en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
FatehullahA, TanS H, BarkerN. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016, 18(3): 246-254
参考文献 2
LancasterM A, KnoblichJ A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014, 345(6194): 12471251-12471259
参考文献 3
ToshiroS, RobertG V, HugoJ S, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265
参考文献 4
DedhiaP H, Bertaux-SkeirikN, ZavrosY, et al. Organoid models of human gastrointestinal development and disease. Gastroenterology, 2016, 150(5): 1098-1112
参考文献 5
MccrackenK W, CatáE M, CrawfordC M, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516(7531): 400-404
参考文献 6
NickB, MeritxellH, PekkaK, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1): 25-36
参考文献 7
SugimotoS, OhtaY, FujiiM, et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell, 2018, 22(2): 171-176
参考文献 8
XieB Y, WuA W. Organoid culture of isolated cells from patient-derived tissues with colorectal cancer. Chinese Medical Journal, 2016, 129(20): 2469-2475
参考文献 9
SatoT, StangeD E, MarcF, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011, 141(5): 1762-1772
参考文献 10
DyeB R, HillD R, FergusonM A, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015, 4(4): e5098-e5122
参考文献 11
ChapmanH A, XiaopengL, AlexanderJ P, et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. Journal of Clinical Investigation, 2011, 121(7): 2855-2862
参考文献 12
ShinK, LeeJ, GuoN, et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. European Urology, 2012, 61(6): 1263-1264
参考文献 13
LancasterM A, MagdalenaR, Carol-AnneM, et al. Cerebral organoids model human brain development and microcephaly. Movement Disorders, 2013, 501(7467): 373-378
参考文献 14
LancasterM A, KnoblichJ A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 2014, 9(10): 2329-2340
参考文献 15
AuS H, ChamberlainM D, MaheshS, et al. Hepatic organoids for microfluidic drug screening. Lab on A Chip, 2014, 14(17): 3290-3299
参考文献 16
LeiteS B, RoosensT, TaghdouiniA E, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials, 2016, 78: 1-10
参考文献 17
HuchM, DorrellC, BojS F, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494(7436): 247-250
参考文献 18
HuchM, BonfantiP, BojS F, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo Journal, 2013, 32(20): 2708-2721
参考文献 19
MorizaneR, LamA Q, FreedmanB S, et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 2015, 33(11): 1193-1200
参考文献 20
MinoruT, PeiX, Er, HanS, Chiu, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2016, 526(7574): 564-568
参考文献 21
SoragniA, JanzenD M, JohnsonL M, et al. A designed inhibitor of p53 aggregation rescues p53 tumor-suppression in ovarian carcinomas. Cancer Cell, 2016, 29(1): 90-103
参考文献 22
MirjanaK, KarenH, VolkerB, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nature Communications, 2015, 6: 8989-8998
参考文献 23
TrisnoS L, PhiloK E, MccrackenK W, et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell, 2018, 23(4): 501-515
参考文献 24
NugrahaB, BuonoM F, Von BoehmerL, et al. Human cardiac organoids for disease modeling. Clinical Pharmacology & Therapeutics, 2018, 105(1): 79-85
参考文献 25
Nantasanti, Sathidpak, Spee, et al. Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem Cell Reports, 2015, 5(5): 895-907
参考文献 26
KimG A, SpenceJ R, TakayamaS. Bioengineering for intestinal organoid cultures. Current Opinion in Biotechnology, 2017, 47: 51-58
参考文献 27
RheinwaldJ G, GreenH. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell, 1975, 6(3): 317-330
参考文献 28
RheinwaldJ G, GreenH. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature, 1977, 265(5593): 421-424
参考文献 29
SpenceJ R, MayhewC N, RankinS A, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470(7332): 105-109
参考文献 30
LuW, RettenmeierE, PaszekM, et al. Crypt organoids culture as an in vitro model in drug metabolism and cytotoxicity studies. Drug Metabolism & Disposition the Biological Fate of Chemicals, 2017, 45(7): 748-754
参考文献 31
LiuC, OikonomopoulosA, SayedN, et al. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development, 2018, 145(5): 156166-156171
参考文献 32
BroutierL, AnderssonrolfA, HindleyC J, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11(9): 1724-1743
参考文献 33
ChoiJ, IichE, LeeJ H. Organogenesis of adult lung in a dish: differentiation, disease and therapy. Developmental Biology, 2016, 420(2): 278-286
参考文献 34
SachsN, DeJ L, KopperO, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2): 373-386
参考文献 35
MorizaneR, BonventreJ V. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nature Protocols, 2016, 12(1):195-207
参考文献 36
FioreD, RameshP, ProtoM C, et al. Rimonabant kills colon cancer stem cells without inducing toxicity in normal colon organoids. Frontiers in Pharmacology, 2017, 8: 949-950
参考文献 37
BruensL, SnippertH J G. Expanding the tissue toolbox: deriving colon tissue from human pluripotent stem cells. Cell Stem Cell, 2017, 21(1): 3-5
参考文献 38
PhamM T, PollockK M, RoseM D, et al. Generation of human vascularized brain organoids. Neuroreport, 2018, 29(7): 588-593
参考文献 39
WalshA J, CookR S, SandersM E, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Research, 2014, 74(18): 5184-5194
参考文献 40
SimianM, BissellM J. Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology, 2017, 216(1): 31-40
参考文献 41
MillerA J, DyeB R, Ferrer-TorresD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols, 2019, 14: 518-540
参考文献 42
CheungK J, EdwardG, ZenaW, et al. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 2013, 155(7): 1639-1651
参考文献 43
DongG, IanV, AndreaS, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1): 176-187
参考文献 44
KarthausW, IaquintaP, DrostJ, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 2014, 159(1): 163-175
参考文献 45
MillsR J, TitmarshD M, KoenigX, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA, 2017, 114(40): e8372-e8381
参考文献 46
KaiW, Siu TsanY, JiangchunX, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nature Genetics, 2014, 46(6): 573-582
参考文献 47
VanD W M, FranciesH E, FrancisJ M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4): 933-945
参考文献 48
HirtM N, HansenA, EschenhagenT. Cardiac tissue engineering state of the art. Circulation Research, 2014, 114(2): 354-367
参考文献 49
WimmerR A, LeopoldiA, AichingerM, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature, 2019, 565(7740): 505-510
参考文献 50
SasakiN, SachsN, WiebrandsK, et al. Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc Natl Acad Sci USA, 2016, 113(37): e5399-e5407
参考文献 51
MüellerB J, ZhdanovA V, BorisovS M, et al. Nanoparticle-based fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo. Advanced Functional Materials, 2018, 28(9). pii: 1704598
参考文献 52
SiegelR L, MillerK D, JemalA J. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 2019, 69(1): 7-34
参考文献 53
ZhaoY, KankalaR K, WangS B, et al. Multi-organs-on-chips: towards long-term biomedical Investigations. Molecules, 2019, 24(4): 675-696
参考文献 54
BhatiaS N, IngberD E. Microfluidic organs-on-chips. Nature Biotechnology, 2014, 32(8): 760-772
参考文献 55
ZhangQ, CaiY, LiQ Y, et al. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chemistry, 2017, 23(57): 14307-14315
参考文献 56
QianX, JacobF, SongM M, et al. Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 2018, 13(3): 565-580
参考文献 57
HuhD, HamiltonG A, IngberD E. From three-dimensional cell culture to organs-on-chips. Trends in Cell Biology, 2011, 21(12): 745-754
参考文献 58
AstashkinaA I, MannB K, PrestwichG D, et al. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 2012, 33(18): 4700-4711
参考文献 59
AstashkinaA I, JonesC F, ThiagarajanG, et al. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials, 2014, 35(24): 6323-6331
参考文献 60
TamaiM, AdachiE, TagawaY. Characterization of a liver organoid tissue composed of hepatocytes and fibroblasts in dense collagen fibrils. Tissue Engineering Part A, 2013, 19(21-22): 2527-2535
参考文献 61
TakebeT, SekineK, EnomuraM, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459): 481-484
参考文献 62
DyeB R, DedhiaP H, MillerA J, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife, 2016, 5: e19732-e19749
参考文献 63
SteeleN G, ChakrabartiJ, WangJ, et al. An organoid-based preclinical model of human gastric cancer. Cellular Molecular Gastroenterology Hepatology, 2019, 7(1): 161-184
参考文献 64
ZhaoR B, RenX Y, XieC G, et al. Towards understanding the distribution and tumor targeting of sericin regulated spherical calcium phosphate nanoparticles. Microscopy Research & Technique, 2016, 80(3): 321-330
参考文献 65
ZhaoR B, WangB, YangX Y, et al. A drug-free tumor therapy strategy: cancer cell targeting calcification. Angewandte Chemie, 2016, 55(17): 5225-5229
参考文献 66
PeddeR D, MiraniB, NavaeiA, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Advanced Materials, 2017, 29(19): 1606061-1606087
参考文献 67
KankalaR K, KaiZ, SunX, et al. Cardiac tissue engineering on the nanoscale. Acs Biomaterials Science & Engineering, 2018, 4(3): 800-818
参考文献 68
DevarasettyM, WangE, SokerS, et al. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication, 2017, 9(2): 021002-021010
参考文献 69
FuC Y, LinC Y, ChuW C, et al. A simple cell patterning method using magnetic particle-containing photosensitive poly (ethylene glycol) hydrogel blocks: a technical note. Tissue Engineering Part C Methods, 2011, 17(8): 871-877
参考文献 70
HeidariyanZ, GhanianM H, AshjariM, et al. Efficient and cost-effective generation of hepatocyte-like cells through microparticle-mediated delivery of growth factors in a 3D culture of human pluripotent stem cells. Biomaterials, 2018, 159: 174-188
参考文献 71
MccrayT, RichardsZ, MarsiliJ, et al. Handling and assessment of human primary prostate organoid culture. JoVE, 2019, 143: e59051-e59061
参考文献 72
SaitoR, IshiiY, ItoR, et al. Transplantation of liver organoids in the omentum and kidney. Artificial Organs, 2011, 35(1): 80-83
参考文献 73
LuoZ, ZhangS, PanJ, et al. Time-responsive osteogenic niche of stem cells: a sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials, 2018, 163: 25-42
参考文献 74
IjimaH, MizumotoH, NakazawaK, et al. Hepatocyte growth factor and epidermal growth factor promote spheroid formation in polyurethane foam/hepatocyte culture and improve expression and maintenance of albumin production. Biochemical Engineering Journal, 2009, 47(1): 19-26
参考文献 75
FongE L S, TanB T, LinX, et al. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials, 2018, 159: 229-240
参考文献 76
MizumotoH, AmimotoN, MiyazawaT, et al. In vitro and ex vivo functional evaluation of a hollow fiber-type bioartificial liver module containing ES cell-derived hepatocyte-like cells. Advanced Biomedical Engineering, 2018, 7: 18-27
参考文献 77
李泽豪, 任小元, 王世兵,等. 介导siRNA传递的非病毒载体及其研究进展. 生命科学, 2014, 26(4): 392-399
LiZ H, RenX Y, WangS B, et al. Chinese Bulletin of Life Sciences, 2014, 26(4): 392-399
参考文献 78
BertassoniL E, CardosoJ C, ManoharanV, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 2014, 6(2): 024105-024115
参考文献 79
宋东娟, 童锦禄, 冉志华,等. 小肠类器官培养技术的建立和优化. 胃肠病学, 2016, 21(2): 75-79
SongD J, TongJ L, RanZ H, et al. Chinese Journal of Gastroenterology, 2016, 21(2): 75-79
参考文献 80
RambaniK, VukasinovicJ, GlezerA, et al. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability. Journal of Neuroscience Methods, 2009, 180(2): 243-254
参考文献 81
BaptistaP M, SiddiquiM M, LozierG, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2): 604-617
参考文献 82
RobertsonM J, SoibamB, O'learyJ G, et al. Recellularization of rat liver: an in vitro model for assessing human drug metabolism and liver biology. Plos One, 2018, 13(1): e0191892-e0191914
参考文献 83
RochaF G, SundbackC A, KrebsN J, et al. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials, 2008, 29(19): 2884-2890
参考文献 84
BaptistaP M, SiddiquiM M, LozierG, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2):604-617
参考文献 85
宋海飞, 林博文, 龚诚宸,等. 细胞迁移相关蛋白酶的研究进展. 生物化学与生物物理进展, 2017, 44(2): 99-109
SongH F, LinB W, GongC C, et al. Progress in Biochemistry and Biophysics, 2017, 44(2): 99-109
参考文献 86
HuchM, GehartH, VanboxtelR, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1-2): 299-312
参考文献 87
LuY, ZhangG, ShenC, et al. A novel 3D liver organoid system for elucidation of hepatic glucose metabolism. Biotechnology & Bioengineering, 2015, 109(2): 595-604
参考文献 88
KankalaR K, ZhuK, LiJ, et al. Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale. Biofabrication, 2017, 9(3): 032002-032017
目录 contents

    摘要

    类器官弥补了传统研究中细胞简单模型与动物复杂模型的不足,为生命体关键功能研究提供了重要实验基础,已成为当前研究热点,并在疾病机理研究、药物筛选、再生医学、生物材料评价等方面具有重大理论意义和应用前景. 本文对近10年类器官研究进行了综述,阐述出类器官研究的发展历程和研究现状,重点综述了类器官的主要研究领域,并解析类器官研究中存在的关键科学问题,为类器官在生物医药、再生医学和疾病精准治疗领域的研究和应用提供新思路.

    Abstract

    Organoid can make up for the deficiency of cell models and animal models commonly used in traditional research. And it also provides an important experimental basis for the study of key functional studies of living organisms. At the present stage, organoid model has become a hot research field and is of great significance in disease mechanism research, drug screening, regenerative medicine, and biomedical material evaluation. In this paper, the research of organoids in the past 10 years is reviewed. It summarizes the development history and research status of organoid research, and also focuses on the main research fields of organoids. In addition, this paper mainly analyzes the key scientific issues in the study of organoids and propose ideas for organoid in biomedicine, regenerative medicine and precise treatment of diseases.

    类器官(organoid)是将组织干细胞在体外进行培养,保持原始干细胞功能并不断分裂分化形成在空间和结构与来源器官组织、基因、结构和功能相似的微组[1,2]. 与现有二维(two-dimensions,2-D)和三维(three-dimensions,3-D)细胞培养相比,类器官是不同类型和功能细胞的有机结合体,更接近体内细胞生存空间、生长状态及功能,在药物筛选与评价、个体遗传与发育、疾病发生与发展、生物医学材料及组织工程等方面显示出重要应用前景. 2009年,Clevers课题[3]首次在《自然》(Nature)杂志上报道了肠道类器官的构建,他们从小肠隐窝(crypts)提取肠道干细胞并以此在体外培养获得肠道类器官. 其后,类器官研究蓬勃发展. 近10年来,科学家先后构建了小[3,4][5,6] 、结[7,8,9][10,11]、膀[12]、大[13,14]、肝[15,16,17]、胰[18]、肾[19,20]、卵[21,22]、食[23]、心[24]等多种正常或肿瘤组织的类器官模型. 2013年,《科学》(Science)杂志曾将类器官技术列入“十大突破”技术之一. 目前,类器官构建技术已经逐渐走向成熟,并转向药学、病理学、临床医学、再生医学、生物医学材料等领域的研[25,26]. 本文对近10年来类器官相关研究进行综述,简要概述类器官培养及发展研究历程,详细论述类器官在生物医药、生理病理、肿瘤治疗、医学再生、生物医学材料等研究中的应用,并分析类器官研究面临的关键科学问题,大胆预测类器官在未来的发展趋势.

  • 1 类器官培养过程及分类

    1975年,Rheinwald和Green[27]首次描述了人类细胞的培养方法. 1977年,他们第一次利用人工培养的人类干细胞成功进行了3D组织结构重[28]. 直到1965年至1985年间,“organoid”一词被提[1]. 截至2019年2月,10年来以“organoid”为主题的研究成果已近4 100篇,包括消化道、肝脏、胰腺、脑、肾脏、肺等十几种类型,其中肠道类器官占比约29.2%(数据来源:Web of Science). 目前,类器官主要源于多能干细胞(pluripotent stem cells,PSCs[29]和器官特异性来源的成体干细[30],经多种生长因子的诱导分化,成为具有不同结构和功能的类器官(图1). 同时,以PSCs为来源的类器官能够有效避免免疫排斥发生并且其中不涉及伦理问[31]. 现已可从活体肿瘤中直接抽样获得肿瘤组织进行培养形成肿瘤类器官.

    图1
                            不同种类类器官形貌图

    图1 不同种类类器官形貌图

    Fig. 1 Topography of different kinds of organoid

    注:(a)小肠类器官形貌[3].(b)结肠类器官形貌[9].(c)食管类器官形貌[9].(d)胃类器官形貌[6].(e)肝脏类器官形貌[25].(f)胰腺类器官形貌[32].(g)肺类器官形貌[33].(h)乳腺类器官形貌[34].(i)肾类器官形貌[35].(j)脑类器官形貌[13].

  • 1.1 消化道类器官

    消化道自口腔起经食道、胃、十二指肠、空肠、回肠、大肠至肛门. 肠是消化道的重要器官,目前肠道类器官尤其是小肠类器官是研究最多最广泛的模型之一. 肠道类器官培养主要以荷兰Clever团队提出的基于Matrigel的培养系统为代[3]表1),在体外分离得到哺乳动物单个干细胞或经EDTA(乙二胺四乙酸)消化得到小肠隐窝后,经磷酸缓冲液(phosphate buffered solution,PBS)多次洗涤和离心,将其重悬在基质胶中,待其固化后加入含有表皮生长因子(epidermal growth factor,EGF)、N2、B27、R-spondin、Noggin等细胞因子的培养基进行传代培[3,9]. 其中,人小肠类器官培养时需添加前列腺素E2以及胃泌激素. 小肠类器官可在基质胶由最初球状隐窝形态向类似绒毛状转变并逐渐形成空腔,经历“出芽”生长分化为复杂的高级器官结构,可在体外实现8个月的传代培[3]. 与小肠类器官培养方法类似,结直肠类器官也可由结肠提取隐窝经诱导生长和分化获得. 不同的是,Sato[9]发现结肠类器官的Wnt相关基因表达量远远低于小肠类器官,难以维持其长期生长. 因此在培养结肠类器官时,需要在培养基中补充Wnt3A细胞因子. 而对于人源结肠类器官,Alk4/5/7、p38抑制剂A83-01和SB202190的添加可使类器官体外培养延长至6个[9]表1).

    表1 类器官培养基成分

    Table 1 Medium composition of organoids

    类别来源关键生长因子参考文献

    小肠

    EGF0, Noggin0, R-spondin0[3]
    EGF0, Noggin0, R-spondin0, Gastrin0, A-83-010, Wnt3A1, Nicotinamide1, SB2021901[29]

    结肠

    EGF0, Noggin0, R-spondin0, Wnt3A1[36]
    EGF0, Noggin0, R-spondin0, Gastrin0, A-83-010, Wnt3A1, Nicotinamide1, SB2021901[37]
    食管EGF0, Noggin0, R-spondin0, Gastrin0, A-83-010, FGF-100, Wnt3A1, Nicotinamide1, SB2021901, DBZ2[9,23]
    EGF0, Noggin0, R-spondin0, Gastrin0, Wnt3A0, FGF0, retinoic acid1, Y-276321, Activin A2, BMP-43[5,6]

    肝脏

    EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100, HGF0, Y-276322, DAPT3, dexamethasone3

    [32]

    EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100, HGF0, A-83-011, Y-276322, BMP-73, DAPT3, dexamethasone3

    [17]

    胰腺

    EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100[32]
    EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100, A-83-012, PGE-22[18]
    MEM-NEAA0, heparin0, neurobasal1, mercaptoethanol1, insulin1, CHIR990211, vitamin A2, BMP-22[13,38]

    EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Activin A0, FGF0, SB4315422, SU54022, Sant-22,CHIR990213

    [10]

    乳腺EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100, A-83-010, SB2021900[34,39]

    EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Activin A0, CHIR990212, RA3, heparin3, FGF-93,AGN1931093

    [20]

    注:均含基础培养基补充成分:Glutamax、HEPES、B27、N2、N-acetylcysteine. 上标数字为加入该生长因子对应的类器官生长阶段:0为各阶段均添加;1,2分别为生长及分化阶段;1,2,3分别为生长、扩增、分化阶段.

    小肠类器官的获得为其他消化道类器官的培养提出可能. 在此基础上,在培养基中补充人成纤维细胞生长因子(human fibroblast growth factor,HGF)可实现食管类器官的培[23]. 胃是消化道中结构最复杂的器官,其类器官培养方式也相对复杂. 胃类器官主要由胃窦处Lgr5(leucine-rich-repeat-containing G-protein-coupled receptor,富含亮氨酸重复单位的G蛋白偶联受体)阳性干细胞生长分化获得. 在培养基中添加成纤维细胞生长因子(fibroblast growth factor-4,FGF-4)、Y-27632、激活素A、骨形成蛋白(bone morphogenetic protein-4,BMP-4)等细胞因子,经逐步诱导先形成内胚层随后补充视黄素进行二次诱导,最终形成结构较为复杂的胃类器官. Mccracken[5]以此方法提取干细胞后,诱导约30 d,组织出现明显的上皮折叠与腺体结构,成功构建人胃类器官并可进行传代培养. 每一代生长时间约为20 d,远高于肠道类器官. 目前消化道中除咽部和肛门,其他部位的类器官均已在实验室中获得.

  • 1.2 肝胰类器官

    肝癌和胰腺癌是当前临床治疗效果较差的疾病,因此构建肝胰类器官能够对其发病机理的研究提供重要研究模型. 肝脏和胰腺与人体消化作用密切相关,二者均由内胚层祖细胞分化而[40]. 肝脏类器官由多种肝细胞和导管细胞构成,而胰腺类器官则完全由Pdx1祖细胞及导管细胞组成. 肝脏类器官的培养有两种:a. 多能干细胞培养. 首先诱导PSCs形成肝内胚层细胞,后添加多种生长因子使其诱导分化成为“囊肿样”肝脏类器官. 其中,“肝芽”结构的出现是血管样结构形成的关键(图1e). b. 器官特异性组织培养. 多采用直接消化分离获得胆管样组织进行培养,在培养基中添加HGF、EGF、地塞米松、R-spondin等细胞因子,将其诱导分化成为类器官组织(表1).

    胰腺类器官的培养与肝脏较为类似,主要经由胰腺导管分化获得,一般在导管离体培养第二天便能观察到明显的体积变化. 但对不同类器官起关键性分化作用的生长因子不同. HGF在肝脏类器官中与导管细胞的增殖和迁移密不可分,而在胰腺类器官诱导时作用微小,反而Noggin起到决定性作用. 因此,调整好培养基中生长因子的配比是胰腺和肝脏类器官诱导培养的关键技术之一.

    肝脏和胰腺结构的复杂性使得肝胰类器官不同于人消化道类器官. 如在培养方式上,按照类器官生长阶段的不同可以将肝脏类器官的培养分为分离、扩增和分化3个阶段,胰腺类器官则分为分离和扩增2个阶段,且每个阶段起主要作用的生长因子不同(表1).

  • 1.3 脑类器官

    脑类器官起源于神经上皮细胞,神经外胚层的形成是分化的关[13]. 一般在脑类器官生长8~ 10天神经特征便会出现,半月后进入痉挛阶段,形成连续的神经上皮结构. 由于大脑的区域性及异质性,第20~30天可辨别出前脑、中脑、后脑和脊髓4个主要部分. 两个月达到生长最大尺寸,最大直径可达4 mm. 其中,标志物SOX1和PAX6的上调标志脑类器官构建成功. 随后前脑与多能性标志物OCT4和NANOG表达减少,前脑最终分化为脑室结[13,14].

  • 1.4 肾类器官

    肾脏同样由中胚层发育而来,因此肾脏也具有明显的区段特异性. 后肾间充质干细胞和输尿管芽干细胞是培养肾脏类器官的关键细胞群,诱导后分别分化为肾单位与集合[19]. 其中,FGF-2及FGF-9在肾脏类器官形成中发挥重要作用,7 d左右利用逆转录聚合酶链式反应(reverse transcription-polymerase chain reaction,RT-PCR)便能检测出中间中胚层标志物EYA1和HOXD11高表达. Wnt激动剂CHIR99021在肾脏类器官的长期培养中更倾向于诱导后中胚层形[20].

  • 1.5 肺类器官

    此外,肺癌是目前发病率较高的肿瘤疾病,因此肺类器官也是目前研究的重要器官类型之一. 肺类器官由肺上皮细胞、肌成纤维细胞、上呼吸道样上皮细胞、间充质区室等多种细胞构成. 气管结构的出现是肺类器官构建成功的重要标[41]. Dye[10]采用iPSCs构建的肺类器官在培养两月后,可检测到近端气道细胞特异性标志物NKX2.1和PAX8的表达.

    除上述类器官类型,乳[42]、前列[43,44]、心[45]等类器官模型最近已被成功构建. 基于类器官研究在肿[46,47]、心血管疾[48]、糖尿[49]等重大疾病治疗领域的潜在用途,荷兰、美国、英国、日本、德国等国在该领域开展了竞争,中国在该领域正迎头赶上.

  • 2 类器官的应用

    类器官以其在体外长期增殖、可传代性、高度保持源器官结构和功能等特性在生物医学领域备受关[4,26]. 目前类器官在机体生长发育、疾病病理、药物筛选及毒理学评价、再生医学、生物材料等研究中显示出巨大潜力.

  • 2.1 生理学及病理学基础研究

    生理学及病理学主要研究机体内部代谢及调节机制,是基础医学、免疫学、药理学、临床护理学等学科的重要基石,对疾病诊断、临床治疗、安全用药起着至关重要的作用. 然而,受机体和技术上的限制,往往无法直接检测体内基因、蛋白质、细胞因子、离子等对个体生长发育及代谢过程的影响. 因此,建立理想的研究模型是生理学及病理学研究的关键问题之一. 而类器官模型为机体内部研究提供了一个“可视化”并可大规模培养的实验平台. 这一平台弥补了动物模型的不足,更利于人类对体内因子作用进行定位及追踪. 潘氏细胞(Paneth cells)对小肠发育至关重要,可为邻近Lgr5干细胞提供生长分化所需Wnt3、EGF、 TGF-α、Notch信号等重要物质,而结肠没有潘氏细胞,那么是什么物质在支持调配结肠生长? Sasaki[50]发现结肠底部的Lgr5细胞周围存在深隐窝分泌细胞(deep crypts secrete cells,DCS). 当敲除其标志物再生胰岛衍生物(regenerating isletderived family member 4,Reg4)中的白喉毒素受体基因后,结肠类器官内部自稳态遭到破坏并停止生长. 免疫荧光结果显示结肠隐窝中Reg4+ DCS细胞的分布呈明显区域差异. 如每个盲肠隐窝有12~14个Reg4+细胞,而在远端结肠中仅存在2个. 由此发现Reg4+ DCS细胞在结肠隐窝生态位中充当类似小肠“潘氏细胞”作用.

    除细胞因子,体内离子作用机制的探究也至关重要. Müeller[51]认为神经元中的K+可能与癫痫发作相关,但是普通使用的实验模型无法直观观察K+的变化. 2018年,其所在课题组将对K+敏感的硼-二吡咯甲烷(boron-dipyrromethene,BODIPY)包封在丙烯酸树脂共聚物纳米粒子中,利用荧光显微镜在脑类器官中进行实时荧光动态监测. 细胞染色动力学结果显示,基于类器官模型的染色结果比动物模型和HCT116、MEF、PC12SHSY5Y细胞株更为清晰. 同时,脑电图信号变化幅度及频率与癫痫发作及荧光变化密切相关,为解开癫痫发病机制做出巨大贡献.

  • 2.2 肿瘤模型及其治疗研究

    类器官为肿瘤模型的建立及治疗提供了良好的研究平台. 肿瘤细胞的不均一性和迁移性成为肿瘤临床诊断治疗的一大瓶颈. 2019年美国新增癌症病例预计将达到1 762 450[52]. 现阶段癌症体外研究主要集中于细胞的2-D和3-D培养,然而细胞结构或生理特点的差异往往会造成实验结果的巨大反差. 且Zhao[53]提出在建立癌症转移模型时往往需要多类型细胞共同作用. 而2-D和传统3-D细胞培养都以单细胞为研究对象,无法准确预测疾病发病过程中细胞与细胞之间的相互作用,尤其是癌症发病状态下信号通路和药物反应的明显组织联[54,55]. 尽管3-D细胞培养可以将不同类型的细胞在生物支架内共培养,但由此获得的模型中细胞之间在时间和空间随机整合,远不能实现体内细胞之间的有机整合. 类器官是由同一组织细胞如隐窝分化而来的多类型细胞群形成的微组织,特有的组织微环境可以有效弥补传统细胞培养的缺陷并且有望成为癌症研究中又一重要模型.

    类器官为实现“个性化治疗”奠定基础. 临床中个体差异的存在要求医生必须做到“因人治疗”、“精准治疗”,如何实现“个性化治疗”是目前临床研究的热点问题. 为此,Sachs[34]建立了乳腺癌患者类器官样本库. 样品库中80%以上乳腺癌类器官完好保持了原始肿瘤组织,如雌/孕激素受体(estrogen/progesterone receptor,E/PR)和人类表皮生长因子受体(human epidermal growth factor receptor-2,HER-2)的分子分型. 基因测序结果表明乳腺癌类器官同时保持了患者肿瘤的基因组拷贝数及突变. 此模型对HER-2靶向药物吉非替尼和阿法替尼的测试结果与患者情况一致,说明类器官模型具有与体内癌症相似的性[34]图2). Walsh[39]发现HER-2+/ER及三阴乳腺癌类器官在曲妥珠单抗治疗后表现与临床一致,而在肿瘤细胞株结果中并未检测到如类器官中NADHtm的变化,且细胞株OMI响应的消除速率比类器官慢7倍,说明类器官可弥补单层细胞培养作为药物评价中的缺[56]. Van[47]抽取了20例结直肠癌患者的肿瘤组织获得类器官生物样本库,基因检测结果再一次显示类器官模型能够高度还原患者肿瘤基因组遗传特性的优势,表明类器官有望为“精准医疗”和“个性化治疗”提供重要平台保障.

    图2
                            患者来源乳腺癌类器官部分检测结果图[34]

    图2 患者来源乳腺癌类器官部分检测结果[34]

    Fig. 2 Partial test results of patient-derived breast cancer organoid[34]

    注:(a)组织与患者来源的乳腺癌类器官突变特征.(b)原位移植鼠模型与类器官模型对阿法替尼的药物敏感测试.(c)患者来源的乳腺癌类器官对他莫昔芬的药物反应.

  • 2.3 药物筛选、测试及毒理学评价平台

    类器官有望成为药物筛选、测试以及毒理学评价的高效平台. 药物安全评价是药物进入临床阶段的重要参考,药物本身性质是安全性的决定因素. 因此,进行药物筛选不仅是早期预测药物在体内环境中生理反应的手段更是安全性的前提保[53]. 而毒性测试是药物筛选中极为重要的环节,2-D细胞模型是使用最多的药物毒性检测平台. 但2-D细胞层不能支持细胞的组织特异性及分化功能,其数据的可靠性已面临重要挑战. 机体是动态的,单层培养细胞无法模拟很多内源性的结构和生理变化. 同时这种差异性往往会导致药物在进入临床阶段实验的失[40]. 尽管3-D细胞培养展示出了高度的可变性及动态[57],不同类型的细胞之间随机聚集远不能模拟体内细胞与细胞之间相互作用、组织微环境等因素.

    现阶段尤其是对于肿瘤药物的筛选急需具有“代表性”的筛选模型出[47],而类器官以其与来源组织高度的分子、细胞和结构相似性成为药物筛选的重要模型. Astashkina[58]对秋水仙碱、顺铂、阿霉素和羟丙基炔丙基醚(propargyl alcohol propoxylate,PAP)等药物肾毒性进行评价. 研究发现肾毒性指示蛋白酶N-乙酰-β-D-氨基葡萄糖苷酶(N-acetyl-β-D-glucosaminidase,NAG)和γ-谷氨酰转移酶(γ-glutamyl transferase,GGT)的变化在2-D细胞株和肾类器官中明显不同. PAP和顺铂在2-D细胞株LLC-Pk1、HEK293中未显著影响GGT,且所有测试药物均未引起细胞内NAG表达变化. 而在肾类器官模型中所有药物均能明显上调NAG和GGT[59]图3). 在结肠肿瘤类器官研究中Fiore[36]发现,相比于原发性结肠肿瘤细胞,利莫那班在类器官模型中能显著缓解奥沙利铂和5-氟尿嘧啶的毒副作用、降低DNA片段化、并保持类器官与原发灶基因的一致性. 由此说明类器官作为药物筛选和评价模型时具有高灵敏性,更重要的是类器官能保持自身遗传的稳定性,使其在药物筛选及药物测试研究中具有重要意义.

    图3
                            不同药物对肾类器官的影响[58]

    图3 不同药物对肾类器官的影[58]

    Fig. 3 Effects of different drugs on kidney organoids[58]

    注:(a)不同药物组别肾类器官中酶的表达.(b)药物EC50值下IL-6、RANTES、MIP-1α、MCP-1、TNF-α及IL-1β细胞因子在培养基中的释放.

  • 2.4 类器官用于再生医学的研究

    器官短缺一直是全球器官移植医学面临的棘手问题. 目前,器官移植仍是如肝癌晚期唯一的治疗手段,但是日益严重的供体短缺严重制约再生医学研究的发展. 如何解决器官短缺的关键在于如何扩大器官来源,类器官模型为解决这一问题提供了良好的平台. 2012年,Tamai[60]将重0.4 g长 17 mm的肝脏类器官异位移植至切除右肺叶的雌性BALB/cA-nu/nu小鼠腹膜腔2 w后,利用AZAN染色成功在类器官中观察到微血管网络,同时免疫组化结果也显示在蛋白质阳性区域管状结构的形成. 2013年,Takebe[61]将单个肝脏类器官移植至小鼠大脑,2 d后通过颅窗观察到血管网络在类器官和大脑之间形成. 60 d后形成人源肝脏特征性肝索样结构. Dye[62]认为肺干细胞在体外发育不成熟,为探究体内环境是否能够增强气道样组织形成和分化,2016年成功将人源肺类器官移植于鼠肾囊和腹部网膜. 移植后的类器官表现出良好的生长状态,4 w后不但全部表达特异性线粒体标记物huMITO,并且直径由0.5 cm增大到1.5 cm.

    类器官在低免疫排斥方面有着天然优势. 目前临床使用的可移植器官多来源于捐赠者,然而即便接受器官移植,免疫排斥仍然伴随患者终生. 与异种移植物不同,患者自身来源的类器官不但不存在排斥反应同时能够很好地保持人体基因组序[34],并且类器官模型建立时间相对较短. 除正常器官移植外,肿瘤类器官的移植在构建原位肿瘤模型中也显示出重要应用前景. 2019年,Steele[63]通过RNA测序结果证明人源胃癌类器官与原始肿瘤组织基因具有一致性,免疫组化显示原位移植至小鼠胃黏膜后类器官依然保持良好的生长态势(图4),由此显示类器官具有良好的器官移植应用潜力.

    图4
                            类器官用于再生医学的研究

    图4 类器官用于再生医学的研究

    Fig. 4 Organoids for research in regenerative medicine

    注:(a)胃癌患者组织(GC)、器官样体(TGOs)和细胞系(AGS、NCI或TGOC)的RNA测序分[63].(b)原位移植患者来源的胃癌类器官腺癌的移植及免疫染[63].(c)移植后皮下人源类器官宏观[61].

  • 2.5 类器官与生物材料相互作用研究

    除生物医学领域外,类器官与材料科学的结合也是当今研究热点之一. 目前,基于生物材料在纳米药物载[64]、肿瘤治[65]、组织修[66,67]等方面的广泛研究,科学家试图通过共培养的方式探究类器官与生物材料之间的相互作用. 与类器官共培养的生物材料包括透明质酸[68]、聚乙二[69]、聚乳[70]、明[71]、磷灰[72],结构多样如凝胶[73]、泡沫[74]、海绵[75]、纤维[76]等,其中又以水凝胶为主(图5). 水凝胶呈高分子网状结构,与类器官培养基质胶形式上最为相似但成分不[77],需要额外补充多种胶原及蛋白质. Bertassoni[78]利用3-D打印制备含有细胞的甲基丙烯酸化明胶水凝胶,以此成功构建类器官. 此外,生物医学材料已经开始用于类器官相关药物检测、毒性评价、再生医学研究等方面(图5). 在药物载体检测中,类器官模型反应相比细胞更加敏感,类器官细胞内的损伤因子、坏死因子及炎性蛋白出现显著性上调,而在2-D细胞培养中没有明显差[58]. Hirt[48]在实验中采用了水凝胶多孔固体基质,培养出心脏类器官的同时还对包括海藻酸钠在内的多种材料进行了测试. 该研究成果显示出类器官作为生物材料研究模型的灵敏性及便捷性.

    图5
                            类器官与生物材料的相互作用

    图5 类器官与生物材料的相互作用

    Fig. 5 The interaction between organoids and biomaterials

    注:(a)MA-HPC海绵材料表征[75]. (i):干燥MA-HPC海绵明场图像. (ii):水合MA-HPC海绵明场图像(碘化丙锭染色). (iii):肝类器官在MA-HPC海绵中的明场图像. (iv):肝类器官在MA-HPC海绵中的鬼笔环肽染色图像.(b)将水凝胶微球中掺入人胚胎干细胞以构建肝类器[70]. (v):装载生长因子的微球成功掺入干细胞球体内. (vi):荧光显微镜图像. (vii):微球进入入干细胞球状体横截面石蜡切片染色图.(CTR标记微球以红色显示,DAPI复染细胞核).

  • 3 类器官研究中存在的关键科学难题

    类器官现在面临的关键技术瓶颈是无法实现体积和功能的同步生长,而解决此问题首先需要解决其中的关键科学难题,包括培养方式、血管化及定量化研究.

  • 3.1 培养难题

    近10年,国内外科学家虽然在类器官研究方面取得了众多成果,类器官已实现从单一细胞生长成为毫米级组织,但相较于实体器官仍面临重要挑[79]. 因此,如何使类器官组织生长成熟是现今类器官研究中亟待解决的热点问题. 目前,类器官培养多局限于基质胶(Matrigel)中,该培养方式是限制其生长的重要原因. 培养过程中,类器官中心会出现较大且颜色较深的腔体,当代谢废物充满类器官腔体时便会致其破碎. 2009年,Rambani[80]发现大小超过200~400 μm的细胞往往无法通过扩散作用获得足够的气体和养分. 如Sato培养的小肠类器官,5 d左右类器官便能达到200 μm[3]. 由此说明目前基于Matrigel的培养限制了类器官与外界的气体交换和物质代谢,当类器官形成较大的组织后,循环系统的缺乏和氧气养分交换的局限性严重影响了类器官所需营养物质的吸收以及代谢废物的清除.

    科学家试图通过改变培养基质成分创造更大的物质交换空间,如摒弃使用的Matrigel换用能够提供更大空腔的海绵[75]、纤维网[60]、泡沫[74]等支架(图6). Baptista[81]和Robertson[82]分别在2010年和2018年使用洗涤剂直接对肝脏组织进行灌注去细胞化,直接利用肝脏内部血管网络承载类器官的运输(图6). Robertson[82]由此获得的肝类器官能在体外存活4 w以上. 基因检测结果显示在培养第2天和第15天,Igfbp3、Col3a1、Timp2、Mxra8等细胞外基质蛋白和重塑蛋白表达至少能够增加2倍.

    图6
                            类器官血管化研究

    图6 类器官血管化研究

    Fig. 6 Research on vascularization of organoids

    注:(a)脑类器官培养示意[13].(b)肝细胞在聚氨酯泡沫中的生长形[74].(c)脑类器官染色图,白色箭头为新生成血[38].(d)肝去细胞化120 min实物[84].

  • 3.2 血管化难题

    目前,所得类器官结构大多停留在细胞水平且无法长期在培养基中生长,如小肠类器官1 w左右不经传代细胞便会破碎,造成类器官死亡. 而解决这一问题,普遍的共识是实现类器官内“血管化”.

    近年,类器官血管化成为目前研究面临的首要问题. Rocha[83]发现肠道类器官中血管内皮生长因子(vascular endothelial growth factor,VEGF)的内源水平不足,并将VEGF包裹在聚乳酸-羟基乙酸共聚物(polylactic-co-glycolic acid,PLGA)微球中与类器官共培养后移植至大鼠网膜中,4 w后观察到类器官内部毛细血管密度显著增加. 同样,Saito[72]在培养肝脏类器官时,补充VEGF后在类器官中成功诱导出血管样结构. 此外,2018年Pham[38]提到中枢神经系统在发育过程中不会产生血管祖细胞,血管祖细胞的缺乏阻碍了类器官血管化. 为探明原因他们将同一患者来源的iPSC衍生内皮细胞与全脑类器官共培养,CD31抗体检测结果显示出明显的内生化血管网络结构. 切片染色结果显示毛细血管呈现出典型的连续形态,并且未血管化的类器官在移植后无法存活,再次有力地说明血管化对类器官生长研究的重要性.

    目前,类器官仍未实现功能性血管网络,解决这一问题最直接的方式就是在体外创造一个与体内近似的细胞生长微环境. 而解决这一问题首要的任务是要确定究竟是什么因素对诱导血管形成起决定性作用,尤其是确定是否在细胞内部存在限制短板,例如不同器官环境中细胞承受的压力、血液成分、细胞内部pH的改变等因素均可能影响其生[85].

  • 3.3 系统评价难题

    目前多数类器官研究采用基因和蛋白质组学进行定性研究,而缺少对于类器官活性的定量评价. 因此建立简单高效且稳定的类器官定量检测标记物是加快其用于药物筛选等方面的重要基础. 如肝脏类器官可以利用流式细胞检测、定量即时聚合酶链锁反应(quantitative real time polymerase chain reaction,qRT-PCR)、蛋白质印迹试验(Western blot,WB)技术检测胆汁、白蛋白、Cyp450酶、α-1-抗胰蛋白酶(A1AT)等物质的分泌,以定量判断类器官的构建同时对祖细胞标志物Cyp3A、HNF4α、Sox9、ZO-1等的表达情况进行分[86,87].

    其他类器官定量研究中,尽管有基因和蛋白质组学研究结果,但是实验方法繁琐、成本昂贵. 如何实现类器官高效简便的定量是快速发展类器官模型的基础.

  • 4 结论与展望

    相比于传统的细胞培养与动物模型,类器官有着无法比拟的优势. 具有来源器官相应生理功能与结构的类器官,在很大程度上克服了二者不能充分反映人体系统特异性及复杂性的不足,成为一种新型实验模型.

    在再生医学方面研究中,类器官在组织工程修复或器官替代方面有着重要应用前景,但往往需要借助生物材料构建基于活细胞的功能性修复材料. 然而目前在生物材料研究中,能与细胞形成复合且不破坏细胞活性的材料主要集中在对单一细胞培养的生物材料研究中. 对于类器官与生物材料的复合及构建功能性活性生物材料仍需要不断完善生物材料结构,使其匹配类器官后续生长,同时为类器官生长提供空间功能支撑,但也面临3-D、4-D组织或器官构建过程中的培养技术难题、组织血管化和神经化难题. 针对类器官血管化、神经化难题,或许能够借助如化学、物理、机械等学科技术手段解决. 如现阶段3-D打印技术已经可以从宏观和微观角度打造心脏血管组织模型,Kankala[88]甚至将该技术称为最方便有效的微加工技术. 同时,形式灵活多样的微流体系统及生物反应器能够精确控制细胞所需气体和养分的输入并及时清除代谢废[52,86,87]. 这一优势为改善目前类器官培养中代谢技术难点提供了新思路甚至有望解决血管化、神经化问题.

    未来,构建稳定、安全、可塑性强的活性生物材料将会对类器官生长研究提供更大的时间和空间弹性. 此外,类器官培养与智能材料、仿生材料、3-D打印技术、微流体系统等先进技术的结合有望打破现有生长瓶颈,并且为构建灵敏、准确、持续的类器官评价平台提供可能.

    Tel: 86-571-86845307, E-mail: kxd01@126.com

  • 参 考 文 献

    • 1

      Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016, 18(3): 246-254

    • 2

      Lancaster M A, Knoblich J A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014, 345(6194): 12471251-12471259

    • 3

      Toshiro S, Robert G V, Hugo J S, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265

    • 4

      Dedhia P H, Bertaux-Skeirik N, Zavros Y, et al. Organoid models of human gastrointestinal development and disease. Gastroenterology, 2016, 150(5): 1098-1112

    • 5

      Mccracken K W, Catá E M, Crawford C M, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516(7531): 400-404

    • 6

      Nick B, Meritxell H, Pekka K, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1): 25-36

    • 7

      Sugimoto S, Ohta Y, Fujii M, et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell, 2018, 22(2): 171-176

    • 8

      Xie B Y, Wu A W. Organoid culture of isolated cells from patient-derived tissues with colorectal cancer. Chinese Medical Journal, 2016, 129(20): 2469-2475

    • 9

      Sato T, Stange D E, Marc F, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011, 141(5): 1762-1772

    • 10

      Dye B R, Hill D R, Ferguson M A, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015, 4(4): e5098-e5122

    • 11

      Chapman H A, Xiaopeng L, Alexander J P, et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. Journal of Clinical Investigation, 2011, 121(7): 2855-2862

    • 12

      Shin K, Lee J, Guo N, et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. European Urology, 2012, 61(6): 1263-1264

    • 13

      Lancaster M A, Magdalena R, Carol-Anne M, et al. Cerebral organoids model human brain development and microcephaly. Movement Disorders, 2013, 501(7467): 373-378

    • 14

      Lancaster M A, Knoblich J A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 2014, 9(10): 2329-2340

    • 15

      Au S H, Chamberlain M D, Mahesh S, et al. Hepatic organoids for microfluidic drug screening. Lab on A Chip, 2014, 14(17): 3290-3299

    • 16

      Leite S B, Roosens T, Taghdouini A E, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials, 2016, 78: 1-10

    • 17

      Huch M, Dorrell C, Boj S F, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494(7436): 247-250

    • 18

      Huch M, Bonfanti P, Boj S F, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo Journal, 2013, 32(20): 2708-2721

    • 19

      Morizane R, Lam A Q, Freedman B S, et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 2015, 33(11): 1193-1200

    • 20

      Minoru T, Pei X, Er, Han S, Chiu, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2016, 526(7574): 564-568

    • 21

      Soragni A, Janzen D M, Johnson L M, et al. A designed inhibitor of p53 aggregation rescues p53 tumor-suppression in ovarian carcinomas. Cancer Cell, 2016, 29(1): 90-103

    • 22

      Mirjana K, Karen H, Volker B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nature Communications, 2015, 6: 8989-8998

    • 23

      Trisno S L, Philo K E, Mccracken K W, et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell, 2018, 23(4): 501-515

    • 24

      Nugraha B, Buono M F, Von Boehmer L, et al. Human cardiac organoids for disease modeling. Clinical Pharmacology & Therapeutics, 2018, 105(1): 79-85

    • 25

      Nantasanti, Sathidpak, Spee, et al. Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem Cell Reports, 2015, 5(5): 895-907

    • 26

      Kim G A, Spence J R, Takayama S. Bioengineering for intestinal organoid cultures. Current Opinion in Biotechnology, 2017, 47: 51-58

    • 27

      Rheinwald J G, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell, 1975, 6(3): 317-330

    • 28

      Rheinwald J G, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature, 1977, 265(5593): 421-424

    • 29

      Spence J R, Mayhew C N, Rankin S A, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470(7332): 105-109

    • 30

      Lu W, Rettenmeier E, Paszek M, et al. Crypt organoids culture as an in vitro model in drug metabolism and cytotoxicity studies. Drug Metabolism & Disposition the Biological Fate of Chemicals, 2017, 45(7): 748-754

    • 31

      Liu C, Oikonomopoulos A, Sayed N, et al. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development, 2018, 145(5): 156166-156171

    • 32

      Broutier L, Anderssonrolf A, Hindley C J, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11(9): 1724-1743

    • 33

      Choi J, Iich E, Lee J H. Organogenesis of adult lung in a dish: differentiation, disease and therapy. Developmental Biology, 2016, 420(2): 278-286

    • 34

      Sachs N, De J L, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2): 373-386

    • 35

      Morizane R, Bonventre J V. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nature Protocols, 2016, 12(1):195-207

    • 36

      Fiore D, Ramesh P, Proto M C, et al. Rimonabant kills colon cancer stem cells without inducing toxicity in normal colon organoids. Frontiers in Pharmacology, 2017, 8: 949-950

    • 37

      Bruens L, Snippert H J G. Expanding the tissue toolbox: deriving colon tissue from human pluripotent stem cells. Cell Stem Cell, 2017, 21(1): 3-5

    • 38

      Pham M T, Pollock K M, Rose M D, et al. Generation of human vascularized brain organoids. Neuroreport, 2018, 29(7): 588-593

    • 39

      Walsh A J, Cook R S, Sanders M E, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Research, 2014, 74(18): 5184-5194

    • 40

      Simian M, Bissell M J. Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology, 2017, 216(1): 31-40

    • 41

      Miller A J, Dye B R, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols, 2019, 14: 518-540

    • 42

      Cheung K J, Edward G, Zena W, et al. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 2013, 155(7): 1639-1651

    • 43

      Dong G, Ian V, Andrea S, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1): 176-187

    • 44

      Karthaus W, Iaquinta P, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 2014, 159(1): 163-175

    • 45

      Mills R J, Titmarsh D M, Koenig X, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA, 2017, 114(40): e8372-e8381

    • 46

      Kai W, Siu Tsan Y, Jiangchun X, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nature Genetics, 2014, 46(6): 573-582

    • 47

      Van D W M, Francies H E, Francis J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4): 933-945

    • 48

      Hirt M N, Hansen A, Eschenhagen T. Cardiac tissue engineering state of the art. Circulation Research, 2014, 114(2): 354-367

    • 49

      Wimmer R A, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature, 2019, 565(7740): 505-510

    • 50

      Sasaki N, Sachs N, Wiebrands K, et al. Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc Natl Acad Sci USA, 2016, 113(37): e5399-e5407

    • 51

      Müeller B J, Zhdanov A V, Borisov S M, et al. Nanoparticle-based fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo. Advanced Functional Materials, 2018, 28(9). pii: 1704598

    • 52

      Siegel R L, Miller K D, Jemal A J. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 2019, 69(1): 7-34

    • 53

      Zhao Y, Kankala R K, Wang S B, et al. Multi-organs-on-chips: towards long-term biomedical Investigations. Molecules, 2019, 24(4): 675-696

    • 54

      Bhatia S N, Ingber D E. Microfluidic organs-on-chips. Nature Biotechnology, 2014, 32(8): 760-772

    • 55

      Zhang Q, Cai Y, Li Q Y, et al. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chemistry, 2017, 23(57): 14307-14315

    • 56

      Qian X, Jacob F, Song M M, et al. Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 2018, 13(3): 565-580

    • 57

      Huh D, Hamilton G A, Ingber D E. From three-dimensional cell culture to organs-on-chips. Trends in Cell Biology, 2011, 21(12): 745-754

    • 58

      Astashkina A I, Mann B K, Prestwich G D, et al. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 2012, 33(18): 4700-4711

    • 59

      Astashkina A I, Jones C F, Thiagarajan G, et al. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials, 2014, 35(24): 6323-6331

    • 60

      Tamai M, Adachi E, Tagawa Y. Characterization of a liver organoid tissue composed of hepatocytes and fibroblasts in dense collagen fibrils. Tissue Engineering Part A, 2013, 19(21-22): 2527-2535

    • 61

      Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459): 481-484

    • 62

      Dye B R, Dedhia P H, Miller A J, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife, 2016, 5: e19732-e19749

    • 63

      Steele N G, Chakrabarti J, Wang J, et al. An organoid-based preclinical model of human gastric cancer. Cellular Molecular Gastroenterology Hepatology, 2019, 7(1): 161-184

    • 64

      Zhao R B, Ren X Y, Xie C G, et al. Towards understanding the distribution and tumor targeting of sericin regulated spherical calcium phosphate nanoparticles. Microscopy Research & Technique, 2016, 80(3): 321-330

    • 65

      Zhao R B, Wang B, Yang X Y, et al. A drug-free tumor therapy strategy: cancer cell targeting calcification. Angewandte Chemie, 2016, 55(17): 5225-5229

    • 66

      Pedde R D, Mirani B, Navaei A, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Advanced Materials, 2017, 29(19): 1606061-1606087

    • 67

      Kankala R K, Kai Z, Sun X, et al. Cardiac tissue engineering on the nanoscale. Acs Biomaterials Science & Engineering, 2018, 4(3): 800-818

    • 68

      Devarasetty M, Wang E, Soker S, et al. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication, 2017, 9(2): 021002-021010

    • 69

      Fu C Y, Lin C Y, Chu W C, et al. A simple cell patterning method using magnetic particle-containing photosensitive poly (ethylene glycol) hydrogel blocks: a technical note. Tissue Engineering Part C Methods, 2011, 17(8): 871-877

    • 70

      Heidariyan Z, Ghanian M H, Ashjari M, et al. Efficient and cost-effective generation of hepatocyte-like cells through microparticle-mediated delivery of growth factors in a 3D culture of human pluripotent stem cells. Biomaterials, 2018, 159: 174-188

    • 71

      Mccray T, Richards Z, Marsili J, et al. Handling and assessment of human primary prostate organoid culture. JoVE, 2019, 143: e59051-e59061

    • 72

      Saito R, Ishii Y, Ito R, et al. Transplantation of liver organoids in the omentum and kidney. Artificial Organs, 2011, 35(1): 80-83

    • 73

      Luo Z, Zhang S, Pan J, et al. Time-responsive osteogenic niche of stem cells: a sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials, 2018, 163: 25-42

    • 74

      Ijima H, Mizumoto H, Nakazawa K, et al. Hepatocyte growth factor and epidermal growth factor promote spheroid formation in polyurethane foam/hepatocyte culture and improve expression and maintenance of albumin production. Biochemical Engineering Journal, 2009, 47(1): 19-26

    • 75

      Fong E L S, Tan B T, Lin X, et al. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials, 2018, 159: 229-240

    • 76

      Mizumoto H, Amimoto N, Miyazawa T, et al. In vitro and ex vivo functional evaluation of a hollow fiber-type bioartificial liver module containing ES cell-derived hepatocyte-like cells. Advanced Biomedical Engineering, 2018, 7: 18-27

    • 77

      李泽豪, 任小元, 王世兵,等. 介导siRNA传递的非病毒载体及其研究进展. 生命科学, 2014, 26(4): 392-399

      Li Z H, Ren X Y, Wang S B, et al. Chinese Bulletin of Life Sciences, 2014, 26(4): 392-399

    • 78

      Bertassoni L E, Cardoso J C, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 2014, 6(2): 024105-024115

    • 79

      宋东娟, 童锦禄, 冉志华,等. 小肠类器官培养技术的建立和优化. 胃肠病学, 2016, 21(2): 75-79

      Song D J, Tong J L, Ran Z H, et al. Chinese Journal of Gastroenterology, 2016, 21(2): 75-79

    • 80

      Rambani K, Vukasinovic J, Glezer A, et al. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability. Journal of Neuroscience Methods, 2009, 180(2): 243-254

    • 81

      Baptista P M, Siddiqui M M, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2): 604-617

    • 82

      Robertson M J, Soibam B, O'leary J G, et al. Recellularization of rat liver: an in vitro model for assessing human drug metabolism and liver biology. Plos One, 2018, 13(1): e0191892-e0191914

    • 83

      Rocha F G, Sundback C A, Krebs N J, et al. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials, 2008, 29(19): 2884-2890

    • 84

      Baptista P M, Siddiqui M M, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2):604-617

    • 85

      宋海飞, 林博文, 龚诚宸,等. 细胞迁移相关蛋白酶的研究进展. 生物化学与生物物理进展, 2017, 44(2): 99-109

      Song H F, Lin B W, Gong C C, et al. Progress in Biochemistry and Biophysics, 2017, 44(2): 99-109

    • 86

      Huch M, Gehart H, Vanboxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1-2): 299-312

    • 87

      Lu Y, Zhang G, Shen C, et al. A novel 3D liver organoid system for elucidation of hepatic glucose metabolism. Biotechnology & Bioengineering, 2015, 109(2): 595-604

    • 88

      Kankala R K, Zhu K, Li J, et al. Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale. Biofabrication, 2017, 9(3): 032002-032017

李甜瑞

机 构:

1). 浙江理工大学材料与纺织学院,杭州 310018

2). 浙江-毛里求斯生物医用材料与组织工程联合研究中心,杭州 310018

3). 浙江理工大学生命科学与医药学院,杭州 310018

Affiliation:

1). College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China

2). Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China

3). College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China

赵瑞波

机 构:

1). 浙江理工大学材料与纺织学院,杭州 310018

2). 浙江-毛里求斯生物医用材料与组织工程联合研究中心,杭州 310018

Affiliation:

1). College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China

2). Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China

张权

机 构:

1). 浙江理工大学材料与纺织学院,杭州 310018

2). 浙江-毛里求斯生物医用材料与组织工程联合研究中心,杭州 310018

Affiliation:

1). College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China

2). Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China

孔祥东

机 构:

1). 浙江理工大学材料与纺织学院,杭州 310018

2). 浙江-毛里求斯生物医用材料与组织工程联合研究中心,杭州 310018

Affiliation:

1). College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China

2). Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China

角 色:通讯作者

Role:Corresponding author

html/pibbcn/20190044/alternativeImage/d9c718af-b4c4-4f1e-b649-690480dc5d34-F001.png
类别来源关键生长因子参考文献

小肠

EGF0, Noggin0, R-spondin0[3]
EGF0, Noggin0, R-spondin0, Gastrin0, A-83-010, Wnt3A1, Nicotinamide1, SB2021901[29]

结肠

EGF0, Noggin0, R-spondin0, Wnt3A1[36]
EGF0, Noggin0, R-spondin0, Gastrin0, A-83-010, Wnt3A1, Nicotinamide1, SB2021901[37]
食管EGF0, Noggin0, R-spondin0, Gastrin0, A-83-010, FGF-100, Wnt3A1, Nicotinamide1, SB2021901, DBZ2[9,23]
EGF0, Noggin0, R-spondin0, Gastrin0, Wnt3A0, FGF0, retinoic acid1, Y-276321, Activin A2, BMP-43[5,6]

肝脏

EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100, HGF0, Y-276322, DAPT3, dexamethasone3

[32]

EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100, HGF0, A-83-011, Y-276322, BMP-73, DAPT3, dexamethasone3

[17]

胰腺

EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100[32]
EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100, A-83-012, PGE-22[18]
MEM-NEAA0, heparin0, neurobasal1, mercaptoethanol1, insulin1, CHIR990211, vitamin A2, BMP-22[13,38]

EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Activin A0, FGF0, SB4315422, SU54022, Sant-22,CHIR990213

[10]

乳腺EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Gastrin0, FGF-100, A-83-010, SB2021900[34,39]

EGF0, Noggin0, R-spondin0, Wnt3A0, Nicotinamide0, Activin A0, CHIR990212, RA3, heparin3, FGF-93,AGN1931093

[20]

html/pibbcn/20190044/alternativeImage/d9c718af-b4c4-4f1e-b649-690480dc5d34-F002.png
html/pibbcn/20190044/alternativeImage/d9c718af-b4c4-4f1e-b649-690480dc5d34-F003.png
html/pibbcn/20190044/alternativeImage/d9c718af-b4c4-4f1e-b649-690480dc5d34-F004.png
html/pibbcn/20190044/alternativeImage/d9c718af-b4c4-4f1e-b649-690480dc5d34-F005.png
html/pibbcn/20190044/alternativeImage/d9c718af-b4c4-4f1e-b649-690480dc5d34-F006.png

图1 不同种类类器官形貌图

Fig. 1 Topography of different kinds of organoid

表1 类器官培养基成分

Table 1 Medium composition of organoids

图2 患者来源乳腺癌类器官部分检测结果[34]

Fig. 2 Partial test results of patient-derived breast cancer organoid[34]

图3 不同药物对肾类器官的影[58]

Fig. 3 Effects of different drugs on kidney organoids[58]

图4 类器官用于再生医学的研究

Fig. 4 Organoids for research in regenerative medicine

图5 类器官与生物材料的相互作用

Fig. 5 The interaction between organoids and biomaterials

图6 类器官血管化研究

Fig. 6 Research on vascularization of organoids

image /

(a)小肠类器官形貌[3].(b)结肠类器官形貌[9].(c)食管类器官形貌[9].(d)胃类器官形貌[6].(e)肝脏类器官形貌[25].(f)胰腺类器官形貌[32].(g)肺类器官形貌[33].(h)乳腺类器官形貌[34].(i)肾类器官形貌[35].(j)脑类器官形貌[13].

均含基础培养基补充成分:Glutamax、HEPES、B27、N2、N-acetylcysteine. 上标数字为加入该生长因子对应的类器官生长阶段:0为各阶段均添加;1,2分别为生长及分化阶段;1,2,3分别为生长、扩增、分化阶段.

(a)组织与患者来源的乳腺癌类器官突变特征.(b)原位移植鼠模型与类器官模型对阿法替尼的药物敏感测试.(c)患者来源的乳腺癌类器官对他莫昔芬的药物反应.

(a)不同药物组别肾类器官中酶的表达.(b)药物EC50值下IL-6、RANTES、MIP-1α、MCP-1、TNF-α及IL-1β细胞因子在培养基中的释放.

(a)胃癌患者组织(GC)、器官样体(TGOs)和细胞系(AGS、NCI或TGOC)的RNA测序分[63].(b)原位移植患者来源的胃癌类器官腺癌的移植及免疫染[63].(c)移植后皮下人源类器官宏观[61].

(a)MA-HPC海绵材料表征[75]. (i):干燥MA-HPC海绵明场图像. (ii):水合MA-HPC海绵明场图像(碘化丙锭染色). (iii):肝类器官在MA-HPC海绵中的明场图像. (iv):肝类器官在MA-HPC海绵中的鬼笔环肽染色图像.(b)将水凝胶微球中掺入人胚胎干细胞以构建肝类器[70]. (v):装载生长因子的微球成功掺入干细胞球体内. (vi):荧光显微镜图像. (vii):微球进入入干细胞球状体横截面石蜡切片染色图.(CTR标记微球以红色显示,DAPI复染细胞核).

(a)脑类器官培养示意[13].(b)肝细胞在聚氨酯泡沫中的生长形[74].(c)脑类器官染色图,白色箭头为新生成血[38].(d)肝去细胞化120 min实物[84].

  • 参 考 文 献

    • 1

      Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016, 18(3): 246-254

    • 2

      Lancaster M A, Knoblich J A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014, 345(6194): 12471251-12471259

    • 3

      Toshiro S, Robert G V, Hugo J S, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265

    • 4

      Dedhia P H, Bertaux-Skeirik N, Zavros Y, et al. Organoid models of human gastrointestinal development and disease. Gastroenterology, 2016, 150(5): 1098-1112

    • 5

      Mccracken K W, Catá E M, Crawford C M, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516(7531): 400-404

    • 6

      Nick B, Meritxell H, Pekka K, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1): 25-36

    • 7

      Sugimoto S, Ohta Y, Fujii M, et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell, 2018, 22(2): 171-176

    • 8

      Xie B Y, Wu A W. Organoid culture of isolated cells from patient-derived tissues with colorectal cancer. Chinese Medical Journal, 2016, 129(20): 2469-2475

    • 9

      Sato T, Stange D E, Marc F, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011, 141(5): 1762-1772

    • 10

      Dye B R, Hill D R, Ferguson M A, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015, 4(4): e5098-e5122

    • 11

      Chapman H A, Xiaopeng L, Alexander J P, et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. Journal of Clinical Investigation, 2011, 121(7): 2855-2862

    • 12

      Shin K, Lee J, Guo N, et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. European Urology, 2012, 61(6): 1263-1264

    • 13

      Lancaster M A, Magdalena R, Carol-Anne M, et al. Cerebral organoids model human brain development and microcephaly. Movement Disorders, 2013, 501(7467): 373-378

    • 14

      Lancaster M A, Knoblich J A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 2014, 9(10): 2329-2340

    • 15

      Au S H, Chamberlain M D, Mahesh S, et al. Hepatic organoids for microfluidic drug screening. Lab on A Chip, 2014, 14(17): 3290-3299

    • 16

      Leite S B, Roosens T, Taghdouini A E, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials, 2016, 78: 1-10

    • 17

      Huch M, Dorrell C, Boj S F, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494(7436): 247-250

    • 18

      Huch M, Bonfanti P, Boj S F, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo Journal, 2013, 32(20): 2708-2721

    • 19

      Morizane R, Lam A Q, Freedman B S, et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 2015, 33(11): 1193-1200

    • 20

      Minoru T, Pei X, Er, Han S, Chiu, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2016, 526(7574): 564-568

    • 21

      Soragni A, Janzen D M, Johnson L M, et al. A designed inhibitor of p53 aggregation rescues p53 tumor-suppression in ovarian carcinomas. Cancer Cell, 2016, 29(1): 90-103

    • 22

      Mirjana K, Karen H, Volker B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nature Communications, 2015, 6: 8989-8998

    • 23

      Trisno S L, Philo K E, Mccracken K W, et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell, 2018, 23(4): 501-515

    • 24

      Nugraha B, Buono M F, Von Boehmer L, et al. Human cardiac organoids for disease modeling. Clinical Pharmacology & Therapeutics, 2018, 105(1): 79-85

    • 25

      Nantasanti, Sathidpak, Spee, et al. Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem Cell Reports, 2015, 5(5): 895-907

    • 26

      Kim G A, Spence J R, Takayama S. Bioengineering for intestinal organoid cultures. Current Opinion in Biotechnology, 2017, 47: 51-58

    • 27

      Rheinwald J G, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell, 1975, 6(3): 317-330

    • 28

      Rheinwald J G, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature, 1977, 265(5593): 421-424

    • 29

      Spence J R, Mayhew C N, Rankin S A, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470(7332): 105-109

    • 30

      Lu W, Rettenmeier E, Paszek M, et al. Crypt organoids culture as an in vitro model in drug metabolism and cytotoxicity studies. Drug Metabolism & Disposition the Biological Fate of Chemicals, 2017, 45(7): 748-754

    • 31

      Liu C, Oikonomopoulos A, Sayed N, et al. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development, 2018, 145(5): 156166-156171

    • 32

      Broutier L, Anderssonrolf A, Hindley C J, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11(9): 1724-1743

    • 33

      Choi J, Iich E, Lee J H. Organogenesis of adult lung in a dish: differentiation, disease and therapy. Developmental Biology, 2016, 420(2): 278-286

    • 34

      Sachs N, De J L, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2): 373-386

    • 35

      Morizane R, Bonventre J V. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nature Protocols, 2016, 12(1):195-207

    • 36

      Fiore D, Ramesh P, Proto M C, et al. Rimonabant kills colon cancer stem cells without inducing toxicity in normal colon organoids. Frontiers in Pharmacology, 2017, 8: 949-950

    • 37

      Bruens L, Snippert H J G. Expanding the tissue toolbox: deriving colon tissue from human pluripotent stem cells. Cell Stem Cell, 2017, 21(1): 3-5

    • 38

      Pham M T, Pollock K M, Rose M D, et al. Generation of human vascularized brain organoids. Neuroreport, 2018, 29(7): 588-593

    • 39

      Walsh A J, Cook R S, Sanders M E, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Research, 2014, 74(18): 5184-5194

    • 40

      Simian M, Bissell M J. Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology, 2017, 216(1): 31-40

    • 41

      Miller A J, Dye B R, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols, 2019, 14: 518-540

    • 42

      Cheung K J, Edward G, Zena W, et al. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 2013, 155(7): 1639-1651

    • 43

      Dong G, Ian V, Andrea S, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1): 176-187

    • 44

      Karthaus W, Iaquinta P, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 2014, 159(1): 163-175

    • 45

      Mills R J, Titmarsh D M, Koenig X, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA, 2017, 114(40): e8372-e8381

    • 46

      Kai W, Siu Tsan Y, Jiangchun X, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nature Genetics, 2014, 46(6): 573-582

    • 47

      Van D W M, Francies H E, Francis J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4): 933-945

    • 48

      Hirt M N, Hansen A, Eschenhagen T. Cardiac tissue engineering state of the art. Circulation Research, 2014, 114(2): 354-367

    • 49

      Wimmer R A, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature, 2019, 565(7740): 505-510

    • 50

      Sasaki N, Sachs N, Wiebrands K, et al. Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc Natl Acad Sci USA, 2016, 113(37): e5399-e5407

    • 51

      Müeller B J, Zhdanov A V, Borisov S M, et al. Nanoparticle-based fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo. Advanced Functional Materials, 2018, 28(9). pii: 1704598

    • 52

      Siegel R L, Miller K D, Jemal A J. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 2019, 69(1): 7-34

    • 53

      Zhao Y, Kankala R K, Wang S B, et al. Multi-organs-on-chips: towards long-term biomedical Investigations. Molecules, 2019, 24(4): 675-696

    • 54

      Bhatia S N, Ingber D E. Microfluidic organs-on-chips. Nature Biotechnology, 2014, 32(8): 760-772

    • 55

      Zhang Q, Cai Y, Li Q Y, et al. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chemistry, 2017, 23(57): 14307-14315

    • 56

      Qian X, Jacob F, Song M M, et al. Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 2018, 13(3): 565-580

    • 57

      Huh D, Hamilton G A, Ingber D E. From three-dimensional cell culture to organs-on-chips. Trends in Cell Biology, 2011, 21(12): 745-754

    • 58

      Astashkina A I, Mann B K, Prestwich G D, et al. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 2012, 33(18): 4700-4711

    • 59

      Astashkina A I, Jones C F, Thiagarajan G, et al. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials, 2014, 35(24): 6323-6331

    • 60

      Tamai M, Adachi E, Tagawa Y. Characterization of a liver organoid tissue composed of hepatocytes and fibroblasts in dense collagen fibrils. Tissue Engineering Part A, 2013, 19(21-22): 2527-2535

    • 61

      Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459): 481-484

    • 62

      Dye B R, Dedhia P H, Miller A J, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife, 2016, 5: e19732-e19749

    • 63

      Steele N G, Chakrabarti J, Wang J, et al. An organoid-based preclinical model of human gastric cancer. Cellular Molecular Gastroenterology Hepatology, 2019, 7(1): 161-184

    • 64

      Zhao R B, Ren X Y, Xie C G, et al. Towards understanding the distribution and tumor targeting of sericin regulated spherical calcium phosphate nanoparticles. Microscopy Research & Technique, 2016, 80(3): 321-330

    • 65

      Zhao R B, Wang B, Yang X Y, et al. A drug-free tumor therapy strategy: cancer cell targeting calcification. Angewandte Chemie, 2016, 55(17): 5225-5229

    • 66

      Pedde R D, Mirani B, Navaei A, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Advanced Materials, 2017, 29(19): 1606061-1606087

    • 67

      Kankala R K, Kai Z, Sun X, et al. Cardiac tissue engineering on the nanoscale. Acs Biomaterials Science & Engineering, 2018, 4(3): 800-818

    • 68

      Devarasetty M, Wang E, Soker S, et al. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication, 2017, 9(2): 021002-021010

    • 69

      Fu C Y, Lin C Y, Chu W C, et al. A simple cell patterning method using magnetic particle-containing photosensitive poly (ethylene glycol) hydrogel blocks: a technical note. Tissue Engineering Part C Methods, 2011, 17(8): 871-877

    • 70

      Heidariyan Z, Ghanian M H, Ashjari M, et al. Efficient and cost-effective generation of hepatocyte-like cells through microparticle-mediated delivery of growth factors in a 3D culture of human pluripotent stem cells. Biomaterials, 2018, 159: 174-188

    • 71

      Mccray T, Richards Z, Marsili J, et al. Handling and assessment of human primary prostate organoid culture. JoVE, 2019, 143: e59051-e59061

    • 72

      Saito R, Ishii Y, Ito R, et al. Transplantation of liver organoids in the omentum and kidney. Artificial Organs, 2011, 35(1): 80-83

    • 73

      Luo Z, Zhang S, Pan J, et al. Time-responsive osteogenic niche of stem cells: a sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials, 2018, 163: 25-42

    • 74

      Ijima H, Mizumoto H, Nakazawa K, et al. Hepatocyte growth factor and epidermal growth factor promote spheroid formation in polyurethane foam/hepatocyte culture and improve expression and maintenance of albumin production. Biochemical Engineering Journal, 2009, 47(1): 19-26

    • 75

      Fong E L S, Tan B T, Lin X, et al. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials, 2018, 159: 229-240

    • 76

      Mizumoto H, Amimoto N, Miyazawa T, et al. In vitro and ex vivo functional evaluation of a hollow fiber-type bioartificial liver module containing ES cell-derived hepatocyte-like cells. Advanced Biomedical Engineering, 2018, 7: 18-27

    • 77

      李泽豪, 任小元, 王世兵,等. 介导siRNA传递的非病毒载体及其研究进展. 生命科学, 2014, 26(4): 392-399

      Li Z H, Ren X Y, Wang S B, et al. Chinese Bulletin of Life Sciences, 2014, 26(4): 392-399

    • 78

      Bertassoni L E, Cardoso J C, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 2014, 6(2): 024105-024115

    • 79

      宋东娟, 童锦禄, 冉志华,等. 小肠类器官培养技术的建立和优化. 胃肠病学, 2016, 21(2): 75-79

      Song D J, Tong J L, Ran Z H, et al. Chinese Journal of Gastroenterology, 2016, 21(2): 75-79

    • 80

      Rambani K, Vukasinovic J, Glezer A, et al. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability. Journal of Neuroscience Methods, 2009, 180(2): 243-254

    • 81

      Baptista P M, Siddiqui M M, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2): 604-617

    • 82

      Robertson M J, Soibam B, O'leary J G, et al. Recellularization of rat liver: an in vitro model for assessing human drug metabolism and liver biology. Plos One, 2018, 13(1): e0191892-e0191914

    • 83

      Rocha F G, Sundback C A, Krebs N J, et al. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials, 2008, 29(19): 2884-2890

    • 84

      Baptista P M, Siddiqui M M, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2):604-617

    • 85

      宋海飞, 林博文, 龚诚宸,等. 细胞迁移相关蛋白酶的研究进展. 生物化学与生物物理进展, 2017, 44(2): 99-109

      Song H F, Lin B W, Gong C C, et al. Progress in Biochemistry and Biophysics, 2017, 44(2): 99-109

    • 86

      Huch M, Gehart H, Vanboxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1-2): 299-312

    • 87

      Lu Y, Zhang G, Shen C, et al. A novel 3D liver organoid system for elucidation of hepatic glucose metabolism. Biotechnology & Bioengineering, 2015, 109(2): 595-604

    • 88

      Kankala R K, Zhu K, Li J, et al. Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale. Biofabrication, 2017, 9(3): 032002-032017