en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BajajJ, KonumaT, LytleN K, et al. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell, 2016, 30(5): 792-805
参考文献 2
SmythM J, NgiowS F, RibasA, et al. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol, 2016, 13(3): 143-158
参考文献 3
HongZ B, LinZ H, GongL H, et al. Crystal structure of PAI-1 in complex with gallate. Chinese J Struc Chem, 2013, 32(7): 1005-1012
参考文献 4
ShangL, XueG P, GongL H, et al. A novel ELISA for the detection of active form of plasminogen activator inhibitor-1 based on a highly specific trapping agent. Anal Chim Acta, 2019, 1053: 98-104
参考文献 5
ZhouA W, HuntingtonJ A, PannuN S, et al. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol, 2003, 10(7): 541-544
参考文献 6
LiS J, WeiX H, HeJ Y, et al. Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother, 2018, 105: 83-94
参考文献 7
CzekayR P, Wilkins-PortC E, HigginsS P, et al. PAI-1: an integrator of cell signaling and migration. Int J Cell Biol, 2011, 2011: 562481
参考文献 8
SturgeonC M, DuffyM J, StenmanU H, et al. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem, 2008, 54(12): E11-E79
参考文献 9
HarrisL, FritscheH, MennelR, et al. American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol, 2007, 25(33): 5287-5312
参考文献 10
ChenJ G, LiX, HuangH Y, et al. Identification of a peroxisome proliferator responsive element (PPRE)-like cis-element in mouse plasminogen activator inhibitor-1 gene promoter. Biochem Bioph Res Co, 2006, 347(3): 821-826
参考文献 11
SamarakoonR, OverstreetJ M, HigginsS P, et al. TGF-beta 1 -> SMAD/p53/USF2 -> PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res, 2012, 347(1): 117-128
参考文献 12
MandersP, Tjan-HeijnenV C G, SpanP N, et al. Predictive impact of urokinase-type plasminogen activator: Plasminogen activator inhibitor type-1 complex on the efficacy of adjuvant systemic therapy in primary breast cancer. Cancer Res, 2004, 64(2): 659-664
参考文献 13
VialaM, AlexandreM, ThezenasS, et al. Prognostic impact of the inclusion of uPA/PAI-1 for adjuvant treatment decision-making in ER+/Her2-pN0 early breast cancers. Breast Cancer Res Tr, 2017, 165(3): 611-621
参考文献 14
PusinaS. Correlation of serum levels of urokinase activation plasminogen (uPA) and its inhibitor (PAI-1) with hormonal and HER-2 status in the early invasive breast cancer. Med Arch, 2018, 72(5): 335-340
参考文献 15
TalmadgeJ E, GabrilovichD I. History of myeloid-derived suppressor cells. Nat Rev Cancer, 2013, 13(10): 739-U779
参考文献 16
ZhuC J, ShenH, ZhuL J, et al. Plasminogen activator inhibitor 1 promotes immunosuppression in human non-small cell lung cancers by enhancing TGF-B1 expression in macrophage. Cell Physiol Biochem, 2017, 44(6): 2201-2211
参考文献 17
PlacencioV R, MiyataT, DeclerckY A. Abstract 1548: Pharmacologic inhibition of PAI-1 increases apoptosis and inhibits macrophage migration in cancer. Cancer Res, 2013, 73: 1548-1548
参考文献 18
KubalaM H, PunjV, Placencio-HickokV R, et al. Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer. Cell Rep, 2018, 25(8): 2177-2191
参考文献 19
GiacoiaE G, MiyakeM, LawtonA, et al. PAI-1 leads to g(1)-phase cell-cycle progression through cyclin D3/cdk4/6 upregulation. Mol Cancer Res, 2014, 12(3): 322-334
参考文献 20
CheY, WangJ, LiY, et al. Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis, 2018, 9(7): 759
参考文献 21
HirahataM, OsakiM, KandaY, et al. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma. Cancer Med-Us, 2016, 5(5): 892-902 - 9 -
参考文献 22
BajouK, MassonV, GerardR D, et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin: implications for antiangiogenic strategies. J Cell Biol, 2001, 152(4): 777-784
参考文献 23
CajaL, DituriF, MancarellaS, et al. TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci, 2018, 19(5): 1294
参考文献 24
BajouK, PengH, LaugW E, et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell, 2008, 14(4): 324-334
参考文献 25
ZhangW W, XuJ, FangH H, et al. Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling. Faseb J, 2018, 32(1): 276-288
参考文献 26
JeonH, KimJ H, KimJ H, et al. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflamm, 2012, 9(1): 149
参考文献 27
GarciaL, HernandezI, SandovalA, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol, 2002, 37(6): 797-805
参考文献 28
ChandaD, LeeC H, KimY H, et al. Fenofibrate differentially regulates plasminogen activator inhibitor-1 gene expression via adenosine monophosphate-activated protein kinase-dependent induction of orphan nuclear receptor small heterodimer partner. Hepatology, 2009, 50(3): 880-892
参考文献 29
CrandallD L, ElokdahH, DiL, et al. Characterization and comparative evaluation of a structurally unique PAI-1 inhibitor exhibiting oral in-vivo efficacy. J Thromb Haemost, 2004, 2(8): 1422-1428
参考文献 30
HennanJ K, MorganG A, SwilloR E, et al. Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis. J Thromb Haemost, 2008, 6(9): 1558-1564
参考文献 31
GorlatovaN V, TaleJ M, ElokdahH, et al. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitory. J Biol Chem, 2007, 282(12): 9288-9296
参考文献 32
任美萍, 李蓉, 陈妮, 等. 小鼠颈动脉血栓模型的建立. 西南医科大学学报, 2014, 37(3): 261-262
RenM P, LiR, ChenN, et al. Journal of Southwest Medical University, 2014, 37(3): 261-262
参考文献 33
IacovielloL, AgnoliC, De CurtisA, et al. Type 1 plasminogen activator inhibitor as a common risk factor for cancer and ischaemic vascular disease: the EPICOR study. BMJ Open, 2013, 3(11): e003725
参考文献 34
De FariaC A, ZanetteD L, SilvaW A, et al. PAI-1 inhibition by simvastatin as a positive adjuvant in cell therapy. Molecular Biology Reports, 2019, 46(1): 1511-1517
参考文献 35
PlacencioV R, DeclerckY A. Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing. Cancer Res, 2015, 75(15): 2969-2974
参考文献 36
CaleJ M, LiS H, WarnockM, et al. Characterization of a novel class of polyphenolic inhibitors of plasminogen activator inhibitor-1. J Biol Chem, 2010, 285(11): 7892-7902
参考文献 37
ZhonghuiL, JensenJ K, ZebinH, et al. Structural insight into inactivation of plasminogen activator inhibitor-1 by a small-molecule antagonist. Chem Biol, 2013, 20(2): 253-261
参考文献 38
ChenF, ZhangG, HongZ, et al. Design, synthesis, and SAR of embelin analogues as the inhibitors of PAI-1 (plasminogen activator inhibitor-1). Bioorg Med Chem Lett, 2014, 24(10): 2379-2382
参考文献 39
Van De CraenB, ScroyenI, AbdelnabiR, et al. Characterization of a panel of monoclonal antibodies toward mouse PAI-1 that exert a significant profibrinolytic effect in vivo. Thromb Res, 2011, 128(1): 68-76
参考文献 40
LihuG, MinL, TuZ, et al. Crystal structure of the michaelis complex between tissue-type plasminogen activator and plasminogen activators inhibitor-1. J Biol Chem, 2015, 290(43): 25795-25804
参考文献 41
PengS Z, XueG P, GongL H, et al. A long-acting PAI-1 inhibitor reduces thrombus formation. Thromb Haemostasis, 2017, 117(7): 1338-1347
参考文献 42
GongL H, ProulleV, FangC, et al. A specific plasminogen activator inhibitor-1 antagonist derived from inactivated urokinase. J Cell Mol Med, 2016, 20(10): 1851-1860
参考文献 43
付夏, 夏曙华, 王幼林, 等.PAI-1与恶性实体肿瘤的相关性研究进展. 中国医药指南, 2012, 10(9): 48-50
FuX, XiaS H, WangY L, et al. Guide of China Medicine, 2012, 10(9): 48-50
参考文献 44
NakatsukaE, SawadaK, NakamuraK, et al. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination. Oncotarget, 2017, 8(52): 89887-89902
参考文献 45
FangH H, JinJ, HuangD D, et al. PAI-1 induces Src inhibitor resistance via CCL5 in HER2-positive breast cancer cells. Cancer Sci, 2018, 109(6): 1949-1957
参考文献 46
GhoshA K, MurphyS B, KishoreR, et al. Global gene expression profiling in PAI-1 knockout murine heart and kidney: molecular basis of cardiac-selective fibrosis. Plos One. 2013, 8(5):e63825
参考文献 47
GettinsP G W, DolmerK. The high affinity binding site on plasminogen activator inhibitor-1 (PAI-1) for the low density lipoprotein receptor-related protein (LRP1) is composed of four basic residues. J Biol Chem, 2016, 291(2): 800-812
参考文献 48
IzuharaY, TakahashiS, NangakuM, et al. Inhibition of plasminogen activator inhibitor-1 - Its mechanism and effectiveness on coagulation and fibrosis. Arterioscl Throm Vas, 2008, 28(4): 672-677
参考文献 49
RupinA, GaertnerR, MennecierP, et al. S35225 is a direct inhibitor of plasminogen activator inhibitor type-1 activity in the blood. Thromb Res, 2008, 122(2): 265-270
参考文献 50
GardellS J, KruegerJ A, AntrilliT A, et al. Neutralization of plasminogen activator inhibitor I (PAI-1) by the synthetic antagonist PAI-749 via a dual mechanism of action. Mol Pharmacol, 2007, 72(4): 897-906
参考文献 51
LiangA, WuF, TranK, et al. Characterization of a small molecule PAI-1 inhibitor, ZK4044. Thromb Res, 2005, 115(4): 341-350
参考文献 52
ElokdahH, McfarlaneG R, LiD Z, et al. Tiplaxtinin: a novel orally efficacious inhibitor of PAI-1 for use in treatment of diseases of fibrinolytic dysfunction. Abstr Pap Am Chem S, 2004, 227: U7-U7
参考文献 53
EgelundR, EinholmA P, PedersenK E, et al. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands - Ligand-induced serpin polymerization. J Biol Chem, 2001, 276(16): 13077-13086
参考文献 54
BjorquistP, EhnebomJ, InghardtT, et al. Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by site-directed mutagenesis. Biochemistry, 1998, 37(5): 1227-1234
目录 contents

    摘要

    肿瘤是严重危害人类健康的疾病. 研究表明,实体瘤周围环境中的胞外基质蛋白、浸润性免疫细胞和间充质细胞分泌的蛋白质组等均与肿瘤的发生、发展以及肿瘤治疗的耐受性等密切相关.肿瘤微环境中一个重要调控因子,纤溶酶原激活物抑制剂1(plasminogen activator inhibitor-1,PAI-1),不仅与组织型纤溶酶原激活物(tissue-type plasminogen activators,tPA)构成调节纤溶活性的一对关键物质,而且参与肿瘤的侵袭、浸润和转移等多个环节并扮演重要角色. 本文针对近年来PAI-1的结构和功能方面研究新进展及其与肿瘤微环境的相关性进行综述,并提出PAI-1可作为抗肿瘤治疗的重要靶点. 同时,本文也分析了PAI-1抑制剂对肿瘤干预的研究现状,指出PAI-1抑制剂对肿瘤治疗的潜在应用价值.

    Abstract

    Cancer is a serious disease that endangers human health. Solid tumors are surrounded by extracellular matrix, infiltrated immune cells, and the secretum of surrounding mesenchymal cells. The tumor microenvironment plays a key role in tumorigenesis, tumor growth, and resistance to antineoplastic therapy. Plasminogen activator inhibitor-1 (PAI-1) is an important regulatory factor in tumor microenvironment. PAI-1 not only functions as a key constitution with tissue-type plasminogen activators (tPA) in regulating fibrinolytic activity, but also participates in invasion, infiltration and migration of tumor. In this paper, the structure and function of PAI-1 and its significance in tumor microenvironment in recent years are reviewed. It is considered that PAI-1 may be an important target for anti-cancer therapy. At the same time, the latest research results of PAI-1 inhibitors in the field of anticancer were analyzed, and the potential application value of PAI-1 inhibitors was demonstrated.

    黄明东. E-mail: mhuang@fjirsm.ac.cn

    陈卓. 通信作者:E-mail: zchen@fjirsm.ac.cn

    随着人口老龄化趋势的加剧、环境及生活方式的改变,肿瘤已成为危害我国居民健康和社会发展的主要疾病之一. 肿瘤是正常细胞长期在很多外因和内因作用下,发生基因质变而导致过度增殖的后果.长期以来,科学家们将治疗肿瘤的重点放在肿瘤细胞,如利用药物抑制肿瘤细胞的增殖或(/及)迁移等. 随着近年来分子生物学的发展,以及人们对肿瘤相关发病机制研究的不断深入,愈来愈多的研究结果表明:肿瘤部位浸润的免疫细胞、间质细胞及所分泌的活性介质等与肿瘤细胞共同构成的肿瘤微环境(tumor microenvironment,TME)在肿瘤细胞的增殖、扩散转移以及对多种疗法的耐受性产生中均扮演重要角色. 其中,在转移性肿瘤和耐受性肿瘤的治疗中,靶向TME的治疗策略正逐渐引起人们关[1,2]. 本文将近年来针对TME中的一个重要调控因子,纤溶酶原激活物抑制剂1(plasminogen activator inhibitor-1,PAI-1),在肿瘤的发生、发展过程中的重要发现进行阐述,分析其作为肿瘤治疗新靶标的可能性.

  • 1 PAI-1简介

    体内的纤维蛋白溶解过程(图1)大致分为两个阶段:纤溶酶原激活和纤维蛋白(原)溶解. 首先是纤溶酶原在纤溶酶原激活物的作用下变成纤溶酶. 产生的纤溶酶可水解纤维蛋白原和纤维蛋白.纤溶酶原激活物抑制剂(plasminogen activator inhibitor,PAI)通过抑制纤溶酶原激活物,从而发挥抑制纤溶作用. 可见,由纤溶酶原激活物(plasminogen activator,PA)、纤溶酶原激活物受体(urokinase receptor,uPAR)及其抑制剂PAI组成的纤溶酶原激活系统(plasminogen activation system,PA system),参与了体内纤溶活性的调控.

    图1
                            纤溶系统的组成

    图1 纤溶系统的组成

    Fig. 1 Composition of fibrinolytic system

    PAI-1在血浆中的浓度约为0.1~0.4 nmol/L,且存在昼夜及季节变化规律. PAI-1的三维结构(图2)是由3个β折叠、9个α螺旋以及1个活性中心环(reactive centre loop,RCL)组[3]. 在生理条件下,激活态的PAI-1(图2a)很快被氧化而失活呈潜伏态(图2b). 潜伏态PAI-1(图2b)在体外某些外界条件下(如尿素、十二烷基硫酸钠(sodium dodecyl sulfate,SDS)等变性剂)可被激活而成为激活态PAI-1,但其在体内是否也一样能够被激活尚无定论.

    图2
                            PAI-1的两种不同构象[4]

    图2 PAI-1的两种不同构[4]

    Fig. 2 Two different conformation of PAI-1

    PAI-1通过其RCL发挥抑制组织型纤溶酶原激活物(tissue-type plasminogen activators,tPA)和尿激酶纤溶酶原激活物(urokinase-type plasminogen activators,uPA)活性的作用. 其中,PAI-1与tPA之间的快速动态平衡对维持血浆纤维蛋白溶解系统(简称纤溶系统)的稳态起决定性作用. PAI-1对tPA的抑制限于血浆中游离的tPA,而对和纤维蛋白结合的tPA活性较低或不起作用. 灭活的tPA及tPA-PAI复合物可被肝脏迅速从血浆中清除. 此外,PAI-1可通过其F螺旋紧密结合于玻连蛋白(vitronectin,Vn[5],从而延长其半衰期.由此可见,PAI-1是纤溶酶原激活系统最重要的生理调节剂. 通过抑制PAI-1的活性或形成的化合物可抑制血栓形成,用于治疗因血栓导致的疾病,如血栓性疾病等. 近年来的研究表明:PAI-1不仅是血栓形成性疾病的危险因素,它还参与肿瘤的侵袭、浸润和转移等多个环节并扮演重要角[6,7,8,9].

  • 2 PAI-1的表达调控

    PAI-1的表达调控过程受肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白介素1(interleukin-1,IL-1)、激素、受体蛋白、转化生长因子β(transforming growth factor-β,TGF-β)、线粒体代谢释放的活性氧簇(reactive oxygen species,ROS)等多种因素影响(图3).

    图3
                            影响PAI-1转录调控的因素

    图3 影响PAI-1转录调控的因素

    Fig. 3 Factors that influence transcriptional regulation of PAI-1

    在上述这些因子中,有的可通过直接结合 PAI-1基因调控序列,增强PAI-1转录. 如过氧化物酶体增殖剂激活受体γ(peroxisome proliferators-activated receptor γ,PPARγ)通过位于PAI-1基因启动子区的-206 bp至-194 bp之间的顺式作用元件(TCCCCCATGCCCT)上调PAI-1[10]. 有的因子则是通过复杂的通路传感激活PAI-1转录. 如TGF-β1募集和磷酸化激活Smads蛋白,后者结合PAI-1基因启动子-734 bp至-731 bp处的Smad结合元件(SBE),激活PAI-1转录. 此外,PAI-1的转录调控过程还受到MAPK通路的协同调控:MAPK-ERK可激活上游刺激因子(upstream stimulatory factor,USF),活化的USF结合PAI-1启动子非对称序列E-box,增强PAI-1的转[11].

  • 3 PAI-1与乳腺癌及卵巢癌

    乳腺癌和卵巢癌是女性常见的恶性肿瘤,发病率高. 患癌的风险既包括外在的环境和行为因素,也包括内在的遗传因素. 比较常见的一种遗传性卵巢癌综合征,遗传性乳腺癌-卵巢癌综合征,就表明乳腺癌与卵巢癌之间存在的微妙遗传因素关系. 目前已有越来越多的临床资料显示,乳腺癌和卵巢癌都是容易发生转移的肿瘤,甚至淋巴结无转移的早期癌症患者也存在一定的远处转移发生率. 因此,寻找乳腺癌和卵巢癌的有效预后指标,尽早检出预后不佳的高危患者,对提高患者生存率和生存质量具有重要意义.

    研究发现,PAI-1水平与乳腺癌及卵巢癌的预后密切相关:PAI-1是淋巴结转移阴性的乳腺癌患者独立预后不良预测因子,肿瘤组织PAI-1高表达患者的乳腺癌复发和死亡的风险提升了2~8[12]. PAI-1在卵巢癌患者血浆中的高水平表达也与卵巢癌的高值临床分期密切相[8]. 全球领先的肿瘤专业学术组织——美国临床肿瘤学协会(American Society for Clinical Oncology,ASCO)以及德国乳腺癌协会(German Breast Cancer Society,GBCS)已将PAI-1在乳腺癌血浆中的水平检测纳入指导乳腺癌患者治疗策[8,9],但血浆中PAI-1的表达水平对乳腺癌及卵巢癌发生肿瘤转移的预后作用机制还亟待进一步完善,尤其是PAI-1与常见免疫组化标记物(如雌激素受体ER、孕激素受体PR、人表皮生长因子受体HER-2)之间的相关性尚不十分明[13,14]. 尽管如此,鉴于乳腺癌及卵巢癌患者与ER及HER2等表达的密切相关性,可能联合检测PAI-1水平将有助于判断上述肿瘤的恶性程度及预测其生物学行为.

  • 4 PAI-1与免疫逃逸

    尽管人体内具有强大的免疫监视功能,但仍难以阻止肿瘤的发生和发展,这是因为肿瘤细胞可通过多种机制逃避人体的免疫攻击. 肿瘤细胞这种通过多种机制逃避机体免疫系统识别和攻击,从而得以在体内生存和增殖的现象,称为肿瘤免疫逃逸(tumor immune escape). 这个过程涉及到肿瘤细胞的生物学特殊性、人体的免疫状态以及两者之间的力量对比等诸多因素. 近年来的研究发现:含有免疫细胞的TME在癌症的发展中起着至关重要的作用. 其中,占肿瘤总重量50%的肿瘤巨噬细胞(tumor associated macrophage,TAM)不仅阻止T细胞攻击肿瘤细胞,而且分泌生长因子滋养肿瘤细胞,促进肿瘤血管生成、肿瘤细胞转移扩[15].

    在针对非小细胞肺癌(non-small cell lung cancer,NSCLC)患者的研究中发[16]:患者高表达PAI-1与TAM产生的免疫抑制细胞因子 (IL-6、CCL-17、CCL-22)正相关;PAI-1引起细胞外基质(extracellular matrix,ECM)中TGF-β水平上调,而TGF-β对PAI-1又具有正反馈作用. 而用shRNA(short hairpin RNA)干扰人纤维肉瘤细胞HT1080的PAI-1表达后,发现浸润到肿瘤组织的TAM明显减[17]. 最近,科学家们在针对肿瘤细胞如何逃避治疗的研究中发[18]:PAI-1通过与周围正常组织相互作用,招募免疫系统中常见参与者(如IL-6和STAT3),将巨噬细胞推入另一种癌前状态(称为M2),从而改变巨噬细胞的行为,支持而非攻击肿瘤细胞. 因此,含有高PAI-1水平的肿瘤更具侵袭性,并且与较差的治疗结果相关. 很显然,对PAI-1如何与巨噬细胞通信以改变其活性的理解可能改变我们对癌症的治疗方法.

  • 5 PAI-1与细胞增殖

    细胞增殖是生物体生长、发育、繁殖和遗传的基础. 癌变的细胞紊乱了细胞分裂、凋亡和组织自稳性的正常调控而无限增殖. PAI-1具有正调控细胞分裂作用. Evan[19]报道:利用基因敲除的方法可降低膀胱癌T24细胞的PAI-1表达水平,可导致该细胞增殖能力下降、G0/G1期的细胞数量增加.顺铂化疗的食管鳞癌患者,进行食管鳞癌细胞KYSE-450及肿瘤相关纤维母细胞(cancer-associated fibroblasts,CAFs)分泌的细胞因子、炎症因子等检测[20],也证实PAI-1具有促食管鳞癌细胞KYSE-450增殖的作用,并发现肿瘤微环境中的CAFs是PAI-1的主要来源之一. 我们知道,CAFs通过分泌细胞因子、炎症因子和血管生成因子与癌细胞之间产生广泛的交互对话(cross-talk),在肿瘤细胞的增殖、转移和血管形成等方面扮演十分重要的角色. 可见,PAI-1作为化疗的副产物,反过来影响着化疗的治疗效果.

    新型口服PAI-1抑制剂Tiplaxtinin(PAI-039)对T24、HeLa、UM-UC-14等多种肿瘤细胞的增殖均具有显著抑制作用,而且随着其浓度升高,处于G0/G1期的肿瘤细胞数量明显增加,G1/S期转化相关的周期调控蛋白(cyclin D3、CDK4/6、cdk2和cyclin E等)明显下调. 因此,尽管PAI-1抑制剂的临床应用目前还存在一定风险,但其与化疗药物联合应用势必有助于增强化疗药物的疗效.

  • 6 PAI-1与细胞侵袭转移

    肿瘤细胞侵袭转移的过程是肿瘤细胞与宿主细胞之间相互作用的连续过程,这个过程是复杂、多步骤的. 肿瘤侵袭是肿瘤扩散的第一步,是肿瘤细胞与周围间质相互作用的结果,其标志是肿瘤细胞突破基底膜. 肿瘤转移是肿瘤细胞从原发部位侵入淋巴管、血管或体腔,至靶组织或靶器官,形成与原发肿瘤不相连续而组织学类型相同的肿瘤. 肿瘤转移是恶性肿瘤最显著的生物学特性之一,也是临床肿瘤患者的主要死因. 近年来,随着对肿瘤细胞侵袭转移的分子机制和临床现状的了解,人们在寻找有效的抗肿瘤细胞侵袭及转移药物的领域已取得显著进展.

    其中,在PAI-1与细胞侵袭转移能力的相关性研究中发现,PAI-1会引起正常贴壁生长的细胞发生细胞悬浮的现象. PAI-1沉默对骨肉瘤肺转移具有抑制作[21],被敲除了PAI-1的小鼠(PAI-1-/-)的肿瘤细胞侵袭能力明显削[22]. 研究者们构建了Vn敲除的小鼠模型并表达PAI-1突变株的腺病毒(分别为AdPAI1R346M,M347S——具备Vn结合能力但没有蛋白酶抑制剂活性、AdPAI1Q123K——具备蛋白酶抑制剂活性但不结合Vn),发现只有腺病毒AdPAI1Q123K治疗组可恢复肿瘤细胞的侵袭转移能力,这个实验结果提示:PAI-1可独立影响肿瘤细胞侵袭转移能力,与是否结合Vn无关. 因此,抑制PAI-1活性或其形成的化合物具有抑制肿瘤细胞侵袭转移的能力,并对由细胞侵袭转移引起的疾病具有一定治疗作用.

  • 7 PAI-1与分子肿瘤学

    肿瘤细胞利用肿瘤微环境的信号,促使肿瘤发展. PAI-1与TGF-β之间的正反馈调控促进了上皮细胞向CAFs转[23],CAFs通过分泌PAI-1使该过程得以持续. PAI-1通过AKT、ERK等通路刺激肿瘤细胞增殖,并诱发细胞耐受化疗产生的ROS. Bajou[24]指出,PAI-1抑制内皮细胞(endothelial cells,ECs)经Fas/FasL信号调控的凋亡途径.在PAI-1信号刺激下,ECs分泌CCL5. 三阴性乳腺癌细胞MDA-MB-231的CCR5受体结合CCL5后,通过正反馈途径维持PAI-1信号,促使肿瘤转[25]. 目前,虽然在细胞膜上没有发现PAI-1的受体蛋白,但PAI-1可与uPA-uPAR-integrin复合物结合,随后PAI-1介导低密度脂蛋白受体相关蛋白(low density lipoprotein receptor-related protein,LRP)与复合物结合(图4). 经内吞作用复合物中的PAI-1和uPA被清除掉,受体随胞内体返回细胞膜. 内吞过程促使细胞膜Integrin和uPAR与细胞外基质配体分离,增加了细胞黏附的灵活性. 这些蛋白质周期性地重新分布,驱动了细胞的黏附——去黏附——再黏附过[7],促进肿瘤的转移. 也有研究指出,PAI-1通过非胞吞依赖的LRP1/JAK/STAT1途径调控肿瘤的转[26].

    图4
                            PAI-1与分子肿瘤学

    图4 PAI-1与分子肿瘤学

    Fig. 4 PAI-1 and molecular oncology

  • 8 PAI-1抑制剂

    PAI-1是体内纤溶系统的重要负调控因子,PAI-1水平的异常升高会导致血栓形成. 此外, PAI-1通过介导血管新生(angiogenesis)、细胞增殖等生理过程参与肿瘤的侵袭和转移. 因此PAI-1是抗血栓性疾病和抗肿瘤药物作用的重要潜在靶标,PAI-1抑制剂的发现与设计具有十分重要的意义和应用前景.

    关于PAI-1抑制剂的研究,最早始于20世纪90年代中期,研究者们从微生物链激菌属中分离得到两种二酮哌嗪XR330和XR334,发现这两种化合物均能在体内提高纤溶活性,具有抑制小鼠血栓形成作[27]. 之后,在XR334基础上进行结构修饰得到XR5118,发现其具有抑制PAI-1活性及良好的溶栓效[28]. 此外,香豆酮衍生物WAY-140312(口服用药)在动物实验中也展示出具有提高动脉血流、抑制血栓形成的作[29]. 吲哚类Tiplaxtinin(PAI-039)对小鼠动静脉血管损伤模型具有抗血栓形成作用,但不影响血小板凝[30,31]. 近年来发现的PAI-1抑制剂,如TM5275,对非人类的灵长目动物血管的血栓形成具有抑制作用,但不影响血流时[32],PAI-749具有抗血栓作用,但不影响血液系统的基础凝血和纤溶,从天然中药丹参中提取的丹参酮和隐丹参酮对PAI-1具有良好的抑制作[33],早期用于降脂的他汀类药物,通过多种蛋白质信号下调PAI-1水[34]. 这些PAI-1抑制剂的研究进展对于研发疗效更好、更廉价以及更安全的新型药物具有重要的理论意义和应用价值.

    目前PAI-1抑制剂(表1)根据种类不同,分为小分子、单克隆抗体、多肽等. 其中,小分子抑制剂包括二酮哌嗪类(如XR334、XR5118)、吲哚类(如PAI-039),以及多酚类.苯并噻吩类和丁二烯类在体外实验中也发现具有一定抑制PAI-1的活[35],但PAI-039、TM5275、TM5441和Loureirin B等小分子抑制PAI-1能力和特异性都有待提高. Cale[36]报道的多酚类PAI-1抑制剂(CDE066)效果佳,我们课题组开展了PAI-1与CED066及其类似物没食子酸相关的结构机理研[3]. 此外,我们课题组从1 600个天然产物库中利用高通量筛选法筛选得到PAI-1抑制剂——信筒子醌(embelin,IC50为1.62 μmol/L[37],复合物晶体结构研究阐明了该化合物的作用机制在于减少了PAI-1的结构灵活性,使其无法抑制其底物(尿激酶或tPA). 以信筒子醌为先导化合物,Chen[38]合成系列不同结构的化合物并开展相关构效关系的研究.

    表1 PAI-1抑制剂

    Table 1 Inhibitors of PAI-1

    名称结构IC50年份参考文献
    IMD4482html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F005.jpg2017[44]
    PAItrap2蛋白质~ 5 nmol/L2017[41]
    PAItrap蛋白质10 nmol/L2016[42]
    CDE-066html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F006.jpg10 nmol/L2010[36]
    Gallic acidhtml/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F007.jpg6.6 μmol/L2010[36]
    TM5001html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F008.jpg28.6 μmol/L2008[48]
    S35225html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F009.jpg260 μmol/L2007[49]
    PAI-0749html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F010.jpg87 nmol/L2007[50]
    ZK4044html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F011.jpg644 nmol/L2005[51]
    PAI-039html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F012.jpg2.7 μmol/L2004[52]
    Bis-ANShtml/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F013.jpg570 nmol/L2001[53]
    XR5118html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F014.jpg3.5 μmol/L2001[53]
    AR-H029953XXhtml/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F015.jpg25 μmol/L1998[54]

    与小分子药物比较,多肽类药物通常具有高活性、高特异性以及低毒副作用等优势,但其在临床应用上受到很多限制,如稳定性低、体内半衰期短等. 单克隆抗体类PAI-1抑制剂主要是通过免疫学方法获[39]. 目前已报道的抗PAI-1抗体都不同程度受PAI-1糖基化、PAI-1种属特异性的影响.

    我们课题组近年来在PAI-1抑制剂的筛选及其机理研究方面开展了系列工作,并取得重要进展:在解析PAI-1与tPA或与uPA的米氏复合物晶体结[40]的基础上,针对uPA的催化结构域进行活性位点突变,并成功筛选出uPA的失活突变体PAItrap[41,42]. 这个多肽类PAI-1抑制剂不仅与PAI-1结合(结合常数Kd值为0.15 nmol/L),形成稳定的米氏复合物而阻止PAI-1对活性uPA的抑制作用(IC50=10 nmol/L),而且该抑制剂具有高度选择性,对结构上与PAI-1类似的其他Serpin蛋白,如 PAI-2、PN-1、antithrombin-3和α2-antiplasmin的抑制能力弱(IC50 > 14 μmol/L). 为了克服该多肽类PAI-1抑制剂半衰期较短的不足,我们利用白蛋白融合技术,成功获得了半衰期可长达约500 min的PAI-1抑制剂PAItrap2[41,42]. 这种长效多肽类PAI-1抑制剂的成功研发为今后深入开展其在体动物实验研究提供了重要工具.

  • 9 PAI-1抑制剂与肿瘤治疗

    肿瘤的生物学行为,包括肿瘤的生长、侵袭和转移,是一个多因素的复杂过程. 随着对PAI-1的测定及其与疾病关系的深入研究,发现PAI-1与许多实体肿瘤有密切关[43],PAI-1在肿瘤的侵袭、转移等生物学行为中起重要作用,尤其肿瘤组织中表达的PAI-1可能不仅参与血管生成的调节,而且同时防止肿瘤组织自身及基质的降解. 已有的研究表明:抑制PAI-1活性可望成为肿瘤治疗的新策略.

    近年来,寻找PAI-1抑制剂在抗肿瘤药物的研发中日益受到重视,也是目前相关领域研究的热点之一. 探索PAI-1抑制剂的代谢及其功能必将对肿瘤的诊断、治疗及预后提供极大帮助. 已报道的PAI-1抑制剂中,PAI-039对宫颈癌细胞HeLa、纤维肉瘤细胞HT1080的细胞增殖、细胞黏附能力等均具有明显的抑制作[19],但其作用机制尚不十分明确,IMD-4482被认为是通过干扰PAI-1与uPAR-uPA复合物的结合,中断uPAR下游ERK信号传递,从而发挥其抑制卵巢癌细胞迁移和增殖作[44],其相关抗肿瘤临床前研究仍尚待完善.

    此外,作用于不同靶点的联合用药是肿瘤治疗的重要策略之一. 靶向酪氨酸激酶Src的抑制剂对乳腺癌具有一定疗效,但其应用上受肿瘤的抗药性限制.Fang[45]检测到对Src抑制剂产生抗药性的乳腺癌细胞系(SKBR-3/SI)PAI-1水平明显高于非抗药性细胞系,而且高水平内源或外源PAI-1可降低Src抑制剂(Saracatinib)对该细胞系的增殖抑制作用. 经PAI-1小分子抑制剂PAI-039处理后,该细胞系对Src抑制剂的抗药性明显减弱. 由此可见,PAI-1抑制剂可作为其他抗肿瘤药物的辅助性药物,联合用药,提高抗肿瘤效果.

  • 10 结语

    PAI-1在体内的水平会随着年龄的增加而逐渐增加. PAI-1的主要生理功能是抑制纤溶、调控凝血和纤溶之间平衡. 但有趣的是,PAI-1缺失的小鼠并不影响其生存,只是出现因纤维化相关补偿因子表达失调而引起的心肌纤维化失[46]. 缺乏PAI-1的患者也没有明显的病理特征. 此外,PAI-1具有调控细胞外基质重塑、影响血管生成、细胞迁移以及细胞增殖等作用. 在肿瘤生物学中,PAI-1因具有促进肿瘤迁移和增殖作用,而被认为是乳腺癌的一个重要指标,与肿瘤的不良预后密切相关.这是因为PAI-1广泛分布于ECM,与TME中组分(如uPA、Vn等)相互作用,共同调控肿瘤的进[47]. 因此,PAI-1也被认为是抗肿瘤治疗、抑制肿瘤转移的重要靶点. 目前由于PAI-1三维结构的特点,尚无成药性好、特异性高的PAI-1小分子抑制剂,但我们相信,随着PAI-1抑制剂研发的备受关注,新型PAI-1抑制剂的出现指日可待.

    Tel: 86-591-63173094

    HUANG Ming-Dong. E-mail: corresponding author:mhuang@fjirsm.ac.cn

    CHEN Zhuo. E-mail: zchen@fjirsm.ac.cn

  • 参考文献

    • 1

      Bajaj J, Konuma T, Lytle N K, et al. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell, 2016, 30(5): 792-805

    • 2

      Smyth M J, Ngiow S F, Ribas A, et al. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol, 2016, 13(3): 143-158

    • 3

      Hong Z B, Lin Z H, Gong L H, et al. Crystal structure of PAI-1 in complex with gallate. Chinese J Struc Chem, 2013, 32(7): 1005-1012

    • 4

      Shang L, Xue G P, Gong L H, et al. A novel ELISA for the detection of active form of plasminogen activator inhibitor-1 based on a highly specific trapping agent. Anal Chim Acta, 2019, 1053: 98-104

    • 5

      Zhou A W, Huntington J A, Pannu N S, et al. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol, 2003, 10(7): 541-544

    • 6

      Li S J, Wei X H, He J Y, et al. Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother, 2018, 105: 83-94

    • 7

      Czekay R P, Wilkins-Port C E, Higgins S P, et al. PAI-1: an integrator of cell signaling and migration. Int J Cell Biol, 2011, 2011: 562481

    • 8

      Sturgeon C M, Duffy M J, Stenman U H, et al. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem, 2008, 54(12): E11-E79

    • 9

      Harris L, Fritsche H, Mennel R, et al. American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol, 2007, 25(33): 5287-5312

    • 10

      Chen J G, Li X, Huang H Y, et al. Identification of a peroxisome proliferator responsive element (PPRE)-like cis-element in mouse plasminogen activator inhibitor-1 gene promoter. Biochem Bioph Res Co, 2006, 347(3): 821-826

    • 11

      Samarakoon R, Overstreet J M, Higgins S P, et al. TGF-beta 1 -> SMAD/p53/USF2 -> PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res, 2012, 347(1): 117-128

    • 12

      Manders P, Tjan-Heijnen V C G, Span P N, et al. Predictive impact of urokinase-type plasminogen activator: Plasminogen activator inhibitor type-1 complex on the efficacy of adjuvant systemic therapy in primary breast cancer. Cancer Res, 2004, 64(2): 659-664

    • 13

      Viala M, Alexandre M, Thezenas S, et al. Prognostic impact of the inclusion of uPA/PAI-1 for adjuvant treatment decision-making in ER+/Her2-pN0 early breast cancers. Breast Cancer Res Tr, 2017, 165(3): 611-621

    • 14

      Pusina S. Correlation of serum levels of urokinase activation plasminogen (uPA) and its inhibitor (PAI-1) with hormonal and HER-2 status in the early invasive breast cancer. Med Arch, 2018, 72(5): 335-340

    • 15

      Talmadge J E, Gabrilovich D I. History of myeloid-derived suppressor cells. Nat Rev Cancer, 2013, 13(10): 739-U779

    • 16

      Zhu C J, Shen H, Zhu L J, et al. Plasminogen activator inhibitor 1 promotes immunosuppression in human non-small cell lung cancers by enhancing TGF-B1 expression in macrophage. Cell Physiol Biochem, 2017, 44(6): 2201-2211

    • 17

      Placencio V R, Miyata T, Declerck Y A. Abstract 1548: Pharmacologic inhibition of PAI-1 increases apoptosis and inhibits macrophage migration in cancer. Cancer Res, 2013, 73: 1548-1548

    • 18

      Kubala M H, Punj V, Placencio-Hickok V R, et al. Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer. Cell Rep, 2018, 25(8): 2177-2191

    • 19

      Giacoia E G, Miyake M, Lawton A, et al. PAI-1 leads to g(1)-phase cell-cycle progression through cyclin D3/cdk4/6 upregulation. Mol Cancer Res, 2014, 12(3): 322-334

    • 20

      Che Y, Wang J, Li Y, et al. Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis, 2018, 9(7): 759

    • 21

      Hirahata M, Osaki M, Kanda Y, et al. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma. Cancer Med-Us, 2016, 5(5): 892-902 - 9 -

    • 22

      Bajou K, Masson V, Gerard R D, et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin: implications for antiangiogenic strategies. J Cell Biol, 2001, 152(4): 777-784

    • 23

      Caja L, Dituri F, Mancarella S, et al. TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci, 2018, 19(5): 1294

    • 24

      Bajou K, Peng H, Laug W E, et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell, 2008, 14(4): 324-334

    • 25

      Zhang W W, Xu J, Fang H H, et al. Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling. Faseb J, 2018, 32(1): 276-288

    • 26

      Jeon H, Kim J H, Kim J H, et al. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflamm, 2012, 9(1): 149

    • 27

      Garcia L, Hernandez I, Sandoval A, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol, 2002, 37(6): 797-805

    • 28

      Chanda D, Lee C H, Kim Y H, et al. Fenofibrate differentially regulates plasminogen activator inhibitor-1 gene expression via adenosine monophosphate-activated protein kinase-dependent induction of orphan nuclear receptor small heterodimer partner. Hepatology, 2009, 50(3): 880-892

    • 29

      Crandall D L, Elokdah H, Di L, et al. Characterization and comparative evaluation of a structurally unique PAI-1 inhibitor exhibiting oral in-vivo efficacy. J Thromb Haemost, 2004, 2(8): 1422-1428

    • 30

      Hennan J K, Morgan G A, Swillo R E, et al. Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis. J Thromb Haemost, 2008, 6(9): 1558-1564

    • 31

      Gorlatova N V, Tale J M, Elokdah H, et al. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitory. J Biol Chem, 2007, 282(12): 9288-9296

    • 32

      任美萍, 李蓉, 陈妮, 等. 小鼠颈动脉血栓模型的建立. 西南医科大学学报, 2014, 37(3): 261-262

      Ren M P, Li R, Chen N, et al. Journal of Southwest Medical University, 2014, 37(3): 261-262

    • 33

      Iacoviello L, Agnoli C, De Curtis A, et al. Type 1 plasminogen activator inhibitor as a common risk factor for cancer and ischaemic vascular disease: the EPICOR study. BMJ Open, 2013, 3(11): e003725

    • 34

      De Faria C A, Zanette D L, Silva W A, et al. PAI-1 inhibition by simvastatin as a positive adjuvant in cell therapy. Molecular Biology Reports, 2019, 46(1): 1511-1517

    • 35

      Placencio V R, Declerck Y A. Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing. Cancer Res, 2015, 75(15): 2969-2974

    • 36

      Cale J M, Li S H, Warnock M, et al. Characterization of a novel class of polyphenolic inhibitors of plasminogen activator inhibitor-1. J Biol Chem, 2010, 285(11): 7892-7902

    • 37

      Zhonghui L, Jensen J K, Zebin H, et al. Structural insight into inactivation of plasminogen activator inhibitor-1 by a small-molecule antagonist. Chem Biol, 2013, 20(2): 253-261

    • 38

      Chen F, Zhang G, Hong Z, et al. Design, synthesis, and SAR of embelin analogues as the inhibitors of PAI-1 (plasminogen activator inhibitor-1). Bioorg Med Chem Lett, 2014, 24(10): 2379-2382

    • 39

      Van De Craen B, Scroyen I, Abdelnabi R, et al. Characterization of a panel of monoclonal antibodies toward mouse PAI-1 that exert a significant profibrinolytic effect in vivo. Thromb Res, 2011, 128(1): 68-76

    • 40

      Lihu G, Min L, Tu Z, et al. Crystal structure of the michaelis complex between tissue-type plasminogen activator and plasminogen activators inhibitor-1. J Biol Chem, 2015, 290(43): 25795-25804

    • 41

      Peng S Z, Xue G P, Gong L H, et al. A long-acting PAI-1 inhibitor reduces thrombus formation. Thromb Haemostasis, 2017, 117(7): 1338-1347

    • 42

      Gong L H, Proulle V, Fang C, et al. A specific plasminogen activator inhibitor-1 antagonist derived from inactivated urokinase. J Cell Mol Med, 2016, 20(10): 1851-1860

    • 43

      付夏, 夏曙华, 王幼林, 等.PAI-1与恶性实体肿瘤的相关性研究进展. 中国医药指南, 2012, 10(9): 48-50

      Fu X, Xia S H, Wang Y L, et al. Guide of China Medicine, 2012, 10(9): 48-50

    • 44

      Nakatsuka E, Sawada K, Nakamura K, et al. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination. Oncotarget, 2017, 8(52): 89887-89902

    • 45

      Fang H H, Jin J, Huang D D, et al. PAI-1 induces Src inhibitor resistance via CCL5 in HER2-positive breast cancer cells. Cancer Sci, 2018, 109(6): 1949-1957

    • 46

      Ghosh A K, Murphy S B, Kishore R, et al. Global gene expression profiling in PAI-1 knockout murine heart and kidney: molecular basis of cardiac-selective fibrosis. Plos One. 2013, 8(5):e63825

    • 47

      Gettins P G W, Dolmer K. The high affinity binding site on plasminogen activator inhibitor-1 (PAI-1) for the low density lipoprotein receptor-related protein (LRP1) is composed of four basic residues. J Biol Chem, 2016, 291(2): 800-812

    • 48

      Izuhara Y, Takahashi S, Nangaku M, et al. Inhibition of plasminogen activator inhibitor-1 - Its mechanism and effectiveness on coagulation and fibrosis. Arterioscl Throm Vas, 2008, 28(4): 672-677

    • 49

      Rupin A, Gaertner R, Mennecier P, et al. S35225 is a direct inhibitor of plasminogen activator inhibitor type-1 activity in the blood. Thromb Res, 2008, 122(2): 265-270

    • 50

      Gardell S J, Krueger J A, Antrilli T A, et al. Neutralization of plasminogen activator inhibitor I (PAI-1) by the synthetic antagonist PAI-749 via a dual mechanism of action. Mol Pharmacol, 2007, 72(4): 897-906

    • 51

      Liang A, Wu F, Tran K, et al. Characterization of a small molecule PAI-1 inhibitor, ZK4044. Thromb Res, 2005, 115(4): 341-350

    • 52

      Elokdah H, Mcfarlane G R, Li D Z, et al. Tiplaxtinin: a novel orally efficacious inhibitor of PAI-1 for use in treatment of diseases of fibrinolytic dysfunction. Abstr Pap Am Chem S, 2004, 227: U7-U7

    • 53

      Egelund R, Einholm A P, Pedersen K E, et al. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands - Ligand-induced serpin polymerization. J Biol Chem, 2001, 276(16): 13077-13086

    • 54

      Bjorquist P, Ehnebom J, Inghardt T, et al. Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by site-directed mutagenesis. Biochemistry, 1998, 37(5): 1227-1234

刘吉昊

机 构:

1). 中国科学院福建物质结构研究所结构化学国家重点实验室,福州 35000

4). 中国科学院大学,北京 100049

Affiliation:

1). State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Chin

4). University of Chinese Academy of Sciences, Beijing 100049, China

唐述志

机 构:

1). 中国科学院福建物质结构研究所结构化学国家重点实验室,福州 35000

4). 中国科学院大学,北京 100049

Affiliation:

1). State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Chin

4). University of Chinese Academy of Sciences, Beijing 100049, China

胡立宏

机 构:中国科学院上海药物研究所,上海 20120

Affiliation:Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, Chin

黄明东

机 构:福州大学化学学院,福州 350116

Affiliation:College of Chemistry, Fuzhou University, Fuzhou 350116, Chin

角 色:通讯作者

Role:Corresponding author

作者简介:Tel: 0591-63173094

Profile:

陈卓

机 构:

1). 中国科学院福建物质结构研究所结构化学国家重点实验室,福州 35000

4). 中国科学院大学,北京 100049

Affiliation:

1). State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Chin

4). University of Chinese Academy of Sciences, Beijing 100049, China

角 色:通讯作者

Role:Corresponding author

作者简介:Tel: 0591-63173094

Profile:

html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F001.png
html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F002.png
html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F003.png
html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F004.png
名称结构IC50年份参考文献
IMD4482html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F005.jpg2017[44]
PAItrap2蛋白质~ 5 nmol/L2017[41]
PAItrap蛋白质10 nmol/L2016[42]
CDE-066html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F006.jpg10 nmol/L2010[36]
Gallic acidhtml/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F007.jpg6.6 μmol/L2010[36]
TM5001html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F008.jpg28.6 μmol/L2008[48]
S35225html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F009.jpg260 μmol/L2007[49]
PAI-0749html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F010.jpg87 nmol/L2007[50]
ZK4044html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F011.jpg644 nmol/L2005[51]
PAI-039html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F012.jpg2.7 μmol/L2004[52]
Bis-ANShtml/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F013.jpg570 nmol/L2001[53]
XR5118html/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F014.jpg3.5 μmol/L2001[53]
AR-H029953XXhtml/pibbcn/20190011/alternativeImage/4e9855a7-32b1-41c4-b163-675a34149447-F015.jpg25 μmol/L1998[54]

图1 纤溶系统的组成

Fig. 1 Composition of fibrinolytic system

图2 PAI-1的两种不同构[4]

Fig. 2 Two different conformation of PAI-1

图3 影响PAI-1转录调控的因素

Fig. 3 Factors that influence transcriptional regulation of PAI-1

图4 PAI-1与分子肿瘤学

Fig. 4 PAI-1 and molecular oncology

表1 PAI-1抑制剂

Table 1 Inhibitors of PAI-1

image /

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Bajaj J, Konuma T, Lytle N K, et al. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell, 2016, 30(5): 792-805

    • 2

      Smyth M J, Ngiow S F, Ribas A, et al. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol, 2016, 13(3): 143-158

    • 3

      Hong Z B, Lin Z H, Gong L H, et al. Crystal structure of PAI-1 in complex with gallate. Chinese J Struc Chem, 2013, 32(7): 1005-1012

    • 4

      Shang L, Xue G P, Gong L H, et al. A novel ELISA for the detection of active form of plasminogen activator inhibitor-1 based on a highly specific trapping agent. Anal Chim Acta, 2019, 1053: 98-104

    • 5

      Zhou A W, Huntington J A, Pannu N S, et al. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol, 2003, 10(7): 541-544

    • 6

      Li S J, Wei X H, He J Y, et al. Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother, 2018, 105: 83-94

    • 7

      Czekay R P, Wilkins-Port C E, Higgins S P, et al. PAI-1: an integrator of cell signaling and migration. Int J Cell Biol, 2011, 2011: 562481

    • 8

      Sturgeon C M, Duffy M J, Stenman U H, et al. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem, 2008, 54(12): E11-E79

    • 9

      Harris L, Fritsche H, Mennel R, et al. American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol, 2007, 25(33): 5287-5312

    • 10

      Chen J G, Li X, Huang H Y, et al. Identification of a peroxisome proliferator responsive element (PPRE)-like cis-element in mouse plasminogen activator inhibitor-1 gene promoter. Biochem Bioph Res Co, 2006, 347(3): 821-826

    • 11

      Samarakoon R, Overstreet J M, Higgins S P, et al. TGF-beta 1 -> SMAD/p53/USF2 -> PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res, 2012, 347(1): 117-128

    • 12

      Manders P, Tjan-Heijnen V C G, Span P N, et al. Predictive impact of urokinase-type plasminogen activator: Plasminogen activator inhibitor type-1 complex on the efficacy of adjuvant systemic therapy in primary breast cancer. Cancer Res, 2004, 64(2): 659-664

    • 13

      Viala M, Alexandre M, Thezenas S, et al. Prognostic impact of the inclusion of uPA/PAI-1 for adjuvant treatment decision-making in ER+/Her2-pN0 early breast cancers. Breast Cancer Res Tr, 2017, 165(3): 611-621

    • 14

      Pusina S. Correlation of serum levels of urokinase activation plasminogen (uPA) and its inhibitor (PAI-1) with hormonal and HER-2 status in the early invasive breast cancer. Med Arch, 2018, 72(5): 335-340

    • 15

      Talmadge J E, Gabrilovich D I. History of myeloid-derived suppressor cells. Nat Rev Cancer, 2013, 13(10): 739-U779

    • 16

      Zhu C J, Shen H, Zhu L J, et al. Plasminogen activator inhibitor 1 promotes immunosuppression in human non-small cell lung cancers by enhancing TGF-B1 expression in macrophage. Cell Physiol Biochem, 2017, 44(6): 2201-2211

    • 17

      Placencio V R, Miyata T, Declerck Y A. Abstract 1548: Pharmacologic inhibition of PAI-1 increases apoptosis and inhibits macrophage migration in cancer. Cancer Res, 2013, 73: 1548-1548

    • 18

      Kubala M H, Punj V, Placencio-Hickok V R, et al. Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer. Cell Rep, 2018, 25(8): 2177-2191

    • 19

      Giacoia E G, Miyake M, Lawton A, et al. PAI-1 leads to g(1)-phase cell-cycle progression through cyclin D3/cdk4/6 upregulation. Mol Cancer Res, 2014, 12(3): 322-334

    • 20

      Che Y, Wang J, Li Y, et al. Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis, 2018, 9(7): 759

    • 21

      Hirahata M, Osaki M, Kanda Y, et al. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma. Cancer Med-Us, 2016, 5(5): 892-902 - 9 -

    • 22

      Bajou K, Masson V, Gerard R D, et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin: implications for antiangiogenic strategies. J Cell Biol, 2001, 152(4): 777-784

    • 23

      Caja L, Dituri F, Mancarella S, et al. TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci, 2018, 19(5): 1294

    • 24

      Bajou K, Peng H, Laug W E, et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell, 2008, 14(4): 324-334

    • 25

      Zhang W W, Xu J, Fang H H, et al. Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling. Faseb J, 2018, 32(1): 276-288

    • 26

      Jeon H, Kim J H, Kim J H, et al. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflamm, 2012, 9(1): 149

    • 27

      Garcia L, Hernandez I, Sandoval A, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol, 2002, 37(6): 797-805

    • 28

      Chanda D, Lee C H, Kim Y H, et al. Fenofibrate differentially regulates plasminogen activator inhibitor-1 gene expression via adenosine monophosphate-activated protein kinase-dependent induction of orphan nuclear receptor small heterodimer partner. Hepatology, 2009, 50(3): 880-892

    • 29

      Crandall D L, Elokdah H, Di L, et al. Characterization and comparative evaluation of a structurally unique PAI-1 inhibitor exhibiting oral in-vivo efficacy. J Thromb Haemost, 2004, 2(8): 1422-1428

    • 30

      Hennan J K, Morgan G A, Swillo R E, et al. Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis. J Thromb Haemost, 2008, 6(9): 1558-1564

    • 31

      Gorlatova N V, Tale J M, Elokdah H, et al. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitory. J Biol Chem, 2007, 282(12): 9288-9296

    • 32

      任美萍, 李蓉, 陈妮, 等. 小鼠颈动脉血栓模型的建立. 西南医科大学学报, 2014, 37(3): 261-262

      Ren M P, Li R, Chen N, et al. Journal of Southwest Medical University, 2014, 37(3): 261-262

    • 33

      Iacoviello L, Agnoli C, De Curtis A, et al. Type 1 plasminogen activator inhibitor as a common risk factor for cancer and ischaemic vascular disease: the EPICOR study. BMJ Open, 2013, 3(11): e003725

    • 34

      De Faria C A, Zanette D L, Silva W A, et al. PAI-1 inhibition by simvastatin as a positive adjuvant in cell therapy. Molecular Biology Reports, 2019, 46(1): 1511-1517

    • 35

      Placencio V R, Declerck Y A. Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing. Cancer Res, 2015, 75(15): 2969-2974

    • 36

      Cale J M, Li S H, Warnock M, et al. Characterization of a novel class of polyphenolic inhibitors of plasminogen activator inhibitor-1. J Biol Chem, 2010, 285(11): 7892-7902

    • 37

      Zhonghui L, Jensen J K, Zebin H, et al. Structural insight into inactivation of plasminogen activator inhibitor-1 by a small-molecule antagonist. Chem Biol, 2013, 20(2): 253-261

    • 38

      Chen F, Zhang G, Hong Z, et al. Design, synthesis, and SAR of embelin analogues as the inhibitors of PAI-1 (plasminogen activator inhibitor-1). Bioorg Med Chem Lett, 2014, 24(10): 2379-2382

    • 39

      Van De Craen B, Scroyen I, Abdelnabi R, et al. Characterization of a panel of monoclonal antibodies toward mouse PAI-1 that exert a significant profibrinolytic effect in vivo. Thromb Res, 2011, 128(1): 68-76

    • 40

      Lihu G, Min L, Tu Z, et al. Crystal structure of the michaelis complex between tissue-type plasminogen activator and plasminogen activators inhibitor-1. J Biol Chem, 2015, 290(43): 25795-25804

    • 41

      Peng S Z, Xue G P, Gong L H, et al. A long-acting PAI-1 inhibitor reduces thrombus formation. Thromb Haemostasis, 2017, 117(7): 1338-1347

    • 42

      Gong L H, Proulle V, Fang C, et al. A specific plasminogen activator inhibitor-1 antagonist derived from inactivated urokinase. J Cell Mol Med, 2016, 20(10): 1851-1860

    • 43

      付夏, 夏曙华, 王幼林, 等.PAI-1与恶性实体肿瘤的相关性研究进展. 中国医药指南, 2012, 10(9): 48-50

      Fu X, Xia S H, Wang Y L, et al. Guide of China Medicine, 2012, 10(9): 48-50

    • 44

      Nakatsuka E, Sawada K, Nakamura K, et al. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination. Oncotarget, 2017, 8(52): 89887-89902

    • 45

      Fang H H, Jin J, Huang D D, et al. PAI-1 induces Src inhibitor resistance via CCL5 in HER2-positive breast cancer cells. Cancer Sci, 2018, 109(6): 1949-1957

    • 46

      Ghosh A K, Murphy S B, Kishore R, et al. Global gene expression profiling in PAI-1 knockout murine heart and kidney: molecular basis of cardiac-selective fibrosis. Plos One. 2013, 8(5):e63825

    • 47

      Gettins P G W, Dolmer K. The high affinity binding site on plasminogen activator inhibitor-1 (PAI-1) for the low density lipoprotein receptor-related protein (LRP1) is composed of four basic residues. J Biol Chem, 2016, 291(2): 800-812

    • 48

      Izuhara Y, Takahashi S, Nangaku M, et al. Inhibition of plasminogen activator inhibitor-1 - Its mechanism and effectiveness on coagulation and fibrosis. Arterioscl Throm Vas, 2008, 28(4): 672-677

    • 49

      Rupin A, Gaertner R, Mennecier P, et al. S35225 is a direct inhibitor of plasminogen activator inhibitor type-1 activity in the blood. Thromb Res, 2008, 122(2): 265-270

    • 50

      Gardell S J, Krueger J A, Antrilli T A, et al. Neutralization of plasminogen activator inhibitor I (PAI-1) by the synthetic antagonist PAI-749 via a dual mechanism of action. Mol Pharmacol, 2007, 72(4): 897-906

    • 51

      Liang A, Wu F, Tran K, et al. Characterization of a small molecule PAI-1 inhibitor, ZK4044. Thromb Res, 2005, 115(4): 341-350

    • 52

      Elokdah H, Mcfarlane G R, Li D Z, et al. Tiplaxtinin: a novel orally efficacious inhibitor of PAI-1 for use in treatment of diseases of fibrinolytic dysfunction. Abstr Pap Am Chem S, 2004, 227: U7-U7

    • 53

      Egelund R, Einholm A P, Pedersen K E, et al. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands - Ligand-induced serpin polymerization. J Biol Chem, 2001, 276(16): 13077-13086

    • 54

      Bjorquist P, Ehnebom J, Inghardt T, et al. Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by site-directed mutagenesis. Biochemistry, 1998, 37(5): 1227-1234