS的培养液,利拉鲁肽组先通入含有100 μmol/L利拉鲁肽12 h后,再通入含有1 mg/L LPS的培养液,24 h后收集上清液.

  • 1.2.6 活/死细胞染色

    通过使用钙黄绿素/碘化丙啶(Calcein-AM/PI)进行活/死细胞染色以评估细胞活力. Calcein是一种膜非渗透性极性分子,可以被滞留在细胞内,发出强烈的绿色荧光. 死细胞内不含酯酶,所以Calcein-AM仅可以用于对活细胞进行标记. PI是一种细胞核染色试剂,可以对死细胞进行荧光标记,发出红色荧光. Min6细胞在胰岛芯片上培养24 h、48 h后以及在脂肪-胰岛芯片上进行分组实验后,拆下芯片装置取出BME与细胞混合物,于无酚红空培养基中按照稀释100倍加入Calcein-AM/PI原液,避光放入细胞培养箱中45 min后,取出吸走混合液体,用PBS冲洗3遍,每次于摇床上震荡 5 min. 将染色后Min6细胞放置于倒置荧光显微镜下观察,操作过程应注意避光.

  • 1.2.7 胰岛素和炎症因子分泌

    炎症因子分泌测定实验的做法:收集流动培养24 h后的上清液,并按照说明书使用mouse IL-6 ELISA KIT、mouse IL-1β ELISA KIT、mouse ADP ELISA KIT进行分析.

    应用葡萄糖刺激的胰岛素分泌(GSIS)测定胰岛素分泌量:流动培养24 h后,在注射泵的推动下,以0.6 μl/min的流速从芯片进样口缓慢通入无糖KRBH溶液4 h;再次在注射泵的推动下,以 0.6 μl/min的流速从芯片进样口缓慢通入含 25.5 mol/L葡萄糖的KRBH缓冲液8 h;收集上清. 胰岛素的测定根据mouse INS ELISA KIT检测试剂盒说明书进行.

  • 1.2.8 统计学分析

    图像数据由Image ProPlus软件进行处理分析,数据展示为平均值±平均数标准误差,误差线表示组内标准误差;两组间比较采用Student T-检验进行分析,*P<0.05、**P<0.01、***P<0.005.

  • 2 结果与讨论

  • 2.1 单器官芯片和双器官芯片工艺设计

    设计搭建了3T3-L1脂肪3D器官芯片、Min6胰岛3D器官芯片(图1a)和3T3-L1&Min6脂肪-胰岛联合器官芯片(图1b). 脂肪3D器官芯片组织培养室直径6 mm,胰岛3D器官芯片组织培养室直径8 mm,培养室高度2 mm,流体通道宽度 0.5 mm,高度0.5 mm,通道与组织培养室之间有一层孔径为10 μm的聚碳酸酯膜,避免流体直接冲击到组织,通过在细胞培养过程中采用穿膜灌注装置实现组织上的轻微剪切应力,从而最小化组织脱离的可能性. 另外,使用通过多孔膜与细胞培养室分离的专用灌注室抑制了可能严重干扰细胞培养环境的气泡形成(图1c). 双器官芯片有平行的双通道,通过平分流体可以实现对两种组织不同剪切力的需求提供不同的流速. 本实验中,将包裹于BME中的三维3T3-L1置于包裹于BME中的三维Min6的腔室上游的隔室中. 在蠕动微泵实现连续脉动流,由于在体内的脂肪是不直接暴露或暴露于很低的剪切力下,因此设置平均流速为0.6 μl/min,此时流过脂肪组织的流速为0.3 μl/min,流过胰岛组织的流速为0.6 μl/min(图1d).

    Fig. 1 Single organ chip and double organ chip.

    NOTE: (a)3D view of assembled single organ chip device. (b)3D view of assembled dual organ chip device. (c)Schematic diagram of device fluid transport,highlighting two different transport processes:convective flow in the media channel and into the tissue cavity through pure diffusion of porous membrane. (d)Schematic diagram of co-culture:exchange flow of total medium circulation.

    我们开发了3种体外培养模型,并各在3个独立的实验中使用. 通过向培养基中添加LPS和利拉鲁肽(Li),模拟在体内发生炎症反应及利拉鲁肽作用. 随后,在相应时间点收集样品,用于测量循环培养基中的炎症因子和胰岛素. 评估炎症因子分泌量、胰岛素分泌能力及Min6凋亡情况,作为利拉鲁肽治疗效果的量度.

  • 2.2 3T3-L1脂肪3D器官芯片的构建以及对利拉鲁肽进行评价

    Fig. 2 Oil red O staining after 10d induced differentiation of 3T3-L1 under 3D static conditions

    NOTE: (a)10×,(b)20×.

    考虑到在体内脂肪细胞并不直接暴露于流体状况下,不直接受到流体剪切力所产生的影响,因此我们进行了在芯片上静态三维诱导分化脂肪细胞,此时在诱导分化10 d后可以明显观察到脂肪细胞分泌出更大更多的脂滴. 3T3-L1小鼠前脂肪细胞被BME包裹,两者之间可以形成三维结构,能够模拟人体内部脂肪细胞所处的微环境状态. 当85%以上的3T3-L1有脂滴分泌即为脂肪细胞分化成熟的标志(图2a,2b).

    Fig. 3 Fluorescence staining of Calcein-AM and PI after incubation for 24 h and 48 h on a Min6 chip under 3D flow conditions

    NOTE: (a)24 h;(b)48 h. Green:Calcein-AM;Red:PI.

  • 2.3 Min6胰岛3D器官芯片的构建以及对利拉鲁肽进行评价

    包裹于BME中的小鼠胰岛细胞瘤细胞(Min6)在芯片中三维流动培养24 h后可观察到生长状态仍良好(图3a),48 h后小鼠胰岛细胞瘤细胞(Min6)之间会相互聚集形成球体状结构(图3b). 小鼠胰岛细胞瘤细胞(Min6)被BME包裹,两者之间可以形成三维结构,能够模拟人体内部胰岛β细胞所处的微环境状态.

    Fig. 4 Fluorescence staining of Calcein-AM and PI after incubation for 24 h on Min6 chip and3T3-L1&Min6 chip of 3D flow culture under different conditions

    NOTE: Green:Calcein-AM;Red:PI.

  • 2.4 3T3-L1&Min6(脂肪&胰岛)联合器官芯片的构建以及利拉鲁肽作用

    Fig. 5 Min6 cell survival rate after incubation for 24 h on Min6 chip and 3T3-L1&Min6 chip of 3D flow culture under different conditions

    NOTE: For Min6 cell,Contol:Min6 cells were flashed with basic medium,LPS:Min6 cells were flashed with medium containing 1 mg/L LPS,and Li+LPS:MIN6 cells were flashed with 1mg/L LPS and 100 nmol/L liraglutide. For 3T3-L1&Min6 double organ chip,medium was similar to control,LPS,and Li+LPS as indicated for Min6 cells. Significant difference is determined using Student’s t-test:n=3,all values are means ±SEM. *P<0.05,**P<0.01,ns means no significant difference.

    单独的LPS刺激并不能够引起Min6细胞的细胞活力显著降低,但在3T3-L1存在下,能够明显加重这种刺激反应,在两种体系中均观察到利拉鲁肽能够明显改善这种细胞活力的降低情况 (图,).

    Fig. 6 The secretion of inflammatory factors in 3T3-L1 chip after 24 h of 3D flow culture under different conditions

    NOTE: (a)ADP,(b)IL-1β,(c)IL-6. Contol:3T3-L1 cells were flashed with basic medium,LPS:3T3-L1 cells were flashed with medium containing 1 mg/L LPS,Li+LPS:3T3-L1 cells were flashed with 1mg/L LPS and 100 nmol/L liraglutide. Significant difference is determined using Student’s t-test: n=3,all values are means ±SEM. *P<0.05,**P<0.01,***P<0.001.

    Fig. 7 Secretion of inflammatory factors and insulin from Min6 chip after 24 h of 3D flow culture under different conditions

    NOTE: (a)ADP,(b)IL-1β,(c)IL-6(d)Insulin. Contol:MIN6 cells were flashed with basic medium,LPS:MIN6 cells were flashed with medium containing 1 mg/L LPS,Li+LPS:MIN6 cells were flashed with 1 mg/L LPS and 100 nmol/L liraglutide. Significant difference is determined using Student’s t-test:n=3,all values are means ±SEM. *P<0.05,**P<0.01,***P<0.001, ns means no significant difference.

    Fig. 8 Secretion of inflammatory factors and insulin from 3T3-L1&Min6 chip after 24 h of 3D flow culture under different conditions

    NOTE: (a)ADP,(b)IL-1β,(c)IL-6,(d)Insulin. Contol:3T3-L1&Min6cells were flashed with basic medium,LPS:3T3-L1&Min6 cells were flashed with medium containing 1 mg/L LPS,and Li+LPS:3T3-L1&Min6 cells were flashed with 1mg/L LPS and 100 nmol/L liraglutide. Significant difference is determined using Student’s t-test:n=3, all values are means ±SEM. *P<0.05,**P<0.01,***P<0.001.

  • 2.5 讨论

    我们通过微流控细胞组织芯片研究发现,对单细胞组织芯片,LPS能刺激3T3-L1脂肪细胞促炎因子IL-1β和IL-6的水平明显增高,抗炎因子ADP水平明显下降,利拉鲁肽可显著改善LPS的这种作用(图6). 但LPS对Min6胰岛细胞炎症因子的影响不一致,LPS可显著降低ADP,而利拉鲁肽可以恢复LPS对ADP分泌的抑制作用,LPS以及利拉鲁肽对Min6细胞IL-1β及IL-6无影响,LPS可显著抑制Min6细胞胰岛素的分泌能力,利拉鲁肽对此作用无影响(图7). 对3T3-L1/Min6双细胞器官芯片,LPS可显著降低3T3-L1/Min6体系ADP分泌,促进IL-1β及IL-16的分泌,利拉鲁肽可显著纠正LPS这些不良的作用. LPS降低3T3-L1/Min6体系胰岛细胞的胰岛素分泌能力,利拉鲁肽可以显著纠正这种抑制作用(图8). 这些结果显示,LPS的致炎作用主要是通过作用于脂肪细胞,促进脂肪细胞促炎因子的分泌,对3T3-L1细胞和Min6细胞的抗炎因子ADP均有抑制作用. 在没有LPS对脂肪细胞因子的作用下,LPS虽然对Min6细胞的胰岛素分泌有影响,但这时没有看到利拉鲁肽对Min6细胞胰岛素分泌恢复的影响,而在3T3-L1/Min6双细胞器官芯片体系下,LPS通过作用于3T3-L1细胞,可能通过促炎因子(IL-β或/和IL-6或/和其他未研究因子)的作用显著抑制了Min6细胞胰岛素的分泌,而这时再给予利拉鲁肽,则可以显著改善LPS通过刺激3T3-L1细胞对Min6细胞胰岛素的分泌. LPS及利拉鲁肽分别对Min6单细胞微芯片中的Min6细胞生存能力没有影响,但是LPS可显著降低3T3-L1/Min6双细胞器官芯片中Min6细胞的生存率,这时利拉鲁肽可显著提高LPS对Min6细胞的生存率. 这提示肥胖胰岛素抵抗状态下的慢性低活度炎症可能是首先经过作用于脂肪细胞,进而通过脂肪细胞分泌的促炎因子或/和某些未知因子,作用于胰岛β细胞,促进胰岛β细胞的凋亡或降低胰岛β细胞的生存能力,导致糖尿病的发生. 利拉鲁肽的作用机制一部分可能是抑制慢性炎症因子对脂肪细胞炎症因子或某些因子的分泌作用,提高胰岛β细胞的生存能力或抑制其凋亡作用,进而改善2型糖尿病患者的血糖控制.

    LPS是革兰氏阴性细菌细胞壁的主要成分结构之一,也是革兰氏阴性细菌的主要致病因子. 与非糖尿病个体相比,2型糖尿病患者体内LPS水平增[19]. 在体内LPS需要和内毒素结合蛋白(LBP)结合形成LBP-LPS复合物,介导一系列的信号传导过程,激活体内慢性炎症反应过程,引起脂肪组织促炎因子的释放增加,加重胰岛素抵抗,最终影响胰腺β细胞功[20]. 本研究构建的Min6胰岛3D器官芯片,在加入LPS培养24 h后,与对照组相比较Min6细胞的细胞活力无明显下降,但是在3T3-L1/Min6联合器官芯片中可以观察到,在3T3-L1脂肪细胞作用下,LPS对Min6细胞的抑制作用明显加强,提示脂肪组织慢性低活度炎症状态在2型糖尿病的发病过程中发挥重要作用. 脂肪组织和胰腺组织之间的相互作用在2型糖尿病的病理生理过程中至关重要. 本研究构建的脂肪-胰岛多器官联用芯片可以模拟类似于体内各器官之间的相互影响. 与传统的细胞培养模式相比,是一种更接近仿生体系的模式,能够最大限度地模拟细胞在体内的生长环境,可以为研究者提供更好的研究方案.

    GLP-1是由肠道L细胞分泌的一种肠肽激素,可以通过其受体介导发挥生物效[21]. 利拉鲁肽是一种长效的GLP-1类似物,其经典的降糖机制包括抑制胰高血糖素的分泌、刺激胰岛素的分泌和延缓胃的排[22]. 有研究证实,利拉鲁肽具有抗炎、抗凋亡和抗氧化应激损伤的作[23]. 促炎因子分泌增加会导致胰岛内氧化应激增加以及淀粉样物质沉着,使得胰腺β细胞凋亡增加,胰岛素分泌功能受[24]. 利拉鲁肽拮抗氧化应激和抗炎作用的机体机制尚不完全清楚,目前有以下几种假设:a.利拉鲁肽与其受体结合后,能够激活磷酯酰肌醇3-激酶(PI3K)信号通路,PI3K信号通路被激活后可以显著增加糖尿病小鼠胰腺β细胞抗氧化基因的表达和减少内质网应激的发生,从而发挥其抗炎作[25];b.利拉鲁肽可以抑制葡萄糖刺激的促炎因子诱导性一氧化氮合成酶(iNOS)的活性和表达,抑制核因子κB(NF-κB)信号通路,减少机体慢性炎症的发生;c.烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的过度激活是机体氧化应激水平增加的重要机制,与糖尿病的发生发展密切相关,利拉鲁肽可以通过抑制NADPH氧化酶的活性,减少凋亡的发生,发挥抗炎和抗氧化的作[26]. 本研究结果显示,利拉鲁肽有可能通过拮抗LPS对脂肪细胞的慢性炎症反应,进而减少胰腺β细胞的凋亡,从而改善其分泌胰岛素的功能.

  • 3 结论

    本文设计开发了一种新型的、能够在不同层面对2型糖尿病药物进行多重评价的平台. 在这个更加仿生的平台上,我们可以发现LPS及利拉鲁肽对单细胞器官微芯片中脂肪细胞和胰岛细胞不同的作用,通过LPS及利拉鲁肽对双细胞器官微芯片中脂肪细胞和Min6细胞协同作用,观察到了LPS对双细胞作用的整体影响. 脂肪-胰岛联合芯片可以对药物作用进行更加综合的评价. 本文所开发的体外仿生平台有望为今后研究2型糖尿病病理过程以及药物评价提供新思路,有广阔的应用前景.

    LUO Yong. Tel:86-411-84986360, E-mail: yluo@dlut.edu.cn

    LIU Li-Chao. Tel:17709870297, E-mail: 59610527@qq. com

  • 参 考 文 献

    • 1

      Kahn S E, Hull R L, Utzschneider K M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121): 840-846

    • 2

      Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997, 46(1): 3-10

    • 3

      Roden M, Price T B, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest, 1996, 97(12): 2859-2865

    • 4

      Lumeng C N, Saltiel A R. Inflammatory links between obesity and metabolic disease. J Clin Invest, 2011, 121(6): 2111-2117

    • 5

      Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med, 2011, 62: 361-380

    • 6

      Frazier T H, Dibaise J K, Mcclain C J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr, 2011, 35(5 Suppl): 14S-20S

    • 7

      Zhou F, Zhang Y, Chen J, et al. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol, 2016, 791: 735-740

    • 8

      Ehrmann R L, Gey G O. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J Natl Cancer Inst, 1956, 16(6): 1375-1403

    • 9

      Volpatti L R, Yetisen A K. Commercialization of microfluidic devices. Trends Biotechnol, 2014, 32(7): 347-350

    • 10

      Sackmann E K, Fulton A L, Beebe D J. The present and future role of microfluidics in biomedical research. Nature, 2014, 507(7491): 181-189

    • 11

      Bhatia S N, Ingber D E. Microfluidic organs-on-chips. Nat Biotechnol, 2014, 32(8): 760-772

    • 12

      Dehne E M, Hasenberg T, Marx U. The ascendance of microphysiological systems to solve the drug testing dilemma. Future Sci OA, 2017, 3(2): FSO185

    • 13

      Maschmeyer I, Lorenz A K, Schimek K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip, 2015, 15(12): 2688-2699

    • 14

      Miller P G, Shuler M L. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol Bioeng, 2016, 113(10): 2213-2227

    • 15

      Oleaga C, Bernabini C, Smith A S, et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep, 2016, 6: 20030

    • 16

      Lu S, Dugan C E, Kennedy R T. Microfluidic chip with integrated electrophoretic immunoassay for investigating cell-cell interactions. Anal Chem, 2018, 90(8): 5171-5178

    • 17

      Nguyen D T, Van Noort D, Jeong I K, et al. Endocrine system on chip for a diabetes treatment model. Biofabrication, 2017, 9(1): 015021

    • 18

      Bauer S, Wennberg Huldt C, Kanebratt K P, et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci Rep, 2017, 7(1): 14620

    • 19

      Gomes J M G, Costa J A, Alfenas R C G. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism, 2017, 68: 133-144

    • 20

      Arana Mde J, Vallespi M G, Chinea G, et al. Inhibition of LPS-responses by synthetic peptides derived from LBP associates with the ability of the peptides to block LBP-LPS interaction. J Endotoxin Res, 2003, 9(5): 281-291

    • 21

      Dai Y, Dai D, Wang X, et al. DPP-4 inhibitors repress NLRP3 inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway. Cardiovasc Drugs Ther, 2014, 28(5): 425-432

    • 22

      Knudsen L B, Nielsen P F, Huusfeldt P O, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem, 2000, 43(9): 1664-1669

    • 23

      Krasner N M, Ido Y, Ruderman N B, et al. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. Plos One, 2014, 9(5): e97554

    • 24

      Gonzalez L L, Garrie K, Turner M D. Type 2 diabetes - an autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(11): 3805-3823

    • 25

      Shimoda M, Kanda Y, Hamamoto S, et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia, 2011, 54(5): 1098-1108

    • 26

      Shiraki A, Oyama J, Komoda H, et al. The glucagon-like peptide 1 analog liraglutide reduces TNF-alpha-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis, 2012, 221(2): 375-382

由岫

机 构:大连理工大学,大连 116000

Affiliation:Dalian University of Technology, Dalian 116000, China

张秀莉

机 构:苏州大学药学院,苏州 215123

Affiliation:College of Phrmaceutical Sciences, Soochow University, Suzhou 215123, China

罗勇

机 构:大连理工大学,大连 116000

Affiliation:Dalian University of Technology, Dalian 116000, China

角 色:通讯作者

Role:Corresponding author

电 话:0411-84986360

邮 箱:yluo@dlut.edu.cn

作者简介:罗勇. Tel: 0411-84986360, E-mail:yluo@dlut.edu.cn

刘立朝

机 构:大连医科大学附属第二医院,大连 116027

Affiliation:The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China

赵伟杰

机 构:大连理工大学,大连 116000

Affiliation:Dalian University of Technology, Dalian 116000, China

林炳承

机 构:中国科学院大连化学物理研究所,大连 16000

Affiliation:DalianInstitute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China

html/pibbcn/20180337/alternativeImage/80cda030-add6-4337-acfb-c85973068c0c-F003.png
html/pibbcn/20180337/alternativeImage/80cda030-add6-4337-acfb-c85973068c0c-F004.png
html/pibbcn/20180337/alternativeImage/80cda030-add6-4337-acfb-c85973068c0c-F005.png
html/pibbcn/20180337/alternativeImage/80cda030-add6-4337-acfb-c85973068c0c-F006.png
html/pibbcn/20180337/alternativeImage/80cda030-add6-4337-acfb-c85973068c0c-F007.png
html/pibbcn/20180337/alternativeImage/80cda030-add6-4337-acfb-c85973068c0c-F008.png
html/pibbcn/20180337/alternativeImage/80cda030-add6-4337-acfb-c85973068c0c-F009.png

Fig. 2 Oil red O staining after 10d induced differentiation of 3T3-L1 under 3D static conditions

Fig. 3 Fluorescence staining of Calcein-AM and PI after incubation for 24 h and 48 h on a Min6 chip under 3D flow conditions

Fig. 4 Fluorescence staining of Calcein-AM and PI after incubation for 24 h on Min6 chip and3T3-L1&Min6 chip of 3D flow culture under different conditions

Fig. 5 Min6 cell survival rate after incubation for 24 h on Min6 chip and 3T3-L1&Min6 chip of 3D flow culture under different conditions

Fig. 6 The secretion of inflammatory factors in 3T3-L1 chip after 24 h of 3D flow culture under different conditions

Fig. 7 Secretion of inflammatory factors and insulin from Min6 chip after 24 h of 3D flow culture under different conditions

Fig. 8 Secretion of inflammatory factors and insulin from 3T3-L1&Min6 chip after 24 h of 3D flow culture under different conditions

image /

(a)10×,(b)20×.

(a)24 h;(b)48 h. Green:Calcein-AM;Red:PI.

Green:Calcein-AM;Red:PI.

For Min6 cell,Contol:Min6 cells were flashed with basic medium,LPS:Min6 cells were flashed with medium containing 1 mg/L LPS,and Li+LPS:MIN6 cells were flashed with 1mg/L LPS and 100 nmol/L liraglutide. For 3T3-L1&Min6 double organ chip,medium was similar to control,LPS,and Li+LPS as indicated for Min6 cells. Significant difference is determined using Student’s t-test:n=3,all values are means ±SEM. *P<0.05,**P<0.01,ns means no significant difference.

(a)ADP,(b)IL-1β,(c)IL-6. Contol:3T3-L1 cells were flashed with basic medium,LPS:3T3-L1 cells were flashed with medium containing 1 mg/L LPS,Li+LPS:3T3-L1 cells were flashed with 1mg/L LPS and 100 nmol/L liraglutide. Significant difference is determined using Student’s t-test: n=3,all values are means ±SEM. *P<0.05,**P<0.01,***P<0.001.

(a)ADP,(b)IL-1β,(c)IL-6(d)Insulin. Contol:MIN6 cells were flashed with basic medium,LPS:MIN6 cells were flashed with medium containing 1 mg/L LPS,Li+LPS:MIN6 cells were flashed with 1 mg/L LPS and 100 nmol/L liraglutide. Significant difference is determined using Student’s t-test:n=3,all values are means ±SEM. *P<0.05,**P<0.01,***P<0.001, ns means no significant difference.

(a)ADP,(b)IL-1β,(c)IL-6,(d)Insulin. Contol:3T3-L1&Min6cells were flashed with basic medium,LPS:3T3-L1&Min6 cells were flashed with medium containing 1 mg/L LPS,and Li+LPS:3T3-L1&Min6 cells were flashed with 1mg/L LPS and 100 nmol/L liraglutide. Significant difference is determined using Student’s t-test:n=3, all values are means ±SEM. *P<0.05,**P<0.01,***P<0.001.

  • 参 考 文 献

    • 1

      Kahn S E, Hull R L, Utzschneider K M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121): 840-846

    • 2

      Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997, 46(1): 3-10

    • 3

      Roden M, Price T B, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest, 1996, 97(12): 2859-2865

    • 4

      Lumeng C N, Saltiel A R. Inflammatory links between obesity and metabolic disease. J Clin Invest, 2011, 121(6): 2111-2117

    • 5

      Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med, 2011, 62: 361-380

    • 6

      Frazier T H, Dibaise J K, Mcclain C J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr, 2011, 35(5 Suppl): 14S-20S

    • 7

      Zhou F, Zhang Y, Chen J, et al. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol, 2016, 791: 735-740

    • 8

      Ehrmann R L, Gey G O. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J Natl Cancer Inst, 1956, 16(6): 1375-1403

    • 9

      Volpatti L R, Yetisen A K. Commercialization of microfluidic devices. Trends Biotechnol, 2014, 32(7): 347-350

    • 10

      Sackmann E K, Fulton A L, Beebe D J. The present and future role of microfluidics in biomedical research. Nature, 2014, 507(7491): 181-189

    • 11

      Bhatia S N, Ingber D E. Microfluidic organs-on-chips. Nat Biotechnol, 2014, 32(8): 760-772

    • 12

      Dehne E M, Hasenberg T, Marx U. The ascendance of microphysiological systems to solve the drug testing dilemma. Future Sci OA, 2017, 3(2): FSO185

    • 13

      Maschmeyer I, Lorenz A K, Schimek K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip, 2015, 15(12): 2688-2699

    • 14

      Miller P G, Shuler M L. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol Bioeng, 2016, 113(10): 2213-2227

    • 15

      Oleaga C, Bernabini C, Smith A S, et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep, 2016, 6: 20030

    • 16

      Lu S, Dugan C E, Kennedy R T. Microfluidic chip with integrated electrophoretic immunoassay for investigating cell-cell interactions. Anal Chem, 2018, 90(8): 5171-5178

    • 17

      Nguyen D T, Van Noort D, Jeong I K, et al. Endocrine system on chip for a diabetes treatment model. Biofabrication, 2017, 9(1): 015021

    • 18

      Bauer S, Wennberg Huldt C, Kanebratt K P, et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci Rep, 2017, 7(1): 14620

    • 19

      Gomes J M G, Costa J A, Alfenas R C G. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism, 2017, 68: 133-144

    • 20

      Arana Mde J, Vallespi M G, Chinea G, et al. Inhibition of LPS-responses by synthetic peptides derived from LBP associates with the ability of the peptides to block LBP-LPS interaction. J Endotoxin Res, 2003, 9(5): 281-291

    • 21

      Dai Y, Dai D, Wang X, et al. DPP-4 inhibitors repress NLRP3 inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway. Cardiovasc Drugs Ther, 2014, 28(5): 425-432

    • 22

      Knudsen L B, Nielsen P F, Huusfeldt P O, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem, 2000, 43(9): 1664-1669

    • 23

      Krasner N M, Ido Y, Ruderman N B, et al. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. Plos One, 2014, 9(5): e97554

    • 24

      Gonzalez L L, Garrie K, Turner M D. Type 2 diabetes - an autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(11): 3805-3823

    • 25

      Shimoda M, Kanda Y, Hamamoto S, et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia, 2011, 54(5): 1098-1108

    • 26

      Shiraki A, Oyama J, Komoda H, et al. The glucagon-like peptide 1 analog liraglutide reduces TNF-alpha-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis, 2012, 221(2): 375-382