en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
GuttmanM, AmitI, GarberM, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235): 223-227
参考文献 2
NamJ W, BartelD P. Long noncoding RNAs in C. elegans. Genome Research, 2012, 22(12): 2529-2540
参考文献 3
YoungR S, MarquesA C, TibbitC, et al. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biology and Evolution, 2012, 4(4): 427-442
参考文献 4
MarcheseFP, RaimondiI, HuarteM. The multidimensional mechanisms of long noncoding RNA function. Genome Biology, 2017, 18(1):206
参考文献 5
KaushikK, LeonardV E, KvS, et al. Dynamic expression of long non-coding RNAs (lncRNAs) in adult zebrafish. Plos One, 2013, 8(12): e83616
参考文献 6
KadakkuzhaB M, LiuX A, MccrateJ, et al. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Frontiers in Cellular Neuroscience, 2015, 9: 63
参考文献 7
InagakiS, NumataK, KondoT, et al. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes to Cells, 2005, 10(12): 1163-1173
参考文献 8
PerryR B, HezroniH, GoldrichM J, et al. Regulation of neuroregeneration by long noncoding RNAs. Molecular Cell, 2018, 72(3): 553-567.e5
参考文献 9
JankowskiM P, MillerL, KoerberH R. Increased expression of transcription factor SRY-box-Containing Gene 11 (Sox11) enhances neurite growth by regulating neurotrophic factor responsiveness. Neuroscience, 2018, 382:93-104
参考文献 10
IrvingM D, BuitingK, KanberD, et al. Segmental paternal uniparental disomy (patUPD) of 14q32 with abnormal methylation elicits the characteristic features of complete patUPD14. American Journal of Medical Genetics Part A, 2010, 152a(8): 1942-1950
参考文献 11
YenY P, HsiehW F, TsaiY Y, et al. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. eLife, 2018, 7: e38080
参考文献 12
LiC J, HongT, TungY T, et al. MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord. Nature Communication, 2017, 8: 14685
参考文献 13
Gomez-PinillaF, LeeJ W, CotmanC W. Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. The Journal of Neuroscience, 1992, 12(1): 345-355
参考文献 14
WilliamsL R, VaronS, PetersonG M, et al. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci U S A, 1986, 83(23): 9231-9235
参考文献 15
ZhangL, HanX, ChengX, et al. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regeneration Research, 2016, 11(4): 597-603
参考文献 16
DengB, ChengX, LiH, et al. Microarray expression profiling in the denervated hippocampus identifies long noncoding RNAs functionally involved in neurogenesis. BMC Molecular Biology, 2017, 18(1): 15
参考文献 17
RaveendraB L, SwarnkarS, AvchalumovY, et al. Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proc Natl Acad Sci U S A, 2018, 115(43): e10197-e10205
参考文献 18
LiM X, JiaM, YangL X, et al. The role of the theta isoform of protein kinase C (PKC) in activity-dependent synapse elimination: evidence from the PKC theta knock-out mouse in vivo and in vitro. The Journal of Neuroscience, 2004, 24(15): 3762-3769
参考文献 19
HelmstaedterC, KurthenM, LuxS, et al. Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Annals of Neurology, 2003, 54(4): 425-432
参考文献 20
CendesF, SakamotoA C, SpreaficoR, et al. Epilepsies associated with hippocampal sclerosis. Acta Neuropathologica, 2014, 128(1): 21-37
参考文献 21
HanC L, GeM, LiuY P, et al. Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death & Disease, 2018, 9(6): 617
参考文献 22
LambT D. Evolution of phototransduction, vertebrate photoreceptorsand retina. Progress in Retinal and Eye Research, 2013, 36:52-119
参考文献 23
YoungT L, MatsudaT, CepkoC L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Current Biology, 2005, 15(6): 501-512
参考文献 24
ZelingerL, KarakulahG, ChaitankarV, et al. Regulation of noncoding transcriptome in developing photoreceptors by rod differentiation Factor NRL. Investigative Ophthalmology & Visual Science, 2017, 58(11): 4422-4435
参考文献 25
GolubyatnikovV P, BukharinaT A, FurmanD P. A model study of the morphogenesis of D. melanogaster mechanoreceptors: the central regulatory circuit. Journal of Bioinformatics and Computational Biology, 2015, 13(1): 1540006
参考文献 26
FurmanD P, BukharinaT A. Morphogenesis of Drosophila melanogaster macrochaetes: cell fate determination for bristle organ. Journal of Stem Cells, 2012, 7(1): 19-41
参考文献 27
TuthillJ C, WilsonR I. Mechanosensation and adaptive motor control in insects. Current Biology, 2016, 26(20): R1022-R1038
参考文献 28
SeedsA M, RavbarP, ChungP, et al. A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife, 2014, 3: e02951
参考文献 29
XuM, XiangY, LiuX, et al. Long noncoding RNA SMRG regulates Drosophila macrochaetes by antagonizing scute through E(spl)mbeta. RNA Biology, 2019, 16(1): 42-53
参考文献 30
MartinJ R, OlloR. A new Drosophila Ca2+/calmodulin-dependent protein kinase (Caki) is localized in the central nervous system and implicated in walking speed. The EMBO Journal, 1996, 15(8): 1865-1876
参考文献 31
SlawsonJ B, KuklinE A, EjimaA, et al. Central regulation of locomotor behavior of Drosophila melanogaster depends on a CASK isoform containing CaMK-like and L27 domains. Genetics, 2011, 187(1): 171-184
参考文献 32
LiM, WenS, GuoX, et al. The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Research, 2012, 40(22): 11714-11727
参考文献 33
GummallaM, MaedaR K, Castro AlvarezJ J, et al. abd-A regulation by the iab-8 noncoding RNA. Plos Genetics, 2012, 8(5): e1002720
参考文献 34
DavisC J, TaishiP, HonnK A, et al. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2016, 311(6): r1004-r1012
参考文献 35
SoshnevA A, IshimotoH, McallisterB F, et al. A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics, 2011, 189(2): 455-468
参考文献 36
MercerT R, MattickJ S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural & Molecular Biology, 2013, 20(3): 300-307
参考文献 37
KleavelandB, ShiC Y, StefanoJ, et al. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell, 2018, 174(2): 350-362.e17
参考文献 38
赵乾富,陈仕俊,肖丙秀,等. 环状RNA的生物学功能及其在胃肠肿瘤发生中的作用. 生物化学与生物物理进展, 2018, 45(6): 601-612
ZhaoQ F, ChenS J, XiaoB X, et al. Prog Biochem Biophys, 2018, 45(6): 601-612
参考文献 39
UlitskyI, ShkumatavaA, JanC H, et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 2011, 147(7): 1537-1550
参考文献 40
AhmedK, LapierreM P, GasserE, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. The Journal of Clinical Investigation, 2017, 127(3): 1061-1074
参考文献 41
HansenT B, JensenT I, ClausenB H, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388
参考文献 42
PiweckaM, GlazarP, Hernandez-MirandaL R, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357), pii: eaam8526
参考文献 43
HansenT B, WiklundE D, BramsenJ B, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. The EMBO Journal, 2011, 30(21): 4414-4422
参考文献 44
AbidinS Z, LeongJ W, MahmoudiM, et al. In Silico prediction and validation of Gfap as an miR-3099 target in mouse brain. Neuroscience Bulletin, 2017, 33(4): 373-382
目录 contents

    摘要

    长链非编码RNA(long noncoding RNA, lncRNA)是多种复杂有机体转录组中最主要的一类转录本. lncRNA在各种生物之间序列保守性差、表达量普遍比较低. 与编码基因相比,lncRNA有相似的启动子区域以及剪切位点,具有较好的细胞和组织特异性分布,尤其在神经系统中具有较为丰富的表达,提示它们在神经系统中具有不可忽视的作用. 本文围绕近几年lncRNA在神经系统方面的最新研究成果,总结了lncRNA对中枢和外周神经系统发育以及对神经系统功能等方面的调控作用及机制. 同时展望了有关lncRNA研究的新理念和新技术及对未来神经科学研究的推动作用.

    Abstract

    Long noncoding RNA(lncRNA) is the most important transcript in the transcriptomes of many complex organisms. LncRNA has low conservation and expression level among various organisms. Compared with coding genes, lncRNAs have similar promoter regions and splicing sites, and have better cellular and tissue-specific distribution, especially in the nervous system. The rich expression of lncRNAs suggests that they play an important role in the nervous system. Based on the latest research results of lncRNAs in the neural system in recent years, this review summarizes the regulatory roles and mechanisms of lncRNAs in the development of central and peripheral nervous system and the function of nervous system. At the same time, the new ideas and technologies of lncRNA research are prospected, which will promote the future research of neuroscience.

    随着用于转录组分析的生物信息学计算和RNA深度测序技术的不断发展,揭示了多种有机体的基因组为普遍性转录,且长链非编码RNA(long noncoding RNA,lncRNA)是构成转录组中的主要组[1,2,3]. lncRNA为长度大于200 nt的非编码RNA,且大部分lncRNA由RNA聚合酶Ⅱ催化转录生成,具有与信使RNA(messenger RNA,mRNA)相似的结构,包括5’甲基鸟苷和3’多聚腺苷酸,但lncRNA缺乏蛋白质编码能[4]. 多物种的研究提示lncRNA在神经系统中具有较为丰富的表达. 对斑马鱼5种组织,包括心脏、肝脏、肌肉、大脑和血液中lncRNA分布的研究发现,大脑中特异分布的lncRNA数量相对较[5]. 成年小鼠的海马体和前额叶是正常记忆功能和神经性疾病相关的重要区域,采用RNA深度测序发现lncRNA在这两个脑区具有丰富的表[6]. 采用原位杂交高通量检测提示,lncRNA在果蝇胚胎时期的神经系统中具有特异的表[7]. lncRNA在神经系统中丰富的特异性表达提示其在神经系统中可能具有重要的作用. 本文总结了lncRNA在神经系统中的作用、分子机制和调控网络(图1),对理解lncRNA在神经系统中的工作机制及其可能导致的疾病提供一定的参考依据.

    图1
                            本文主要内容的框架图

    图1 本文主要内容的框架图

    Fig. 1 Framework diagram of the main contents of this review

  • 1 lncRNA调控外周感觉神经元的再生与运动神经元的分化

    lncRNA在哺乳动物外周神经系统受伤后参与调控感觉神经元的再生. 通过对小鼠坐骨神经损伤后的基因表达进行分析,筛选只在再生神经元中表达的lncRNA,Perry[8]发现了调节神经再生的lncRNA sciatic-injury-induced lncRNA 1Silc1). 在Silc1–/–小鼠中观察到感觉神经元的再生延迟,在体外培养的背根神经节(dorsal root ganglion)神经元中敲除lncRNA Silc1导致神经元轴突长度降低,同时伴有SRY-box-containing gene 11Sox11)的mRNA表达水平降低. Sox11能调节神经元的产生和神经元损伤后的再[9],当Sox11的表达水平恢复后,神经元的再生能力也得到了恢复. 推测长链非编码RNA Silc1可能通过调控Sox11表达水平对神经元的再生能力进行调控.

    lncRNA maternally expressed gene 3MEG3)位于印记基因簇Dlk1-Dio3中的两个编码蛋白基因之间,是一个基因间lncRNA[10]. lncRNA MEG3与PRC2复合物结合后能与辅助因子互作,影响其靶基因位点Hox基因簇的H3K27me3表观修饰水平. MEG3表达量降低时,Hox(8~13)的H3K27me3表观修饰水平会降低,Hox(8~13)表达量会升[11]. 干细胞向不同的运动神经元分化是通过Hox转录因子在脊髓中时空特异表达介导[12],因此lncRNA MEG3可能通过调控Hox基因进而调控干细胞分化成不同运动神经元.

  • 2 lncRNA影响海马神经元的增殖、凋亡和神经可塑性

    哺乳动物脑中海马结构一直为人们所关注,被认为是参与学习记忆等认知功能的重要脑区. 海马的学习记忆能力体现在海马神经元之间突触联系的可塑性,包括突触前与突触后神经元之间电活动和突触结构本身经验依赖性的改变. 而海马神经元的减少可能导致各种神经系统疾病.

    小鼠穹窿海马伞切断手术能通过改变微环境内的细胞生长因子组分,促进神经干细胞的分化和神经元的增[13,14,15]. 穹窿海马伞切断后,使用微阵列技术筛选在海马中特异表达的lncRNA,发现lncRNA2393在海马中特异性高表[16]. 用小干扰RNA(small interfering RNA,siRNA)降低神经干细胞中lncRNA2393的表达后,对神经干细胞进行EDU(5-ethynyl-2′-deoxyuridine)增殖分析,发现在相同的增殖时间后有EDU标记的细胞数量减少,推测lncRNA2393表达的降低导致了神经干细胞的增殖率降低.

    通过鉴定在小鼠不同脑区的lncRNA表达量差异,筛选到海马中高表达的lncRNA GM12371[6]. Raveendra[17]在对海马神经元形态的观察中发现,GM12371敲除后海马内神经元的树突长度变短、密度下降. 使用全细胞膜片钳记录测量敲除GM12371对自发兴奋性突触后电流(spontaneous excitatory postsynaptic currents,sEPSCs)的影响,发现GM12371敲除后海马神经元的sEPSCs会减弱,这表明GM12371在神经元兴奋性突触传递中具有重要作用. GM12371敲除后PRKCqprotein kinase Cq)的mRNA水平下降,lncRNA GM13292的表达上升. PRKCq参与调节突触消[18],而PRKCq的表达与lncRNA GM13292的表达呈负相关. 除此之外,他们发现使用能使腺苷酸环化酶(cyclic adenosine monophosphate,cAMP)升高的毛喉素能上调lncRNA GM12371的表达水平,而蛋白激酶A(potein kinase A,PKA)抑制剂14-22酰胺能阻断这种上调,从而推测cAMP-PKA信号通路能上调GM12371的表达. 该研究不仅探究了lncRNA GM12371对编码蛋白基因mRNA水平的调控,还探究了调控lncRNA GM12371表达的上游信号通路,由此可以推测神经系统中调控lncRNA的表达可能是通过cAMP-PKA类似的上游通路进行的.

    颞叶癫痫(temporal lobe epilepsy,TLE)是由海马神经元数量减少或海马硬化导致[19,20]. 在TLE潜伏期lncRNA H19在海马中表达水平升高,随后发现H19可以作为内源性RNA与miRNA let-7b[21]. cysteinyl aspartate specific proteinase 3Casp3)基因是与细胞凋亡相关的Caspase家族中的一员,当miRNA let-7b的表达量增加时Casp3基因表达量降低,可以推测H19通过miRNA let-7b竞争调控Casp3基因表达进而调控细胞凋亡,lncRNA H19也可能成为颞叶癫痫治疗的靶点.

  • 3 lncRNA调控外周感觉器官的发育

    视网膜是进行视觉信息感觉和处理的重要结构,其中视觉感受细胞通过捕获光子起始视觉过程. 视觉感受细胞包括视杆细胞和视锥细胞,占视网膜中神经元的75%~80%[22]. 牛磺酸为半胱氨酸衍生物,可以促进视网膜中视杆细胞的生成. Young[23]通过使用牛磺酸作用于离体小鼠发育的视网膜,发现了一个表达上调的lncRNA Taurine Upregulated Gene 1TUG1),TUG1是序列全长为6 700 nt剪接的多聚腺苷酸化lncRNA. 虽然TUG1在成年小鼠的大脑和其他一些组织中有不同程度的分布,但在视网膜的各个发育时期具有明显的表达. 采用RNA干扰敲降新生小鼠视网膜中的TUG1会导致视杆细胞分化异常,表现为其外段畸形或缺失. 提示TUG1对于视杆细胞的形成是十分必要[23]. Zelinger[24]选择视杆细胞分化因子-神经视网膜亮氨酸(neural retina leucine zipper,NRL)突变小鼠的视杆细胞,通过高通量分析比较突变和野生型的视杆细胞全转录组lncRNA,发现119个lncRNA具有明显差异表达,且通过染色质免疫沉淀结合测序证实这些lncRNAs均为NRL靶基因. 进一步采用原位杂交实验证实了其中24个lncRNA在光感受器中特异性表达. 最后通过生物信息学提出了多种光感受器特异lncRNA与其共表达的蛋白质编码基因间的调控模式. 这一研究为解码lncRNA在视网膜发育中的作用提供了构架性基[24].

    果蝇成虫背部刚毛作为机械感受器属于外周感觉器[25]. 刚毛的数量和位置严格固定,其分布模式具有种属特异性. 成虫背部有11对刚毛,其中2对位于背部盾板(scutellar macrochaetes[25,26]. 作为主要的外部机械感受器,刚毛可以感受瞬时的机械振动,比如与外界物体接触产生的机械振动可以使果蝇注意其体表的外来物体,包括灰尘或寄生虫等,从而引起其梳理行[27,28]. 最新的研究发现了一个调控背部盾板刚毛发育的lncRNA Scutellar Macrochaetes Regulatory GeneSMRG). SMRG为非剪接的多聚腺苷酸化lncRNA,长度为1 879 nt,主要分布于成蝇头胸部. SMRG突变表现为成蝇盾板刚毛增多,同时伴有原神经基因(proneural gene)scutesc)表达上调. 通过遗传互作发现,SMRG通过拮抗sc来调控刚毛发育. 其调控机制为SMRG通过与抑制子enhancer-of-split mβ(E(spl)mβ)结合并将其募集于sc启动子区,负性调控sc转录来负性调控刚毛发[29].

  • 4 lncRNA调控运动能力

    运动能力对于动物的生存与繁衍至关重要. 果蝇中calcium/calmodulin-dependent serine protein kinaseCASK)基因的突变会导致其运动能力显著下[30,31]. Li[32]发现了一个在果蝇神经系统中特异性表达的lncRNA CASK Regulatory GeneCRG). 在果蝇基因组中,CRG与其邻近的CASK基因的3’-非翻译区重叠,且两者具有相同的转录方向. CRG为非剪接的多聚腺苷酸lncRNA,长度为2 672 nt. 果蝇CRG突变品系表现为爬行运动能力下降,同时邻近CASK基因的表达水平显著下调. 通过遗传互作实验发现,在果蝇神经系统中过表达CASK可以挽回CRG突变品系运动能力降低的缺陷表型,表明CASKCRG调控果蝇爬行运动能力的靶基因. 在分子层面上,CRG可能通过与转录起始复合物中RNA聚合酶Ⅱ相互作用并将其募集于CASK启动子区,从而正性调控CASK的表达. 上述研究结果提示,CRG调控果蝇爬行运动能力是由邻近的CASK介导[32].

    果蝇lncRNA iab-8由决定果蝇后胸和腹部体节的同源基因abdominal-Aabd-A)和Abdominal BAbd-B)之间的区域转录生成,其长度为 92 000 nt,是剪接的多聚腺苷酸化lncRNA[33]. iab-8表达于胚胎14期第八腹部体节神经细胞中,抑制abd-A的表达. 敲降iab-8导致雌、雄果蝇不育. 这种表型并不是由于生殖器官异常造成的,而是由于运动能力缺陷导致的. 敲降iab-8导致雄蝇不能弯曲腹部,从而不能完成正常交配. 而雌蝇中敲降iab-8导致其输卵管蠕动失调,不能正常输送卵[33]. 目前尚未确定lncRNA iab-8是如何抑制abd-A表达的,一种可能的机制是iab-8作为前体产生miRNA来抑制abd-A表达,另一种可能性是iab-8的3’端与abd-A启动子区重叠,从而干扰RNA聚合酶与该启动子区的结合,继而抑制了abd-A的表达.

  • 5 lncRNA参与睡眠调节功能

    正常睡眠时长对于个体是必需的. 如果剥夺动物的正常睡眠,会导致动物在随后的白天增加睡眠时长来补足缺少的睡眠. 离子嘌呤型2X7受体(purine type 2X7 receptor, P2X7R)为非特异性阳离子通道,参与睡眠调节. Davis[34]比较了睡眠剥夺前后野生型和P2X7R敲除小鼠下丘脑中lncRNA的表达,发现野生型小鼠中,睡眠剥夺后4个lncRNA表达上调,1个lncRNA表达下调;P2X7R敲除小鼠只有1个lncRNA表达上调,并且表达有变化的lncRNA在两个品系中无重叠. 该研究为之后深入研究lncRNA如何调节睡眠提供了一定的研究基础.

    果蝇基因间lncRNA yellow-achaete intergenic RNAyar)是一个在果蝇种属间保守的剪接多聚腺苷酸化lncRNA. yar突变品系果蝇的运动能力正常,其缺陷主要表现为在正常的昼夜觉醒睡眠周期内夜间睡眠时间缩短,并且在睡眠剥夺后其睡眠反弹水平降低,yar过表达可挽回以上睡眠异常表型,确认了该lncRNA对睡眠的调节作用. 实验表明yar基因突变对其邻近基因的表达水平并无影响,因此yar作为分布于胞质内的lncRNA,对睡眠的调节作用可能是通过调控其靶mRNA的稳定性或翻译过程来实现[35].

  • 6 lncRNA通过分子调控网络调节神经功能

    先前对lncRNA的研究多是围绕着lncRNA与其他生物分子,如DNA、mRNA、蛋白质相互作用,调控基因的表[36]. 随后注意到lncRNA与其他非编码RNA之间也是存在相互作用[37,38]. 最近,在对lncRNA与其他非编码RNA的线性功能联系的研究基础上,开始发现了更复杂的网络功能联系.

    2011年,Ulitsky[39]发现了lncRNA Cyrano,它在脊椎动物中具有明显的保守性,其序列中含有一个与miRNA miR-7的互补序列. 在斑马鱼中敲低Cyrano会造成神经发育异常,表现为鼻板(nasal placode)明显增大,故而用电影《大鼻子情圣》中主角西哈诺(Cyrano)的名字为其命名. 而 miR-7在中枢神经系统的神经元和神经内分泌细胞中高表达,是多种基因调控的靶位点. 在小鼠中有3种miR-7,敲除其中一种miR-7a-2的小鼠中,垂体中的卵泡雌激素(follicle stimulating hormone,FSH)和促黄体生成素(luteinizing hormone,LH)分泌降低,雌雄小鼠均表现出不育的表[40]. circRNA Cdr1as的序列上也有多个miR-7的结合位点. 2013年Hansen[41]提出,Cdr1as是miR-7的分子海绵,竞争结合miR-7,从而抑制miR-7的功能. 2017年,Piwecka[42]报道,虽然Cdr1as在哺乳动物中具有保守性,序列上有许多miR-7结合位点,但是Cdr1as的作用是贮藏并将miR-7运输到神经元的特定位点,如突触. Cdr1as敲除小鼠对重复的噪声刺激不会形成习惯性适应. 此外,在Cdr1as上还有一段与另一种miRNA miR-671高度互补的序列,miR-671负责将环状Cdr1as剪切成线性,使其稳定性降低并被进一步降[43]. 最近,Kleaveland[37]发现,在小鼠的小脑和海马等组织中,lncRNA Cyrano可以高效促进miR-7的降解,而miR-7又可以促进miR-671的表达,这2个miRNA共同促进了Cdr1as的降解. 也就是说,lncRNA Cyrano通过促进miR-7的降解,保护了另一个circRNA Cdr1as,此研究揭示了非编码RNA之间相互作用的功能网络. lncRNA、circRNA和miRNA之间的相互作用对正常的大脑功能是非常重要[37,44].

  • 7 展望

    随着越来越多的lncRNA被发现,需要更高效的技术手段来揭示其潜在的生物学功能. 随着新技术方法,如目前应用最广泛的CRISPR/Cas9基因编辑技术的不断改进和发展,必然会更有效地推动lncRNA在神经元发育、分化、多种认知和运动行为调节以及各种神经性疾病等多方面的深入研究. 未来lncRNA对神经系统的调控功能可能会更多地依赖于lncRNA与其他非编码RNA的相互作用,或是通过不同非编码RNA相互之间的复杂调控网络来发挥作用. 因此,一个由非编码RNA所组成的分子调控网络,正在逐渐被揭示,后续可能会有更精彩的发现.

    Tel: 010-64888527, E-mail: limeixia@ibp.ac.cn

  • 参 考 文 献

    • 1

      Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235): 223-227

    • 2

      Nam J W, Bartel D P. Long noncoding RNAs in C. elegans. Genome Research, 2012, 22(12): 2529-2540

    • 3

      Young R S, Marques A C, Tibbit C, et al. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biology and Evolution, 2012, 4(4): 427-442

    • 4

      Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biology, 2017, 18(1):206

    • 5

      Kaushik K, Leonard V E, Kv S, et al. Dynamic expression of long non-coding RNAs (lncRNAs) in adult zebrafish. Plos One, 2013, 8(12): e83616

    • 6

      Kadakkuzha B M, Liu X A, Mccrate J, et al. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Frontiers in Cellular Neuroscience, 2015, 9: 63

    • 7

      Inagaki S, Numata K, Kondo T, et al. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes to Cells, 2005, 10(12): 1163-1173

    • 8

      Perry R B, Hezroni H, Goldrich M J, et al. Regulation of neuroregeneration by long noncoding RNAs. Molecular Cell, 2018, 72(3): 553-567.e5

    • 9

      Jankowski M P, Miller L, Koerber H R. Increased expression of transcription factor SRY-box-Containing Gene 11 (Sox11) enhances neurite growth by regulating neurotrophic factor responsiveness. Neuroscience, 2018, 382:93-104

    • 10

      Irving M D, Buiting K, Kanber D, et al. Segmental paternal uniparental disomy (patUPD) of 14q32 with abnormal methylation elicits the characteristic features of complete patUPD14. American Journal of Medical Genetics Part A, 2010, 152a(8): 1942-1950

    • 11

      Yen Y P, Hsieh W F, Tsai Y Y, et al. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. eLife, 2018, 7: e38080

    • 12

      Li C J, Hong T, Tung Y T, et al. MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord. Nature Communication, 2017, 8: 14685

    • 13

      Gomez-Pinilla F, Lee J W, Cotman C W. Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. The Journal of Neuroscience, 1992, 12(1): 345-355

    • 14

      Williams L R, Varon S, Peterson G M, et al. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci U S A, 1986, 83(23): 9231-9235

    • 15

      Zhang L, Han X, Cheng X, et al. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regeneration Research, 2016, 11(4): 597-603

    • 16

      Deng B, Cheng X, Li H, et al. Microarray expression profiling in the denervated hippocampus identifies long noncoding RNAs functionally involved in neurogenesis. BMC Molecular Biology, 2017, 18(1): 15

    • 17

      Raveendra B L, Swarnkar S, Avchalumov Y, et al. Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proc Natl Acad Sci U S A, 2018, 115(43): e10197-e10205

    • 18

      Li M X, Jia M, Yang L X, et al. The role of the theta isoform of protein kinase C (PKC) in activity-dependent synapse elimination: evidence from the PKC theta knock-out mouse in vivo and in vitro. The Journal of Neuroscience, 2004, 24(15): 3762-3769

    • 19

      Helmstaedter C, Kurthen M, Lux S, et al. Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Annals of Neurology, 2003, 54(4): 425-432

    • 20

      Cendes F, Sakamoto A C, Spreafico R, et al. Epilepsies associated with hippocampal sclerosis. Acta Neuropathologica, 2014, 128(1): 21-37

    • 21

      Han C L, Ge M, Liu Y P, et al. Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death & Disease, 2018, 9(6): 617

    • 22

      Lamb T D. Evolution of phototransduction, vertebrate photoreceptorsand retina. Progress in Retinal and Eye Research, 2013, 36:52-119

    • 23

      Young T L, Matsuda T, Cepko C L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Current Biology, 2005, 15(6): 501-512

    • 24

      Zelinger L, Karakulah G, Chaitankar V, et al. Regulation of noncoding transcriptome in developing photoreceptors by rod differentiation Factor NRL. Investigative Ophthalmology & Visual Science, 2017, 58(11): 4422-4435

    • 25

      Golubyatnikov V P, Bukharina T A, Furman D P. A model study of the morphogenesis of D. melanogaster mechanoreceptors: the central regulatory circuit. Journal of Bioinformatics and Computational Biology, 2015, 13(1): 1540006

    • 26

      Furman D P, Bukharina T A. Morphogenesis of Drosophila melanogaster macrochaetes: cell fate determination for bristle organ. Journal of Stem Cells, 2012, 7(1): 19-41

    • 27

      Tuthill J C, Wilson R I. Mechanosensation and adaptive motor control in insects. Current Biology, 2016, 26(20): R1022-R1038

    • 28

      Seeds A M, Ravbar P, Chung P, et al. A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife, 2014, 3: e02951

    • 29

      Xu M, Xiang Y, Liu X, et al. Long noncoding RNA SMRG regulates Drosophila macrochaetes by antagonizing scute through E(spl)mbeta. RNA Biology, 2019, 16(1): 42-53

    • 30

      Martin J R, Ollo R. A new Drosophila Ca2+/calmodulin-dependent protein kinase (Caki) is localized in the central nervous system and implicated in walking speed. The EMBO Journal, 1996, 15(8): 1865-1876

    • 31

      Slawson J B, Kuklin E A, Ejima A, et al. Central regulation of locomotor behavior of Drosophila melanogaster depends on a CASK isoform containing CaMK-like and L27 domains. Genetics, 2011, 187(1): 171-184

    • 32

      Li M, Wen S, Guo X, et al. The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Research, 2012, 40(22): 11714-11727

    • 33

      Gummalla M, Maeda R K, Castro Alvarez J J, et al. abd-A regulation by the iab-8 noncoding RNA. Plos Genetics, 2012, 8(5): e1002720

    • 34

      Davis C J, Taishi P, Honn K A, et al. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2016, 311(6): r1004-r1012

    • 35

      Soshnev A A, Ishimoto H, Mcallister B F, et al. A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics, 2011, 189(2): 455-468

    • 36

      Mercer T R, Mattick J S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural & Molecular Biology, 2013, 20(3): 300-307

    • 37

      Kleaveland B, Shi C Y, Stefano J, et al. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell, 2018, 174(2): 350-362.e17

    • 38

      赵乾富,陈仕俊,肖丙秀,等. 环状RNA的生物学功能及其在胃肠肿瘤发生中的作用. 生物化学与生物物理进展, 2018, 45(6): 601-612

      Zhao Q F, Chen S J, Xiao B X, et al. Prog Biochem Biophys, 2018, 45(6): 601-612

    • 39

      Ulitsky I, Shkumatava A, Jan C H, et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 2011, 147(7): 1537-1550

    • 40

      Ahmed K, Lapierre M P, Gasser E, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. The Journal of Clinical Investigation, 2017, 127(3): 1061-1074

    • 41

      Hansen T B, Jensen T I, Clausen B H, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388

    • 42

      Piwecka M, Glazar P, Hernandez-Miranda L R, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357), pii: eaam8526

    • 43

      Hansen T B, Wiklund E D, Bramsen J B, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. The EMBO Journal, 2011, 30(21): 4414-4422

    • 44

      Abidin S Z, Leong J W, Mahmoudi M, et al. In Silico prediction and validation of Gfap as an miR-3099 target in mouse brain. Neuroscience Bulletin, 2017, 33(4): 373-382

许孟博

机 构:中国科学院生物物理研究所脑与认知科学国家重点实验室,北京 100101

Affiliation:State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

崔名扬

机 构:中国科学院生物物理研究所脑与认知科学国家重点实验室,北京 100101

Affiliation:State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

刘力

机 构:中国科学院生物物理研究所脑与认知科学国家重点实验室,北京 100101

Affiliation:State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

李美霞

机 构:中国科学院生物物理研究所脑与认知科学国家重点实验室,北京 100101

Affiliation:State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

角 色:通讯作者

Role:Corresponding author

作者简介:

Profile:

html/pibbcn/20190021/alternativeImage/07289fa5-05a9-498f-acc1-d9949254e842-F001.png

图1 本文主要内容的框架图

Fig. 1 Framework diagram of the main contents of this review

image /

无注解

  • 参 考 文 献

    • 1

      Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235): 223-227

    • 2

      Nam J W, Bartel D P. Long noncoding RNAs in C. elegans. Genome Research, 2012, 22(12): 2529-2540

    • 3

      Young R S, Marques A C, Tibbit C, et al. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biology and Evolution, 2012, 4(4): 427-442

    • 4

      Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biology, 2017, 18(1):206

    • 5

      Kaushik K, Leonard V E, Kv S, et al. Dynamic expression of long non-coding RNAs (lncRNAs) in adult zebrafish. Plos One, 2013, 8(12): e83616

    • 6

      Kadakkuzha B M, Liu X A, Mccrate J, et al. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Frontiers in Cellular Neuroscience, 2015, 9: 63

    • 7

      Inagaki S, Numata K, Kondo T, et al. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes to Cells, 2005, 10(12): 1163-1173

    • 8

      Perry R B, Hezroni H, Goldrich M J, et al. Regulation of neuroregeneration by long noncoding RNAs. Molecular Cell, 2018, 72(3): 553-567.e5

    • 9

      Jankowski M P, Miller L, Koerber H R. Increased expression of transcription factor SRY-box-Containing Gene 11 (Sox11) enhances neurite growth by regulating neurotrophic factor responsiveness. Neuroscience, 2018, 382:93-104

    • 10

      Irving M D, Buiting K, Kanber D, et al. Segmental paternal uniparental disomy (patUPD) of 14q32 with abnormal methylation elicits the characteristic features of complete patUPD14. American Journal of Medical Genetics Part A, 2010, 152a(8): 1942-1950

    • 11

      Yen Y P, Hsieh W F, Tsai Y Y, et al. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. eLife, 2018, 7: e38080

    • 12

      Li C J, Hong T, Tung Y T, et al. MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord. Nature Communication, 2017, 8: 14685

    • 13

      Gomez-Pinilla F, Lee J W, Cotman C W. Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. The Journal of Neuroscience, 1992, 12(1): 345-355

    • 14

      Williams L R, Varon S, Peterson G M, et al. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci U S A, 1986, 83(23): 9231-9235

    • 15

      Zhang L, Han X, Cheng X, et al. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regeneration Research, 2016, 11(4): 597-603

    • 16

      Deng B, Cheng X, Li H, et al. Microarray expression profiling in the denervated hippocampus identifies long noncoding RNAs functionally involved in neurogenesis. BMC Molecular Biology, 2017, 18(1): 15

    • 17

      Raveendra B L, Swarnkar S, Avchalumov Y, et al. Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proc Natl Acad Sci U S A, 2018, 115(43): e10197-e10205

    • 18

      Li M X, Jia M, Yang L X, et al. The role of the theta isoform of protein kinase C (PKC) in activity-dependent synapse elimination: evidence from the PKC theta knock-out mouse in vivo and in vitro. The Journal of Neuroscience, 2004, 24(15): 3762-3769

    • 19

      Helmstaedter C, Kurthen M, Lux S, et al. Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Annals of Neurology, 2003, 54(4): 425-432

    • 20

      Cendes F, Sakamoto A C, Spreafico R, et al. Epilepsies associated with hippocampal sclerosis. Acta Neuropathologica, 2014, 128(1): 21-37

    • 21

      Han C L, Ge M, Liu Y P, et al. Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death & Disease, 2018, 9(6): 617

    • 22

      Lamb T D. Evolution of phototransduction, vertebrate photoreceptorsand retina. Progress in Retinal and Eye Research, 2013, 36:52-119

    • 23

      Young T L, Matsuda T, Cepko C L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Current Biology, 2005, 15(6): 501-512

    • 24

      Zelinger L, Karakulah G, Chaitankar V, et al. Regulation of noncoding transcriptome in developing photoreceptors by rod differentiation Factor NRL. Investigative Ophthalmology & Visual Science, 2017, 58(11): 4422-4435

    • 25

      Golubyatnikov V P, Bukharina T A, Furman D P. A model study of the morphogenesis of D. melanogaster mechanoreceptors: the central regulatory circuit. Journal of Bioinformatics and Computational Biology, 2015, 13(1): 1540006

    • 26

      Furman D P, Bukharina T A. Morphogenesis of Drosophila melanogaster macrochaetes: cell fate determination for bristle organ. Journal of Stem Cells, 2012, 7(1): 19-41

    • 27

      Tuthill J C, Wilson R I. Mechanosensation and adaptive motor control in insects. Current Biology, 2016, 26(20): R1022-R1038

    • 28

      Seeds A M, Ravbar P, Chung P, et al. A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife, 2014, 3: e02951

    • 29

      Xu M, Xiang Y, Liu X, et al. Long noncoding RNA SMRG regulates Drosophila macrochaetes by antagonizing scute through E(spl)mbeta. RNA Biology, 2019, 16(1): 42-53

    • 30

      Martin J R, Ollo R. A new Drosophila Ca2+/calmodulin-dependent protein kinase (Caki) is localized in the central nervous system and implicated in walking speed. The EMBO Journal, 1996, 15(8): 1865-1876

    • 31

      Slawson J B, Kuklin E A, Ejima A, et al. Central regulation of locomotor behavior of Drosophila melanogaster depends on a CASK isoform containing CaMK-like and L27 domains. Genetics, 2011, 187(1): 171-184

    • 32

      Li M, Wen S, Guo X, et al. The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Research, 2012, 40(22): 11714-11727

    • 33

      Gummalla M, Maeda R K, Castro Alvarez J J, et al. abd-A regulation by the iab-8 noncoding RNA. Plos Genetics, 2012, 8(5): e1002720

    • 34

      Davis C J, Taishi P, Honn K A, et al. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2016, 311(6): r1004-r1012

    • 35

      Soshnev A A, Ishimoto H, Mcallister B F, et al. A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics, 2011, 189(2): 455-468

    • 36

      Mercer T R, Mattick J S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural & Molecular Biology, 2013, 20(3): 300-307

    • 37

      Kleaveland B, Shi C Y, Stefano J, et al. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell, 2018, 174(2): 350-362.e17

    • 38

      赵乾富,陈仕俊,肖丙秀,等. 环状RNA的生物学功能及其在胃肠肿瘤发生中的作用. 生物化学与生物物理进展, 2018, 45(6): 601-612

      Zhao Q F, Chen S J, Xiao B X, et al. Prog Biochem Biophys, 2018, 45(6): 601-612

    • 39

      Ulitsky I, Shkumatava A, Jan C H, et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 2011, 147(7): 1537-1550

    • 40

      Ahmed K, Lapierre M P, Gasser E, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. The Journal of Clinical Investigation, 2017, 127(3): 1061-1074

    • 41

      Hansen T B, Jensen T I, Clausen B H, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388

    • 42

      Piwecka M, Glazar P, Hernandez-Miranda L R, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357), pii: eaam8526

    • 43

      Hansen T B, Wiklund E D, Bramsen J B, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. The EMBO Journal, 2011, 30(21): 4414-4422

    • 44

      Abidin S Z, Leong J W, Mahmoudi M, et al. In Silico prediction and validation of Gfap as an miR-3099 target in mouse brain. Neuroscience Bulletin, 2017, 33(4): 373-382