en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
ElbazY, SchuldinerM. Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci, 2011, 36(11): 616-623
参考文献 2
ShinY, BrangwynneC P. Liquid phase condensation in cell physiology and disease. Science, 2017, 357(6357)pii:eaaf4382
参考文献 3
BananiS F, LeeH O, HymanA A, et al. Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017, 18(5): 285-298
参考文献 4
WuH, CarvalhoP, VoeltzG K. Here, there, and everywhere: The importance of ER membrane contact sites. Science, 2018, 361(6401)pii:eaan5835
参考文献 5
SahekiY, De CamilliP. Endoplasmic reticulum-plasma membrane contact sites. Annual Review of Biochemistry, 2017, 86: 659-684
参考文献 6
YatesJ R, 3rd, GilchristA, HowellK E, et al. Proteomics of organelles and large cellular structures. Nature Reviews Molecular Cell Biology, 2005, 6(9): 702-714
参考文献 7
NoorenI M, ThorntonJ M. Diversity of protein-protein interactions. The EMBO Journal, 2003, 22(14): 3486-3492
参考文献 8
GingrasA C, RaughtB. Beyond hairballs: The use of quantitative mass spectrometry data to understand protein-protein interactions. FEBS Letters, 2012, 586(17): 2723-2731
参考文献 9
Choi-RheeE, SchulmanH, CronanJ E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Science, 2004, 13(11): 3043-3050
参考文献 10
RouxK J, KimD I, RaidaM, et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of Cell Biology, 2012, 196(6): 801-810
参考文献 11
KimD I, BirendraK C, ZhuW, et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci USA, 2014, 111(24): E2453-2461
参考文献 12
KimD I, JensenS C, NobleK A, et al. An improved smaller biotin ligase for BioID proximity labeling. Molecular Biology of the Cell, 2016, 27(8): 1188-1196
参考文献 13
OpitzN, SchmittK, Hofer-PretzV, et al. Capturing the Asc1p/receptor for activated C kinase 1 (RACK1) microenvironment at the head region of the 40S ribosome with quantitative BioID in yeast. Molecular & Cellular Proteomics : MCP, 2017, 16(12): 2199-2218
参考文献 14
MorriswoodB, HavlicekK, DemmelL, et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryotic Cell, 2013, 12(2): 356-367
参考文献 15
LinQ, ZhouZ, LuoW, et al. Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. Frontiers in Plant Science, 2017, 8: 749
参考文献 16
BatsiosP, MeyerI, GrafR. Proximity-dependent biotin identification (BioID) in dictyostelium Amoebae. Methods in Enzymology, 2016, 569: 23-42
参考文献 17
GuB, LambertJ P, CockburnK, et al. AIRE is a critical spindle-associated protein in embryonic stem cells. eLife, 2017, 6: pii: e28131
参考文献 18
DingarD, KalkatM, ChanP K, et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. Journal of Proteomics, 2015, 118: 95-111
参考文献 19
UezuA, KanakD J, BradshawT W, et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science, 2016, 353(6304): 1123-1129
参考文献 20
JanC H, WilliamsC C, WeissmanJ S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science, 2014, 346(6210): 1257521
参考文献 21
ComartinD, GuptaG D, FussnerE, et al. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Current Biology : CB, 2013, 23(14): 1360-1366
参考文献 22
ColeA, WangZ, CoyaudE, et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell, 2015, 27(6): 864-876
参考文献 23
ElziD J, SongM, HakalaK, et al. Proteomic analysis of the EWS-Fli-1 interactome reveals the role of the lysosome in EWS-Fli-1 turnover. Journal of Proteome Research, 2014, 13(8): 3783-3791
参考文献 24
GuoZ, NeilsonL J, ZhongH, et al. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Science Signaling, 2014, 7(354)rs7
参考文献 25
SteedE, ElbediwyA, VaccaB, et al. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. The Journal of Cell Biology, 2014, 204(5): 821-838
参考文献 26
UedaS, BleeA M, MacwayK G, et al. Force dependent biotinylation of myosin IIA by alpha-catenin tagged with a promiscuous biotin ligase. Plos One, 2015, 10(3): e0122886
参考文献 27
Van ItallieC M, AponteA, TietgensA J, et al. The N and C termini of ZO-1 are surrounded by distinct proteins and functional protein networks. The Journal of Biological Chemistry, 2013, 288(19): 13775-13788
参考文献 28
NishimuraT, PadamsiZ, FakimH, et al. The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5' and 3' termini of target mRNAs. Cell Reports, 2015, 11(9): 1425-1436
参考文献 29
ChengY S, SeibertO, KlotingN, et al. PPP2R5C couples hepatic glucose and lipid homeostasis. Plos Genetics, 2015, 11(10): e1005561
参考文献 30
CouzensA L, KnightJ D, KeanM J, et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Science Signaling, 2013, 6(302)rs15
参考文献 31
Rodriguez-FraticelliA E, BagwellJ, Bosch-ForteaM, et al. Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nature Cell Biology, 2015, 17(3): 241-250
参考文献 32
SchumacherM M, ElsabroutyR, SeemannJ, et al. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase. eLife, 2015, 4(DOI: 10.7554/eLife.05560)
参考文献 33
ZhouZ, RawnsleyD R, GoddardL M, et al. The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell, 2015, 32(2): 168-180
参考文献 34
CoyaudE, MisM, LaurentE M, et al. BioID-based identification of Skp cullin F-box (SCF)beta-TrCP1/2 E3 ligase substrates. Molecular & Cellular Proteomics, 2015, 14(7): 1781-1795
参考文献 35
YehC, CoyaudE, BashkurovM, et al. The deubiquitinase USP37 regulates chromosome cohesion and mitotic progression. Current Biology, 2015, 25(17): 2290-2299
参考文献 36
KueckT, FosterT L, WeineltJ, et al. Serine phosphorylation of HIV-1 Vpu and its binding to tetherin regulates interaction with clathrin adaptors. Plos pathogens, 2015, 11(8): e1005141
参考文献 37
Le SageV, CintiA, Valiente-EcheverriaF, et al. Proteomic analysis of HIV-1 Gag interacting partners using proximity-dependent biotinylation. Virology Journal, 2015, 12: 138
参考文献 38
RitchieC, CylinderI, PlattE J, et al. Analysis of HIV-1 Gag protein interactions via biotin ligase tagging. Journal of Virology, 2015, 89(7): 3988-4001
参考文献 39
De MunterS, GornemannJ, DeruaR, et al. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Letters, 2017, 591(2): 415-424
参考文献 40
SchoppI M, Amaya RamirezC C, DebeljakJ, et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nature Communications, 2017, 8: 15690
参考文献 41
ChojnowskiA, SobotaR M, OngP F, et al. 2C-BioID: An advanced two component BioID system for precision mapping of protein interactomes. iScience, 2018, 10: 40-52
参考文献 42
BranonT C, BoschJ A, SanchezA D, et al. Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 2018, 36(9): 880-887
参考文献 43
RamanathanM, MajzoubK, RaoD S, et al. RNA-protein interaction detection in living cells. Nature Methods, 2018, 15(3): 207-212
参考文献 44
Fernandez-SuarezM, ChenT S, TingA Y. Protein-protein interaction detection in vitro and in cells by proximity biotinylation. Journal of the American Chemical Society, 2008, 130(29): 9251-9253
参考文献 45
LajkoM, HaddadA F, RobinsonC A, et al. Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: Limitations for integral membrane glycoproteins. Journal of Virological Methods, 2015, 221: 81-89
参考文献 46
BelshanM, SchweitzerC J, DonnellanM R, et al. In vivo biotinylation and capture of HIV-1 matrix and integrase proteins. Journal of Virological Methods, 2009, 159(2): 178-184
参考文献 47
SteelE, MurrayV L, LiuA P. Multiplex detection of homo- and heterodimerization of g protein-coupled receptors by proximity biotinylation. Plos One, 2014, 9(4): e93646
参考文献 48
ShoaibM, KulyyassovA, RobinC, et al. PUB-NChIP--"in vivo biotinylation" approach to study chromatin in proximity to a protein of interest. Genome Research, 2013, 23(2): 331-340
参考文献 49
ThyagarajanA, TingA Y. Imaging activity-dependent regulation of neurexin-neuroligin interactions using trans-synaptic enzymatic biotinylation. Cell, 2010, 143(3): 456-469
参考文献 50
KotaniN, GuJ, IsajiT, et al. Biochemical visualization of cell surface molecular clustering in living cells. Proc Natl Acad Sci USA, 2008, 105(21): 7405-7409
参考文献 51
HonkeK, KotaniN. Identification of cell-surface molecular interactions under living conditions by using the enzyme-mediated activation of radical sources (EMARS) method. Sensors, 2012, 12(12): 16037-16045
参考文献 52
Miyagawa-YamaguchiA, KotaniN, HonkeK. Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. Plos One, 2014, 9(3): e93054
参考文献 53
YamashitaR, KotaniN, IshiuraY, et al. Spatiotemporally-regulated interaction between beta1 integrin and ErbB4 that is involved in fibronectin-dependent cell migration. Journal of Biochemistry, 2011, 149(3): 347-355
参考文献 54
LiX W, ReesJ S, XueP, et al. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. The Journal of Biological Chemistry, 2014, 289(21): 14434-14447
参考文献 55
LohK H, StawskiP S, DraycottA S, et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell, 2016, 166(5): 1295-1307.e1221
参考文献 56
MartellJ D, DeerinckT J, SancakY, et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nature Biotechnology, 2012, 30(11): 1143-1148
参考文献 57
RheeH W, ZouP, UdeshiN D, et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 2013, 339(6125): 1328-1331
参考文献 58
MickD U, RodriguesR B, LeibR D, et al. Proteomics of primary cilia by proximity labeling. Developmental Cell, 2015, 35(4): 497-512
参考文献 59
ChenC L, HuY, UdeshiN D, et al. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc Natl Acad Sci USA, 2015, 112(39): 12093-12098
参考文献 60
ChungC Y, KhuranaV, YiS, et al. In situ peroxidase labeling and mass-spectrometry connects alpha-synuclein directly to endocytic trafficking and mRNA metabolism in neurons. Cell Systems, 2017, 4(2): 242-250.e244
参考文献 61
LamS S, MartellJ D, KamerK J, et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature Methods, 2015, 12(1): 51-54
参考文献 62
张舒策, 何涟, 周育斌, 等. 内质网-细胞质膜连接区蛋白质组鉴定及对其中的STIMATE的功能研究. 中国细胞生物学学报, 2016, 38(5): 461-466
ZhangS C, HeL, ZhouY B, et al. Chin J Cell Biol, 2016, 38(5): 461-466
参考文献 63
JingJ, HeL, SunA, et al. Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca(2)(+) influx. Nature Cell Biology, 2015, 17(10): 1339-1347
参考文献 64
HungV, UdeshiN D, LamS S, et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nature Protocols, 2016, 11(3): 456-475
参考文献 65
RathoreA, ChuQ, TanD, et al. MIEF1 microprotein regulates mitochondrial translation. Biochemistry, 2018, 57(38): 5564-5575
参考文献 66
ZhenY, HaugstenE M, SinghS K, et al. Proximity labeling by a recombinant APEX2-FGF1 fusion protein reveals interaction of FGF1 with the proteoglycans CD44 and CSPG4. Biochemistry, 2018, 57(26): 3807-3816
参考文献 67
ZuzowN, GhoshA, LeonardM, et al. Mapping the mammalian ribosome quality control complex interactome using proximity labeling approaches. Molecular Biology of the Cell, 2018, 29(10): 1258-1269
参考文献 68
GanapathyU S, BaiL, WeiL, et al. Compartment-specific labeling of bacterial periplasmic proteins by peroxidase-mediated biotinylation. ACS Infectious Diseases, 2018, 4(6): 918-925
参考文献 69
HwangJ, EspenshadeP J. Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2. The Biochemical Journal, 2016, 473(16): 2463-2469
参考文献 70
XueM, HouJ, WangL, et al. Optimizing the fragment complementation of APEX2 for detection of specific protein-protein interactions in live cells. Sci Rep, 2017, 7(1): 12039
参考文献 71
HanY, BranonT C, MartellJ D, et al. Directed Evolution of Split APEX2 Peroxidase. ACS Chem Biol, 2019, 14(4): 619-635
参考文献 72
LobingierB T, HuttenhainR, EichelK, et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell, 2017, 169(2): 350-360.e312
参考文献 73
LiuQ, ZhengJ, SunW, et al. A proximity-tagging system to identify membrane protein-protein interactions. Nature Methods, 2018, 15(9): 715-722
目录 contents

    摘要

    真核细胞内多种无膜及有膜细胞器为各种生物学过程的发生提供场所.被膜细胞器通过它们之间的膜接触位点所进行的信息交流和物质交换是维持生命活动所必需的. 绘制活细胞中细胞器或膜接触位点等处的蛋白质组图谱,将有助于解析这些部位的生物学功能及作用机制,并为研究细胞器相互作用提供基础. 但由于无膜细胞器或膜接触位点很难分离纯化,传统的生化方法难以系统解析其中的蛋白质组. 最近报道的几种基于酶类的蛋白质邻近标记技术,则为系统分析上述空间受限的蛋白质组这一难题提供了有效的解决方案. 通过将能催化产生活性自由基(最常见的是生物素及其衍生物的自由基)的酶连接到目标蛋白上,可对其邻近的蛋白质组进行共价标记,从而使后者的分离和鉴定成为可能,并可以运用于活细胞中的动态标记. 我们在此综述了几种最新的邻近标记策略的原理及应用,并对它们的优势与局限性进行了比较,以期为细胞器互作的蛋白质组学研究提供参考.

    Abstract

    Membrane-less and membrane-bound organelles provide sites for many crucial biological processes to take place within eukaryotic cells. Signalling and exchange of materials occurring at membrane contact sites (MCSs) among membrane-bound organelles are also vital for cell homeostasis. Proteomic mapping of molecular machineries within membrane-less organelles or MCSs are essential for the understanding all those events within such sites, as well as for the study of organelle interactions. However, the attempts to dissect molecular determinants in these sites using traditional biochemical techniques were far from fruitful. Recent advances in proximity labelling techniques provide an ideal solution for this challenge. Mostly by utilizing different type of biotin ligases which fused to target proteins, proteomes surrounding the target protein (within tens of nanometers) could be tagged (often with biotin or its derivatives). These covalently labelled proteins could then be enriched and identified with mass spectrometry.Here,we reviewed most recent advances in proximity labeling approaches, hoping to provide a general guide for researches focusing on proteomic mapping of molecular machineries within organelles or MCSs.

    真核细胞中存在着各种膜包被的细胞器(organelle),如线粒体、高尔基体、内质网、细胞核等. 这类有膜细胞器通过被膜构建出有明确边界的亚细胞区室,这些区室中的物化环境与细胞质中的状态截然不同,其内富含多种特异的蛋白质及物质,是各种特定生物学过程的发生场所,比如线粒体中发生的氧化呼吸作用,溶酶体中发生的生物大分子的降解等. 此外,细胞器也需要通过相互作用协调各自的活动来实现细胞中各种复杂的生理过程并维持细胞稳态. 被膜细胞器间的互作是通过细胞器膜(包括质膜)之间存在10~30 nm的间隙部位实现的,在这种被称为膜接触位点(membrane contact site,MCS)的部位中存在的多种蛋白质机器可以介导细胞器之间的物质交换和信息交[1].除被膜细胞器外,真核细胞中还有很多无膜细胞 器(membrane-less organelles or condensates)的存在,例如核仁(nucleolus)、应激颗粒(stress granule)和加工小体(processing body)等. 无膜细胞器通常由特定的RNA和蛋白质组成. 虽然没有生物膜包围,但无膜细胞器能够形成直径达微米级并具有确定边界的组装体. 因此像经典细胞器一样,无膜细胞器也能够在细胞中产生特定的亚细胞区[2,3]. 通过绘制活细胞中各细胞器的亚细胞区室内,以及它们之间的膜接触位点处的蛋白质组图谱并解析其相互作用网络,将有助于阐明细胞中的各种事件是如何随空间、时间变化,高度动态且高效有序进行的,从而更全面、系统地了解生命活动过[4,5].

    膜接触位点及无膜细胞器非常难以被传统的研究方法进行活体检测、分离和解析. 利用荧光显微成像技术,虽可以通过荧光共定位、荧光共振能量转移等方法对活细胞特定空间中可能相互作用的蛋白质进行动态观察,并提供空间分布变化的信息,但需要对蛋白质进行特殊的标记,并且一次能研究的蛋白质数量有限,获得的信息比较少. 传统的蛋白质组学研究方法,比如亲和纯化-质谱(AP-MS)法,可以通过对细胞裂解液分离纯化从而对各种膜组分或细胞器组分中的蛋白质组进行分析,获得通量较大的信息. 但用细胞裂解液进行组学研究时,因无法区分蛋白质在细胞中空间分布的差异、无法反应出在活细胞中特定时间与空间下蛋白质真实的相互作用情况,会造成假阳性及假阴性结果. 而用分离纯化有膜的亚细胞区室或细胞器的方法虽然能获得这些部位的部分蛋白质组,但在分离过程中会丢失大部分弱相互作用或瞬时相互作用蛋白,因而用该手段获得的蛋白质组学信息是不完整[6,7,8]. 而对于膜接触位点及无膜细胞器这类没有完整被膜的特化部位,则很难用上述细胞组分分离的方法进行系统的组学研究. 总之由于通量太小或空间信息的缺失,难以利用显微成像或传统蛋白质组学技术系统研究亚细胞区室中蛋白质组成成分及相互作用. 因此亟待开发新的关键技术来鉴定细胞器及亚细胞区室间互作的蛋白质组.

    为了解决上述难题,研究人员尝试引入了多种邻近标记策略,结合现有的蛋白质组学鉴定技术,在准确绘制亚细胞结构内或亚细胞结构间的蛋白质图谱方面取得了一定的进展. 由于蛋白质相互作用大多通过氢键、盐键和疏水力这三种途径,它们的作用距离都非常短,所以通常认为相互作用的蛋白质必定相互接近. 基于这个假设,如果对目标结构或蛋白质所邻近的蛋白质进行标记,那么所获得的蛋白质组必然包括了与该结构或蛋白质互作的所有蛋白质. 因此,邻近标记技术的基本设计理念是通过引入某种酶类到目的蛋白或特定亚细胞区室中,通过酶催化特定反应,对邻近区域一定距离范围内的蛋白质进行共价标记,然后结合相应的富集纯化方法以及质谱鉴定,最终获得与目的亚细胞结构或蛋白质有关的蛋白质组相互作用网络. 目前已经被成功用于活细胞中细胞器及膜接触位点处的蛋白质组学研究中的有生物素连接酶、辣根过氧化物酶、工程过氧化物酶及其突变体等介导的邻近标记法. 由于使用酶类不同,反应条件、反应过程、需要底物不同,各种方法有各自适用的条件与体系,有各自标记特点. 我们综述了最近报道的一些邻近标记技术,并比较了各种标记策略的适用条件、优势与局限,以期为研究工作中选择、开发合适的蛋白质相互作用研究方法,确定合理技术路线提供参考.

  • 1 依赖生物素酶的邻近标记策略

    基于生物素与(链霉)亲和素的结合具有特异性高、亲和力强(Kd= 10-13~15mol/L)的特点,生物素-亲和素这一生物反应放大系统在生物医学领域有着极为广泛的应用,如蛋白质印迹(Western blot)、酶联免疫吸附实验(ELISA)检测或亲和层析等. 这些技术一般需要先通过化学方法将大分子进行生物素标记,但这些标记都是非特异性的. 在体内,情况则完全不同,蛋白质的生物素化修饰非常少见,需要依靠生物素连接酶(BPL)高度特异性地对与其相互作用的靶蛋白进行标记,如大肠杆菌中的生物素连接酶BirA就仅能标记一个底物生物素羧基载体蛋白(biotin carboxyl carrier protein,BCCP). BPL标记其靶蛋白过程一般包含两个步骤:a. 催化生物素和ATP反应生成活化的生物素biotinoyl-5'-AMP,并将其结合在自身的活性位点上;b. 将活化的生物素共价偶联到与其结合的靶蛋白的赖氨酸ε-氨基上.

    a. Biotin + ATP ⇋ Bio-5'-AMP + PPi

    b. Bio-5'-AMP + apo-Protein → Biotinoyl-

    Protein + AMP

  • 1.1 利用BioID的邻近标记蛋白质组学研究策略(proximity-dependent biotin identification)

    酶促反应的发生需要酶和它的蛋白质底物靠得足够近,根据这一特点,Cronan[9]在2004年时首次提出利用生物素连接酶进行邻近标记的概念. 但用BPL实现邻近标记有一个障碍,即BPL对底物的高度选择性使其仅能标记含有特定序列并与其结合的靶蛋白. 为解决这个问题,Cronan[9]使用了一个生物素连接酶BirA-R118G突变体. 该突变体对其生成的活化生物素(Bio-5'-AMP)的亲和力大大降低(降低2个数量级),从而会将活化生物素释放到其周围的空间中. 后者会非特异性地标记BirA邻近表面带有伯胺的蛋白质. 离BirA超过一定距离后,由于扩散稀释或被快速水解,被释放出来的活化生物素的浓度会降低到能进行有效标记的浓度之下,因此BirA-R118G只能对其邻近的蛋白质实现非特异性的生物素标记. 运用这一策略,Cronan[9]成功地在体外及大肠杆菌中实现了对BirA的靶蛋白BCCP之外的蛋白质进行了邻近标记.

    Roux[10]在2012年将BirA-R118G命名为BioID(35 ku),并用N端带有BioID的一个核纤层蛋白在哺乳动物细胞进行了邻近标记,获得了比较完整的邻近核纤层的蛋白质组,并从中鉴定出了一些以前未知的核纤层蛋白,首次确认了在哺乳动物细胞中用BioID进行邻近标记的可行性. Kim[11]在2014年对结构稳定且大小已知的核孔蛋白复合体进行了BioID介导的邻近标记,并以该蛋白质机器作为分子标尺,推测出BioID的有效标记范围在10 nm左右(图1).

    图1
                            活细胞内基于BioID或TurboID或BASU的邻位蛋白生物素标记

    图1 活细胞内基于BioID或TurboID或BASU的邻位蛋白生物素标记

    Fig. 1 Proximity-dependent biotin identification of proteins by BioID,TurboID or BASU within live cells

    注:将BioID或TurboID同目的蛋白融合在细胞内表达,可使目的蛋白附近大约10 nm(浅橙色圆盘)范围内的蛋白质发生生物素化(红色五角星表示),可发现潜在的蛋白质相互作用或确定亚细胞结构蛋白质组分. 反应需添加底物为生物素,标记时长15~24 h.

    2016年Kim与Roux[12]又制备了一个分子质量更小(27 ku),需要生物素底物更少的改进版本BioID2. BioID2是来源于超嗜热菌(Aquifexaeolicus)生物素连接酶的R40G突变体. BioID2先天缺乏DNA结合域,大约比BioID小 1/3,空间位阻小,有利于融合蛋白的正确定位及与目标蛋白结合. 与BioID相比,BioID2需要更少生物素来催化生物素化标记,使其适用性更广泛(比如在线虫、果蝇、小鼠等模式动物中足量生物素底物的补充需要比较复杂的方法,不能仅仅靠培养基添加). 他们还证明可在酶与目标蛋白间添加不同长短柔性链接来调节标记范围大小,用于标记显著大于BioID的标记半径的目标蛋白复合物,或离散亚细胞区域内的蛋白质组.

    总之,将BioID与目标蛋白融合表达并在培养基中提供充足过量的生物素(比如生物素浓度> 50 μmol/L)后,经过37℃下15~24 h的标记,可以在正常的活细胞生理环境中标记到目标蛋白周围约10 nm范围内潜在的相互作用蛋白,记录这段时间内蛋白质相互作用的历史,或者针对特定亚细胞结构进行蛋白质组成分析,该方法操作简便,无细胞毒性,实现了对特定亚细胞结构处的蛋白质组的鉴定.

    至今,BioID方法在短短6年时间里已发展成为对传统蛋白质组学研究技术重要的补充,应用BioID方法的文章有上百篇,该系统不仅可用于体外培养细胞系,也成功运用到多种模式生物中,如酵[13]、布氏锥[14]、植物细胞原生质[15]、变形[16]、胚胎干细[17]以及裸鼠移植[18]等,通过慢病毒侵染该技术甚至可以用于小鼠大脑[19]. 该系统被用于研究各种生物学过程:蛋白质在核糖体上的翻译及内质网定位过[20],核[11],中心[21],癌症发[18,22,23],细胞间连[24,25,26,27],RNA降[28],调节细胞机制的各种重要的信号通[29,30,31,32,33],泛素代[34,35]以及宿主与HIV病毒或微生物之间的相互作用机[36,37,38]等等.

    BioID介导的邻近标记法也有些固有的缺陷或者需要注意的问题:a. 通过BioID得到的生物素化蛋白质的丰度不能代表蛋白质生物相关性的强弱,即检测到的候选蛋白与靶蛋白的空间距离小并不一定代表它们共同执行某种生物学功能,有时候低丰度的候选蛋白反而可能与靶蛋白在生物学功能上的相关性更强;b. BioID标签本身的尺寸可能会影响目的蛋白,特别是分子质量较小的目的蛋白的正确定位以及功能;c. BioID标记到的蛋白质只是距离目标蛋白比较近,可能与目标蛋白没有相互作用;d. BioID介导的生物素标记耗时15~24 h或更久,记录的是一段蛋白质互作的历史,比如从蛋白质翻译开始直到蛋白质定位到特定亚细胞空间,这期间邻近蛋白质都有可能被标记,因此该方法不能用于短时或瞬时相互作用的蛋白质组研究;e. 生物素可被主动运输进入细胞膜,可以通过自由扩散进入细胞核,却无法进入细胞的分泌通路,无法对这部分亚细胞空间进行标记.

    在进一步提高BioID方法的特异性方面,有几种不同的策略. 2017年Munter[39]开发出一种将蛋白质片段互补技术与邻近标记技术结合起来的方法称为Split-BioID. 该方法将BioID分成两个无功能的片段(BirA*-N和BirA*-C),分别连接到蛋白磷酸酶PP1的调节和催化亚基上,进而在细胞中共表达这两个融合蛋白. 只有当PP1两个亚基形成二聚体时,BirA*-N和BirA*-C才能组合成有功能的BioID,从而可以特异性地标记PP1复合物的相互作用蛋白.由于该方法仅能标记蛋白二聚体附近的蛋白质,因而特异性更强,有效降低了BioID非特异性标记蛋白的频率. Bethune[40]利用该法在针对Ago2蛋白检测了两种不同RNA诱导沉默复合体miRISC (microRNA-induced silencing complex)中的相互作用蛋白,并鉴定出一个新的基因沉默调节因子. 证明Split-BioID方法既可以有效验证蛋白质间两两相互作用,也可以用来发掘新的蛋白质复合物的相互作用分子,还可以获得生理状态下活细胞中蛋白质相互作用在时间及空间上的动态变化. 2018年Stewart[41]则报道了2C-BioID (2 component BioID)的方法,该方法中生物素连接酶与目的蛋白在细胞中最初是分开表达的,通过诱导二聚化才形成生物素连接酶-目的蛋白复合体,从而启动邻近相互作用蛋白质的标记. 在对核纤层结合多肽LAP2β的研究中,他们发现未诱导聚合前样品的蛋白质组学分析可以作为很好的参考,来消除生物素连接酶-目的蛋白复合体形成后的邻近标记的背景. 通过这个方法可以有效排除假阳性,提高实验结果的特异性及可重复性.

  • 1.2 基于TurboID的标记策略

    针对BioID邻位标记法反应动力学比较慢、时间分辨率较低这一问题,Ting[42]在酵母中对BirA-R118S进行定向进化,筛选出了两个可以在10 min内进行生物素标记的突变体:TurboID和miniTurbo. TurboID的优点是标记速度比BioID快、时间分辨率更好、而且在不同的亚细胞结构中的表现比较稳定. miniTurbo的一个优点是其N端缺失了63个氨基酸,因此蛋白质较BioID和TurboID (35 ku)稍微小一些(28 ku),对于目标蛋白定位的影响更小;另一个优点是在没有外源生物素时的本底标记水平比TurboID低.总之,TurboID和miniTurbo共有的优点是标记速度显著的比BioID和BioID2快,因而可以被用于果蝇及线虫等整体水平上的邻近标记. 它们的缺点是,如果标记时间过长,则标记的特异性会有所下[42]图1).

  • 1.3 基于BASU的标记策略

    Khavari[43]在研究RNA与蛋白质互作的工作中,寻找到一个新的突变BirA*,命名为BASU. BASU酶来源于枯草芽孢杆菌,缺失DNA结合亚基,在生物素5'-AMP结合区域及C端进行了一系列突变后,比标准大肠杆菌BirA *在酶促动力学上快了1 000倍,1 min标记得到的信噪比比大肠杆菌BirA *18 h标记的信噪比增强了30倍,并通过这个体系实现了对活细胞内直接与RNA相互作用的蛋白质组学鉴定.因为该技术标记时间最快可以缩短到1 min,所以它有描绘参与某生理过程的蛋白质组动态变化信息的潜力.

  • 1.4 利用生物素连接酶检测蛋白质两两相互作用

    除用BirA的突变体进行邻近标记的蛋白质组学研究外,也有将BirA用于蛋白质两两相互作用(protein-protein interactions,PPI)的鉴定研究. 为了检测活细胞中潜在的PPIs,Ting[44]将BirA与诱饵蛋白融合表达,将生物素受体短肽(BAP)连接到猎物蛋白上,将二者在同一载体里共表达. 如果两种融合蛋白中BAP和BirA区域通过诱饵和猎物蛋白的相互作用而聚集得够近,BirA即可对靶蛋白上BAP标签进行生物素标记. 之后通过固定细胞进行链霉亲和素染色,或对细胞裂解产物进行链霉亲和素印迹检测,可以确定两个蛋白质的相互作用关系(图2). 但由于BAP对BirA的亲和力太高,可能会直接介导两个本来没有互作的融合蛋白互相靠近,产生假阳性结果. 为此,研究者通过删除BAP的C端3个氨基酸,获得了与BirA亲和力适中的版本AP(-3),并用它实现了特异性的蛋白质两两相互作用的鉴[44]. 前述Split-BioID方法则多用于鉴定靶蛋白是否可以二聚化.

    图2
                            活细胞内基于BirA-AP的相互作用蛋白质鉴定

    图2 活细胞内基于BirA-AP的相互作用蛋白质鉴定

    Fig. 2 Proximity dependent biotinylation through BirA/AP interaction to detect PPI of protein pairs

    注:生物素连接酶BirA与诱饵蛋白融合,生物素受体肽(acceptor peptide,AP)与猎物蛋白融合. 两种融合蛋白在细胞中同时表达,AP-猎物蛋白的生物素化(红色五角星表示)表明与BirA-诱饵蛋白在空间上非常接近,提示诱饵蛋白和猎物蛋白之间可能发生了相互作用. 这种方法可以在同一个细胞内使用,也可检测两个不同的细胞之间蛋白质相互作用.

    因为哺乳动物细胞中不存在内源的BirA靶蛋白,而且正常细胞中生物素化蛋白质的水平很低,所以这种蛋白质相互作用检测方法比荧光互补实验(split-GFP)简单易行,具有灵敏度高、背景低、空间分辨好的优点. 因而利用BirA进行两两蛋白质相互作用研究已成功应用于多个研究领域,如研究E3泛素连接酶作用底物、疱疹病毒糖蛋白的相互作[45]、体内特异性人类免疫缺陷病毒1(HIV-1)蛋[46]、GPCR同聚体和异二聚体多重检[47].同Chip技术联合形成的PUB-NChIP技[48],通过标记目的核蛋白来研究DNA-蛋白质相互作用. Ting的实验室还建立了BLINC方[49],利用BirA标记,显微镜下观察2个活细胞之间神经元表面受体神经连接蛋白和轴突蛋白的相互作用.

    该方法需要注意的问题是,当猎物蛋白表面没有裸露的赖氨酸时,会产生假阴性结果. 由于BirA本身有35 ku,尺寸较大,造成融合蛋白的空间位阻变大,是否能成功标记邻近蛋白还受蛋白质结构、取向、大小的影响. 另外,即使标记结果阳性,也只是证明了蛋白质之间距离很近,不能证明两者真的发生了相互作用,因而还需要结合其他方法验证.

  • 2 依赖过氧化物酶的邻近标记策略

    使用生物素连接酶的标记系统存在反应时间过长,无法获得某个较短时间内的相互作用关系,并且无法标记膜受限区域等问题,因此过氧化物酶被尝试用于活细胞中蛋白质的邻近标记.

  • 2.1 辣根过氧化物酶(HRP)介导的细胞表面邻位标记

    最早被用于邻近蛋白质标记的是辣根过氧化物酶(horseradish peroxidase,HRP). 基于HRP的方法主要有两种,一种为酶介导的自由基激活(enzyme mediated activation of radical source,EMARS),是利用生物素或荧光素等的芳基叠氮化合物为底物,在辣根过氧化物酶和双氧水存在情况下,产生含氮自由基团,攻击活性氢位点或相邻分子的亲核基团(比如酪氨酸、色氨酸侧链)从而实现蛋白质的生物素或荧光素的标记. HRP可通过偶联抗目的蛋白抗体或与目的蛋白形成融合蛋白来实现与目的蛋白相连,由于形成的自由基团活性时间很短,移动距离有限,只有距离目的蛋白200~ 300 nm范围内的蛋白质分子会被标记上(图3). 2008年Kotani[50]在HeLa S3细胞中使用抗β1整合素抗体TS2/16作为探针,进行EMARS反应,检测到许多生物素化条带,说明许多分子在生理条件下与β1整合素共簇. 目前,EMARS主要应用于脂筏和膜结合蛋白研究,如整合素和糖基磷脂酰肌醇(GPI)、锚定蛋白如DAF和Thy-1、神经节苷脂GM1的分子簇等的研[51,52,53].

    图3
                            依赖于HRP在细胞表面发生的邻位蛋白生物素标记

    图3 依赖于HRP在细胞表面发生的邻位蛋白生物素标记

    Fig. 3 Proximity-dependent labeling by HRP on cell surface

    注:辣根过氧化物酶在细胞内活性很低,但当它作为(a)融合蛋白在细胞表面表达,或通过(b)抗体融合靶向细胞表面蛋白时,可以用来标记邻近的蛋白质. 与生物素或荧光素偶联的活性分子与芳酰亚胺或酪胺反应,生成一种生物素或荧光素衍生物活性分子,在HRP及H2O2作用下该分子可对300 nm内的邻近蛋白进行共价标记.

    EMARS方法操作简单,但缺陷是荧光素或生物素的衍生化合物难以合成,且其对细胞具有一定的毒性. 生物素-芳基叠氮化合物能穿透质膜,易在细胞浆中产生背景,荧光素化合物没有这个问题. 除此以外,邻近标记范围为200~300 nm,相对来说较大,可能会造成一定的假阳性结果.

    另一种基于HRP的方法称为利用酪胺的邻近蛋白质组选 择性标记(selective proteomic proximity labeling assay using tyramide,SPPLAT),即利用酪胺选择性的标记邻近蛋白质组的方法. 将过氧化物酶与目的蛋白连接,在双氧水作用下,生物素-酪胺衍生物(或称生物素苯酚衍生物)被活化,活化的生物素定向连接到邻近靶蛋白10~ 200 nm范围内的蛋白质上(图3). 由于生物素-酪胺衍生物有一个可剪切的链接(cleavable linker),可以促进酶接近目的蛋白,并可降低复合物的膜通透性.

    目前SPPLAT已经被成功用于b淋巴瘤细胞系质膜上活化B细胞受体的共组装分子的检测,Li[54]使用该方法检测到B-cell receptor(BCR)簇的已知成分,包括整合素以及以前认为与BCR无关的蛋白质. 特别是鉴别到与鸡的B淋巴细胞同种异型标记物ChB6. 他们发现,在BCR交联后,ChB6可以移动到BCR的30~40 nm范围内,表明交联ChB6可以激活细胞与整合素底物层黏连蛋白和明胶的结合.

    由于HRP的4个结构性二硫键在还原性环境中无法形成,因此它在大多数细胞的胞浆内活性很低,但是在氧化性的细胞分泌通路及细胞膜表面都有很好的活性. 因此HRP介导的邻近标记法仅限于膜上蛋白质互作的研究,特别适用于分析致密但定位分布于膜上的蛋白簇,如Ting[55]用它来进行突触间隙蛋白质学研究.

  • 2.2 工程抗坏血酸过氧化物酶介导的邻位标记策略

    工程化抗坏血酸过氧化物酶(APEX)是由源自植物的抗坏血酸酶经工程改造而来,约27 ku,最初被用于对细胞结构超分辨电镜成[56]. 2013年Ting[57]研究证明,抗坏血酸过氧化物酶与HRP不同,在活细胞内所有区域有活性,并可以利用生物素苯酚催化生成活性强、半衰期短、膜不通透的活性分子, 因此可以实现对特定亚细胞区域内或间隙中蛋白质组的标记. 将细胞与生物素-苯酚共同孵育30 min后,添加H2O2可以激活酶促反应,生成生物素-苯氧自由基,这些自由基与富含电子的特定氨基酸(如Tyr、Trp、Cys和His)反应,使生物素被共价连接到蛋白质上,接着标记反应需要添加抑制剂来终止. 由于苯氧基的半衰期很短(<1 ms),又不能透过生物膜,使其活性范围限制在20 nm以内,因此只有距离目标蛋白(protein of interest,POI)20 nm以内的蛋白质会被标记(图4). 上述标记反应速度很快,1 min内即可完成所需的标记.

    图4
                            活细胞内基于工程抗坏血酸过氧化物酶的亚细胞结构间隙的蛋白质组学鉴定

    图4 活细胞内基于工程抗坏血酸过氧化物酶的亚细胞结构间隙的蛋白质组学鉴定

    Fig. 4 Proteomic mapping based on proximity dependent labeling by APEX in live cells

    注:将APEX融合到可特异定位到亚细胞结构的基序(target motif)上或目标蛋白上,可标记20 nm范围内的邻近蛋白,从而获得亚细胞区室或目标蛋白相关的蛋白质组及互作信息. 红色五角星表示生物素-苯酚活性分子. 反应需添加底物为生物素苯酚及双氧水,标记时长可小于1 min.

    Ting[57]利用APEX融合线粒体基质-定位序列,绘制了哺乳动物细胞线粒体基质蛋白质组,识别了近500种蛋白质,其中包括30多种以前并未被看作与线粒体有关的新的候选成分. 他们还发现线粒体基质蛋白质组与膜间隙(intermembrane space,IMS)蛋白质组存在明显差别,之前认为在IMS或外膜中存在的几种蛋白质,包括原卟啉原氧化酶,被重新定位到基质中,并被电镜实验证实. Mick[58]将APEX与NPHP3(一种已被证实的纤毛蛋白)融合,鉴定出的622种候选纤毛相关蛋白中,除了许多已有文献记载的蛋白质,也鉴定出一些新的初级纤毛相关蛋白. Chen[59]利用APEX标记技术在活果蝇组织中建立了蛋白质组学鉴定平台,结合质谱分析的方法,鉴定了神经元中的α突触蛋白的225种邻近蛋白,包括突触蛋白、内吞泡转运蛋白、缩聚体复合物蛋白、磷酸酶蛋白和mRNA结合蛋白[60].

    2015年Ting[61]用定向进化技术对APEX进行了改进,得到APEX2. APEX2有一个额外的突变(A134P),催化与APEX相同的化学反应. 为比较这两种酶的差异,研究人员使用慢病毒转导技术将APEX2靶向转入线粒体外膜(OMM)或ER膜(ERM)并维持低表达水平,通过细胞成像观察到较强的生物素化的活力,与此相反APEX表达的细胞内则未见生物素化. 进一步的实验中APEX2表现出比APEX更强的富集邻近内源性蛋白质的能力. 此外,以线粒体外膜(OMM)为靶点的APEX2可以更好地富集内源性线粒体外膜(OMM)蛋白Tom70和Tom20,APEX则几乎没有富集到内源性Tom70和Tom20. 他们提出APEX2和APEX对H2O2诱导标记的不同敏感性可能是APEX2更灵敏的主要原因.

    由于活性不受细胞内空间限制,APEX2的应用极为广泛. Jing[62,63]首次将其运用到膜接触位点处的蛋白质组学解析,利用带有APEX2标签的内质网钙感受器蛋白STIM1,从中鉴定出了STIM1激活增强子TMEM110(STIMATE[62,63]. 由于标记时间可以缩短到1 min,该研究还鉴定出了STIM1静息及激活状态下的相互作用蛋白质组,从而提供了活细胞中SOCE产生过程中的STIM1互作蛋白质组的动态变化信息.

    APEX2介导的邻近标记技术还被用于鉴定线粒体基质及线粒体膜间隙中相关蛋白质相互作[64,65],识别活细胞表面成纤维细胞生长因子1FGF1新的结合位[66],研究哺乳动物细胞中核糖体相关质量控制复合物(RQC)蛋白相互作用的系统特[67],生物化标记还可以在分枝杆菌和大肠杆菌中进行,因此可以用于细菌周质研[68],以及作为酵母蛋白质组学的大规模研究基[69].

    为了提高APEX2标记特异性,2017年Xu[70]将APEX2方法与蛋白质片段互补技术结合,将APEX2分成两个无活性的片段(NA201/CA202),分别连接在FRB及FKBP12上. 之后在HEK细胞中共表达两个融合蛋白,用雷帕霉素诱导FRB与FKBP12的二聚化后,NA201与CA202互补形成有功能的APEX2,进而实现了对FRB-FKBP12二聚体互作蛋白质组的鉴定. 与APEX2完整蛋白相比,这种片段互补的方法展现出更好的局域特异性标记,能显著降低非特异性标记背景. 类似的,Ting[71]也利用酵母展示定向进化技术改进了APEX2片段互补技术,获得了两个无活性片段:一个含APEX2 N端200个氨基酸的片段(其中9个位点突变)称为“AP”;一个含50个氨基酸的C端片段称为“EX”. AP和EX片段独自没有活性,但在分子相互作用的驱动下接近并重组,从而恢复过氧化物酶活性. Ting等将AP-EX体系命名为sAPEX,并证明该方法可成功用于哺乳动物细胞质、核酸相互作用、线粒体-内质网的膜接触位点等体系中.

  • 3 几种酶介导的标记方法的比较

    生物素连接酶体系添加生物素即可启动标记反应,对活细胞无毒性,因此有非常广泛的应用. 尽管优化后的生物素连接酶如TurboID标记时间可以缩短到10 min,或BASU的标记时间可以缩短到 1 min,但生物素连接酶通常需要1 h到1天来达到最强的标记信号. 因此不适合用于时间分辨率要求高的蛋白质组学研究,但可以获得目标蛋白一段时期内相互作用蛋白质的总体情况,更适合于研究稳态期间的相互作用.

    过氧化物酶体系可以在几分钟内标记大量的蛋白质,反应时间通常1 min即可,因此APEX和HRP更适合于时间分辨率至关重要的实验,可以得到某个时间点的瞬时蛋白质组信息. 但反应需要添加生物素-酪胺及双氧水,对活细胞有一定的毒性.

    过氧化物酶产生的生物素苯氧自由基比生物素连接酶产生的生物素-5'AMP的生命期短,因此可能标记范围更小. 此外生物素苯氧自由基有膜不通透性,产生背景会低一些,并很适合用于细胞器、内质网及膜接触位点等比较小的亚细胞区室.

    标记蛋白被修饰的氨基酸也因酶而异. 生物素连接酶类修饰底物是蛋白质中裸露的赖氨酸残基,而APEX和HRP修饰的是蛋白质中富含电子的氨基酸残基,并且倾向于修饰酪氨酸,因此目标蛋白的可达性存在差异,一种方法检测到的蛋白质不一定会被另一种方法检测到.

    此外,各种酶的来源不同,适用的体系也会有差异. 酶的大小会对融合蛋白的定位产生影响,在蛋白质相互作用过程中产生的空间位组也不同,所以酶越小,影响越小. 各种酶的相关性能参数比较见表1.

    表1 几种常见的邻位标记方法比较

    Table 1 Comparison of the different proximity labeling methods

    BioID(BirA突变体)

    TurboID

    (BirA突变体)

    HRPAPEX
    类型生物素连接酶生物素连接酶过氧化物酶过氧化物酶
    来源E. coliE. coliArmoracia rusticanaPea(synthetic)

    标记靶点

    赖氨酸

    赖氨酸

    富含电子的氨基酸如Tyr、Trp、Cys、His富含电子的氨基酸如Tyr、Trp、Cys、His
    大小/ku35354428
    标记时间15~24 h10 min~18 h5~10 min1 min或更短
    H2O2激活需要需要
    标记底物生物素生物素生物素苯酚生物素苯酚
    作用区域细胞内细胞内细胞膜外细胞内
    生成自由基的半衰期MinsMins<1 ms<1 ms
    可变异构体BioID2(27 ku)miniTurbo(28 ku)Split HRPAPEX2

    应用

    盘状网柄菌、brucei锥虫、刚地弓形虫、

    小鼠异种移植瘤、哺乳动物细胞、

    黑腹果蝇、哺乳

    动物细胞

    哺乳动物细胞

    裂殖酵母、酿酒酵母、黑腹果蝇、哺乳动物细胞

    综上,在进行邻位标记实验时需要根据自己的研究对象选择合适的体系. 有时也可以用不同标记策略平行进行作为参考.

  • 4 前景与展望

    邻近标记策略具有很高的特异性和空间分辨率. 这是通过两个策略实现的:一是酶的特异性定位,即将酶类与目标蛋白或定位于特定空间的序列进行融合表达,然后通过目标蛋白、目标序列的特异性定位或者抗原抗体特异性结合等方式实现酶在特定细胞器或亚细胞区室的靶向定位. 二是通过酶反应进行的标记范围小(可小至10~20 nm). 这两个特点使得在特定部位鉴定某特定蛋白质的相互作用蛋白质组成为可能. 已有的研究表明,酶类与LaA/LaB融合表达可定位于核膜,与Y-complex/Nup53融合表达定位于核孔复合物,与CEP120融合表达定位于中心体,与STIM1融合表达定位于ER-PM接触位点,与特定定位序列如LACTB融合表达分别定位于线粒体基质、外膜、内膜,与LRRTM1/2等蛋白融合表达定位于神经突触间隙等等. 因此,基于酶类的邻近标记策略具有很强的灵活性,只要找到合适的目标蛋白或序列,即可特异性地对某个细胞器或亚细胞区室邻近区域内的蛋白质进行共价标记. 并且这种标记方法可在活细胞中进行,不需要破坏细胞基本结构,通过添加合适的底物,就可以启动酶促反应. 结合高灵敏度的链霉亲和素磁珠富集和质谱分析,能高通量检测到暂时的和微弱的蛋白质相互作用. 该方法已成为传统蛋白质组学研究技术,比如酵母双杂交(Y2H)、亲和纯化、免疫共沉淀Co-IP、荧光互补技术、荧光共振能量转移技术的有力的补充,短短6年里就在生命科学研究领域中得到广泛的发展和应用.

    在活细胞动态研究方面,Split-BioID及APEX2体系都已经被用来检测活细胞中蛋白质组及其相互作用的动态变化. 在此基础上Lobingier[72]利用APEX2快速标记的特点,结合定量蛋白质组学及细胞内空间参考体系,可以对活细胞内动态过程进行研究,得到的信息同时具有更好的时间与空间分辨率. 他们对G蛋白偶联受体介导的信号传导过程进行了研究,成功发现新的蛋白质组分,并确认它们参与泛素连接受体的下调.

    当前的一个前沿热点是针对目前邻近标记技术常用酶类的局限性进行改进,比如提高BioID反应动力学速度缩短标记时间(TurboID、BASU),结合一些新的标记策略,以提高反应特异性、降低现有标记方法背景,或者拓展新的亚细胞区室的应用(如Split-BioID、split-APEX2、2C-BioID). 近两年也出现了一些新的标记策略比如PUP-IT(pupylation-based interaction tagging). 该技术是由Zhuang和Wang[73]开发的一种不同于BioID和APEX的新型邻近标记技术. 利用细菌中的Pup连接酶PafA,将邻近蛋白标记上小分子蛋白Pup(64AA),Pup的N端可以与生物素化BCCP结合,因此标记的相互作用蛋白可以被链霉亲和素纯化. 他们将PUP-IT系统应用到T细胞表面受体CD28的研究中,鉴定到了多个已知与CD28相互作用的蛋白质,并且发现了大量潜在的未报道的CD28相互作用蛋白. PafA的底物分子不容易从酶上脱落,从而降低了标记的背景噪声,另外由于PUP-IT的标记物是小分子蛋白,因此更容易被应用到组织或动物上. 这些新开发的技术还需被进一步探究其潜在的应用.

    总之,无论是哪个方向或层面上的改进,都会赋予邻近蛋白标记技术更广阔的应用前景与生物学意义. 作为传统蛋白质组学研究策略的重要的补充手段,邻近蛋白标记技术可以提供更详尽的细胞器或膜接触位点等处的蛋白质组学及相互作用网络信息,是研究细胞器相互作用的有力工具.

    Tel:86-10-58809729, E-mail:zhxy@bnu.edu.cn

  • 参考文献

    • 1

      Elbaz Y, Schuldiner M. Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci, 2011, 36(11): 616-623

    • 2

      Shin Y, Brangwynne C P. Liquid phase condensation in cell physiology and disease. Science, 2017, 357(6357)pii:eaaf4382

    • 3

      Banani S F, Lee H O, Hyman A A, et al. Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017, 18(5): 285-298

    • 4

      Wu H, Carvalho P, Voeltz G K. Here, there, and everywhere: The importance of ER membrane contact sites. Science, 2018, 361(6401)pii:eaan5835

    • 5

      Saheki Y, De Camilli P. Endoplasmic reticulum-plasma membrane contact sites. Annual Review of Biochemistry, 2017, 86: 659-684

    • 6

      Yates J R, 3rd, Gilchrist A, Howell K E, et al. Proteomics of organelles and large cellular structures. Nature Reviews Molecular Cell Biology, 2005, 6(9): 702-714

    • 7

      Nooren I M, Thornton J M. Diversity of protein-protein interactions. The EMBO Journal, 2003, 22(14): 3486-3492

    • 8

      Gingras A C, Raught B. Beyond hairballs: The use of quantitative mass spectrometry data to understand protein-protein interactions. FEBS Letters, 2012, 586(17): 2723-2731

    • 9

      Choi-Rhee E, Schulman H, Cronan J E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Science, 2004, 13(11): 3043-3050

    • 10

      Roux K J, Kim D I, Raida M, et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of Cell Biology, 2012, 196(6): 801-810

    • 11

      Kim D I, Birendra K C, Zhu W, et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci USA, 2014, 111(24): E2453-2461

    • 12

      Kim D I, Jensen S C, Noble K A, et al. An improved smaller biotin ligase for BioID proximity labeling. Molecular Biology of the Cell, 2016, 27(8): 1188-1196

    • 13

      Opitz N, Schmitt K, Hofer-Pretz V, et al. Capturing the Asc1p/receptor for activated C kinase 1 (RACK1) microenvironment at the head region of the 40S ribosome with quantitative BioID in yeast. Molecular & Cellular Proteomics : MCP, 2017, 16(12): 2199-2218

    • 14

      Morriswood B, Havlicek K, Demmel L, et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryotic Cell, 2013, 12(2): 356-367

    • 15

      Lin Q, Zhou Z, Luo W, et al. Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. Frontiers in Plant Science, 2017, 8: 749

    • 16

      Batsios P, Meyer I, Graf R. Proximity-dependent biotin identification (BioID) in dictyostelium Amoebae. Methods in Enzymology, 2016, 569: 23-42

    • 17

      Gu B, Lambert J P, Cockburn K, et al. AIRE is a critical spindle-associated protein in embryonic stem cells. eLife, 2017, 6: pii: e28131

    • 18

      Dingar D, Kalkat M, Chan P K, et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. Journal of Proteomics, 2015, 118: 95-111

    • 19

      Uezu A, Kanak D J, Bradshaw T W, et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science, 2016, 353(6304): 1123-1129

    • 20

      Jan C H, Williams C C, Weissman J S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science, 2014, 346(6210): 1257521

    • 21

      Comartin D, Gupta G D, Fussner E, et al. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Current Biology : CB, 2013, 23(14): 1360-1366

    • 22

      Cole A, Wang Z, Coyaud E, et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell, 2015, 27(6): 864-876

    • 23

      Elzi D J, Song M, Hakala K, et al. Proteomic analysis of the EWS-Fli-1 interactome reveals the role of the lysosome in EWS-Fli-1 turnover. Journal of Proteome Research, 2014, 13(8): 3783-3791

    • 24

      Guo Z, Neilson L J, Zhong H, et al. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Science Signaling, 2014, 7(354)rs7

    • 25

      Steed E, Elbediwy A, Vacca B, et al. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. The Journal of Cell Biology, 2014, 204(5): 821-838

    • 26

      Ueda S, Blee A M, Macway K G, et al. Force dependent biotinylation of myosin IIA by alpha-catenin tagged with a promiscuous biotin ligase. Plos One, 2015, 10(3): e0122886

    • 27

      Van Itallie C M, Aponte A, Tietgens A J, et al. The N and C termini of ZO-1 are surrounded by distinct proteins and functional protein networks. The Journal of Biological Chemistry, 2013, 288(19): 13775-13788

    • 28

      Nishimura T, Padamsi Z, Fakim H, et al. The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5' and 3' termini of target mRNAs. Cell Reports, 2015, 11(9): 1425-1436

    • 29

      Cheng Y S, Seibert O, Kloting N, et al. PPP2R5C couples hepatic glucose and lipid homeostasis. Plos Genetics, 2015, 11(10): e1005561

    • 30

      Couzens A L, Knight J D, Kean M J, et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Science Signaling, 2013, 6(302)rs15

    • 31

      Rodriguez-Fraticelli A E, Bagwell J, Bosch-Fortea M, et al. Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nature Cell Biology, 2015, 17(3): 241-250

    • 32

      Schumacher M M, Elsabrouty R, Seemann J, et al. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase. eLife, 2015, 4(DOI: 10.7554/eLife.05560)

    • 33

      Zhou Z, Rawnsley D R, Goddard L M, et al. The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell, 2015, 32(2): 168-180

    • 34

      Coyaud E, Mis M, Laurent E M, et al. BioID-based identification of Skp cullin F-box (SCF)beta-TrCP1/2 E3 ligase substrates. Molecular & Cellular Proteomics, 2015, 14(7): 1781-1795

    • 35

      Yeh C, Coyaud E, Bashkurov M, et al. The deubiquitinase USP37 regulates chromosome cohesion and mitotic progression. Current Biology, 2015, 25(17): 2290-2299

    • 36

      Kueck T, Foster T L, Weinelt J, et al. Serine phosphorylation of HIV-1 Vpu and its binding to tetherin regulates interaction with clathrin adaptors. Plos pathogens, 2015, 11(8): e1005141

    • 37

      Le Sage V, Cinti A, Valiente-Echeverria F, et al. Proteomic analysis of HIV-1 Gag interacting partners using proximity-dependent biotinylation. Virology Journal, 2015, 12: 138

    • 38

      Ritchie C, Cylinder I, Platt E J, et al. Analysis of HIV-1 Gag protein interactions via biotin ligase tagging. Journal of Virology, 2015, 89(7): 3988-4001

    • 39

      De Munter S, Gornemann J, Derua R, et al. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Letters, 2017, 591(2): 415-424

    • 40

      Schopp I M, Amaya Ramirez C C, Debeljak J, et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nature Communications, 2017, 8: 15690

    • 41

      Chojnowski A, Sobota R M, Ong P F, et al. 2C-BioID: An advanced two component BioID system for precision mapping of protein interactomes. iScience, 2018, 10: 40-52

    • 42

      Branon T C, Bosch J A, Sanchez A D, et al. Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 2018, 36(9): 880-887

    • 43

      Ramanathan M, Majzoub K, Rao D S, et al. RNA-protein interaction detection in living cells. Nature Methods, 2018, 15(3): 207-212

    • 44

      Fernandez-Suarez M, Chen T S, Ting A Y. Protein-protein interaction detection in vitro and in cells by proximity biotinylation. Journal of the American Chemical Society, 2008, 130(29): 9251-9253

    • 45

      Lajko M, Haddad A F, Robinson C A, et al. Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: Limitations for integral membrane glycoproteins. Journal of Virological Methods, 2015, 221: 81-89

    • 46

      Belshan M, Schweitzer C J, Donnellan M R, et al. In vivo biotinylation and capture of HIV-1 matrix and integrase proteins. Journal of Virological Methods, 2009, 159(2): 178-184

    • 47

      Steel E, Murray V L, Liu A P. Multiplex detection of homo- and heterodimerization of g protein-coupled receptors by proximity biotinylation. Plos One, 2014, 9(4): e93646

    • 48

      Shoaib M, Kulyyassov A, Robin C, et al. PUB-NChIP--"in vivo biotinylation" approach to study chromatin in proximity to a protein of interest. Genome Research, 2013, 23(2): 331-340

    • 49

      Thyagarajan A, Ting A Y. Imaging activity-dependent regulation of neurexin-neuroligin interactions using trans-synaptic enzymatic biotinylation. Cell, 2010, 143(3): 456-469

    • 50

      Kotani N, Gu J, Isaji T, et al. Biochemical visualization of cell surface molecular clustering in living cells. Proc Natl Acad Sci USA, 2008, 105(21): 7405-7409

    • 51

      Honke K, Kotani N. Identification of cell-surface molecular interactions under living conditions by using the enzyme-mediated activation of radical sources (EMARS) method. Sensors, 2012, 12(12): 16037-16045

    • 52

      Miyagawa-Yamaguchi A, Kotani N, Honke K. Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. Plos One, 2014, 9(3): e93054

    • 53

      Yamashita R, Kotani N, Ishiura Y, et al. Spatiotemporally-regulated interaction between beta1 integrin and ErbB4 that is involved in fibronectin-dependent cell migration. Journal of Biochemistry, 2011, 149(3): 347-355

    • 54

      Li X W, Rees J S, Xue P, et al. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. The Journal of Biological Chemistry, 2014, 289(21): 14434-14447

    • 55

      Loh K H, Stawski P S, Draycott A S, et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell, 2016, 166(5): 1295-1307.e1221

    • 56

      Martell J D, Deerinck T J, Sancak Y, et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nature Biotechnology, 2012, 30(11): 1143-1148

    • 57

      Rhee H W, Zou P, Udeshi N D, et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 2013, 339(6125): 1328-1331

    • 58

      Mick D U, Rodrigues R B, Leib R D, et al. Proteomics of primary cilia by proximity labeling. Developmental Cell, 2015, 35(4): 497-512

    • 59

      Chen C L, Hu Y, Udeshi N D, et al. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc Natl Acad Sci USA, 2015, 112(39): 12093-12098

    • 60

      Chung C Y, Khurana V, Yi S, et al. In situ peroxidase labeling and mass-spectrometry connects alpha-synuclein directly to endocytic trafficking and mRNA metabolism in neurons. Cell Systems, 2017, 4(2): 242-250.e244

    • 61

      Lam S S, Martell J D, Kamer K J, et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature Methods, 2015, 12(1): 51-54

    • 62

      张舒策, 何涟, 周育斌, 等. 内质网-细胞质膜连接区蛋白质组鉴定及对其中的STIMATE的功能研究. 中国细胞生物学学报, 2016, 38(5): 461-466

      Zhang S C, He L, Zhou Y B, et al. Chin J Cell Biol, 2016, 38(5): 461-466

    • 63

      Jing J, He L, Sun A, et al. Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca(2)(+) influx. Nature Cell Biology, 2015, 17(10): 1339-1347

    • 64

      Hung V, Udeshi N D, Lam S S, et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nature Protocols, 2016, 11(3): 456-475

    • 65

      Rathore A, Chu Q, Tan D, et al. MIEF1 microprotein regulates mitochondrial translation. Biochemistry, 2018, 57(38): 5564-5575

    • 66

      Zhen Y, Haugsten E M, Singh S K, et al. Proximity labeling by a recombinant APEX2-FGF1 fusion protein reveals interaction of FGF1 with the proteoglycans CD44 and CSPG4. Biochemistry, 2018, 57(26): 3807-3816

    • 67

      Zuzow N, Ghosh A, Leonard M, et al. Mapping the mammalian ribosome quality control complex interactome using proximity labeling approaches. Molecular Biology of the Cell, 2018, 29(10): 1258-1269

    • 68

      Ganapathy U S, Bai L, Wei L, et al. Compartment-specific labeling of bacterial periplasmic proteins by peroxidase-mediated biotinylation. ACS Infectious Diseases, 2018, 4(6): 918-925

    • 69

      Hwang J, Espenshade P J. Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2. The Biochemical Journal, 2016, 473(16): 2463-2469

    • 70

      Xue M, Hou J, Wang L, et al. Optimizing the fragment complementation of APEX2 for detection of specific protein-protein interactions in live cells. Sci Rep, 2017, 7(1): 12039

    • 71

      Han Y, Branon T C, Martell J D, et al. Directed Evolution of Split APEX2 Peroxidase. ACS Chem Biol, 2019, 14(4): 619-635

    • 72

      Lobingier B T, Huttenhain R, Eichel K, et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell, 2017, 169(2): 350-360.e312

    • 73

      Liu Q, Zheng J, Sun W, et al. A proximity-tagging system to identify membrane protein-protein interactions. Nature Methods, 2018, 15(9): 715-722

杜阳春

机 构:

1). 北京师范大学生命科学学院细胞所,细胞增殖及调控生物学教育部重点实验室,北京 100875

2). 北京师范大学生命科学学院遗传与发育生物所,抗性基因资源与分子发育北京市重点实验室,北京 100875

Affiliation:

1). Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, Chin

2). Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, Chin

唐菁兰

机 构:清华大学附属中学国际部,北京 100084);缩略表: BAT, biotin acceptor tag(生物素受体标签);BAP,biotin acceptor peptide(生物素受体肽);BPL,biotin protein ligase(生物素连接酶);BioID,Proximity-dependent biotin identification(邻位依赖的生物素鉴定);APEX,engineered ascorbate peroxidase(工程抗坏血酸过氧化物酶);HRP,horseradish peroxidase(辣根过氧化物酶);FRET,Förster(fluorescence)resonance energy transfer(福斯特(荧光)共振能量转移);PPIs,protein-protein interactions(蛋白质与蛋白质相互作用);BLINC,biotin labeling of intercellular contacts(细胞间接触位点的生物素标记);PUB-NChIP,proximity utilizing biotinylation with native ChIP(生物素邻近标记偶联非变性染色质免疫共沉淀)

Affiliation:Tsinghua International School, Campus of Tsinghua High School, Beijing 100084, China

王友军

机 构:

1). 北京师范大学生命科学学院细胞所,细胞增殖及调控生物学教育部重点实验室,北京 100875

2). 北京师范大学生命科学学院遗传与发育生物所,抗性基因资源与分子发育北京市重点实验室,北京 100875

Affiliation:

1). Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, Chin

2). Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, Chin

张晓嫣

机 构:北京师范大学生命科学学院细胞所,细胞增殖及调控生物学教育部重点实验室,北京 100875

Affiliation:Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, Chin

角 色:通讯作者

Role:Corresponding author

作者简介:

Profile:

html/pibbcn/20190069/alternativeImage/5e4b8bb1-084c-4243-b964-e6a481d7e50d-F001.png
html/pibbcn/20190069/alternativeImage/5e4b8bb1-084c-4243-b964-e6a481d7e50d-F002.png
html/pibbcn/20190069/alternativeImage/5e4b8bb1-084c-4243-b964-e6a481d7e50d-F003.png
html/pibbcn/20190069/alternativeImage/5e4b8bb1-084c-4243-b964-e6a481d7e50d-F004.png
BioID(BirA突变体)

TurboID

(BirA突变体)

HRPAPEX
类型生物素连接酶生物素连接酶过氧化物酶过氧化物酶
来源E. coliE. coliArmoracia rusticanaPea(synthetic)

标记靶点

赖氨酸

赖氨酸

富含电子的氨基酸如Tyr、Trp、Cys、His富含电子的氨基酸如Tyr、Trp、Cys、His
大小/ku35354428
标记时间15~24 h10 min~18 h5~10 min1 min或更短
H2O2激活需要需要
标记底物生物素生物素生物素苯酚生物素苯酚
作用区域细胞内细胞内细胞膜外细胞内
生成自由基的半衰期MinsMins<1 ms<1 ms
可变异构体BioID2(27 ku)miniTurbo(28 ku)Split HRPAPEX2

应用

盘状网柄菌、brucei锥虫、刚地弓形虫、

小鼠异种移植瘤、哺乳动物细胞、

黑腹果蝇、哺乳

动物细胞

哺乳动物细胞

裂殖酵母、酿酒酵母、黑腹果蝇、哺乳动物细胞

图1 活细胞内基于BioID或TurboID或BASU的邻位蛋白生物素标记

Fig. 1 Proximity-dependent biotin identification of proteins by BioID,TurboID or BASU within live cells

图2 活细胞内基于BirA-AP的相互作用蛋白质鉴定

Fig. 2 Proximity dependent biotinylation through BirA/AP interaction to detect PPI of protein pairs

图3 依赖于HRP在细胞表面发生的邻位蛋白生物素标记

Fig. 3 Proximity-dependent labeling by HRP on cell surface

图4 活细胞内基于工程抗坏血酸过氧化物酶的亚细胞结构间隙的蛋白质组学鉴定

Fig. 4 Proteomic mapping based on proximity dependent labeling by APEX in live cells

表1 几种常见的邻位标记方法比较

Table 1 Comparison of the different proximity labeling methods

image /

将BioID或TurboID同目的蛋白融合在细胞内表达,可使目的蛋白附近大约10 nm(浅橙色圆盘)范围内的蛋白质发生生物素化(红色五角星表示),可发现潜在的蛋白质相互作用或确定亚细胞结构蛋白质组分. 反应需添加底物为生物素,标记时长15~24 h.

生物素连接酶BirA与诱饵蛋白融合,生物素受体肽(acceptor peptide,AP)与猎物蛋白融合. 两种融合蛋白在细胞中同时表达,AP-猎物蛋白的生物素化(红色五角星表示)表明与BirA-诱饵蛋白在空间上非常接近,提示诱饵蛋白和猎物蛋白之间可能发生了相互作用. 这种方法可以在同一个细胞内使用,也可检测两个不同的细胞之间蛋白质相互作用.

辣根过氧化物酶在细胞内活性很低,但当它作为(a)融合蛋白在细胞表面表达,或通过(b)抗体融合靶向细胞表面蛋白时,可以用来标记邻近的蛋白质. 与生物素或荧光素偶联的活性分子与芳酰亚胺或酪胺反应,生成一种生物素或荧光素衍生物活性分子,在HRP及H2O2作用下该分子可对300 nm内的邻近蛋白进行共价标记.

将APEX融合到可特异定位到亚细胞结构的基序(target motif)上或目标蛋白上,可标记20 nm范围内的邻近蛋白,从而获得亚细胞区室或目标蛋白相关的蛋白质组及互作信息. 红色五角星表示生物素-苯酚活性分子. 反应需添加底物为生物素苯酚及双氧水,标记时长可小于1 min.

无注解

  • 参考文献

    • 1

      Elbaz Y, Schuldiner M. Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci, 2011, 36(11): 616-623

    • 2

      Shin Y, Brangwynne C P. Liquid phase condensation in cell physiology and disease. Science, 2017, 357(6357)pii:eaaf4382

    • 3

      Banani S F, Lee H O, Hyman A A, et al. Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017, 18(5): 285-298

    • 4

      Wu H, Carvalho P, Voeltz G K. Here, there, and everywhere: The importance of ER membrane contact sites. Science, 2018, 361(6401)pii:eaan5835

    • 5

      Saheki Y, De Camilli P. Endoplasmic reticulum-plasma membrane contact sites. Annual Review of Biochemistry, 2017, 86: 659-684

    • 6

      Yates J R, 3rd, Gilchrist A, Howell K E, et al. Proteomics of organelles and large cellular structures. Nature Reviews Molecular Cell Biology, 2005, 6(9): 702-714

    • 7

      Nooren I M, Thornton J M. Diversity of protein-protein interactions. The EMBO Journal, 2003, 22(14): 3486-3492

    • 8

      Gingras A C, Raught B. Beyond hairballs: The use of quantitative mass spectrometry data to understand protein-protein interactions. FEBS Letters, 2012, 586(17): 2723-2731

    • 9

      Choi-Rhee E, Schulman H, Cronan J E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Science, 2004, 13(11): 3043-3050

    • 10

      Roux K J, Kim D I, Raida M, et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of Cell Biology, 2012, 196(6): 801-810

    • 11

      Kim D I, Birendra K C, Zhu W, et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci USA, 2014, 111(24): E2453-2461

    • 12

      Kim D I, Jensen S C, Noble K A, et al. An improved smaller biotin ligase for BioID proximity labeling. Molecular Biology of the Cell, 2016, 27(8): 1188-1196

    • 13

      Opitz N, Schmitt K, Hofer-Pretz V, et al. Capturing the Asc1p/receptor for activated C kinase 1 (RACK1) microenvironment at the head region of the 40S ribosome with quantitative BioID in yeast. Molecular & Cellular Proteomics : MCP, 2017, 16(12): 2199-2218

    • 14

      Morriswood B, Havlicek K, Demmel L, et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryotic Cell, 2013, 12(2): 356-367

    • 15

      Lin Q, Zhou Z, Luo W, et al. Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. Frontiers in Plant Science, 2017, 8: 749

    • 16

      Batsios P, Meyer I, Graf R. Proximity-dependent biotin identification (BioID) in dictyostelium Amoebae. Methods in Enzymology, 2016, 569: 23-42

    • 17

      Gu B, Lambert J P, Cockburn K, et al. AIRE is a critical spindle-associated protein in embryonic stem cells. eLife, 2017, 6: pii: e28131

    • 18

      Dingar D, Kalkat M, Chan P K, et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. Journal of Proteomics, 2015, 118: 95-111

    • 19

      Uezu A, Kanak D J, Bradshaw T W, et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science, 2016, 353(6304): 1123-1129

    • 20

      Jan C H, Williams C C, Weissman J S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science, 2014, 346(6210): 1257521

    • 21

      Comartin D, Gupta G D, Fussner E, et al. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Current Biology : CB, 2013, 23(14): 1360-1366

    • 22

      Cole A, Wang Z, Coyaud E, et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell, 2015, 27(6): 864-876

    • 23

      Elzi D J, Song M, Hakala K, et al. Proteomic analysis of the EWS-Fli-1 interactome reveals the role of the lysosome in EWS-Fli-1 turnover. Journal of Proteome Research, 2014, 13(8): 3783-3791

    • 24

      Guo Z, Neilson L J, Zhong H, et al. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Science Signaling, 2014, 7(354)rs7

    • 25

      Steed E, Elbediwy A, Vacca B, et al. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. The Journal of Cell Biology, 2014, 204(5): 821-838

    • 26

      Ueda S, Blee A M, Macway K G, et al. Force dependent biotinylation of myosin IIA by alpha-catenin tagged with a promiscuous biotin ligase. Plos One, 2015, 10(3): e0122886

    • 27

      Van Itallie C M, Aponte A, Tietgens A J, et al. The N and C termini of ZO-1 are surrounded by distinct proteins and functional protein networks. The Journal of Biological Chemistry, 2013, 288(19): 13775-13788

    • 28

      Nishimura T, Padamsi Z, Fakim H, et al. The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5' and 3' termini of target mRNAs. Cell Reports, 2015, 11(9): 1425-1436

    • 29

      Cheng Y S, Seibert O, Kloting N, et al. PPP2R5C couples hepatic glucose and lipid homeostasis. Plos Genetics, 2015, 11(10): e1005561

    • 30

      Couzens A L, Knight J D, Kean M J, et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Science Signaling, 2013, 6(302)rs15

    • 31

      Rodriguez-Fraticelli A E, Bagwell J, Bosch-Fortea M, et al. Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nature Cell Biology, 2015, 17(3): 241-250

    • 32

      Schumacher M M, Elsabrouty R, Seemann J, et al. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase. eLife, 2015, 4(DOI: 10.7554/eLife.05560)

    • 33

      Zhou Z, Rawnsley D R, Goddard L M, et al. The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell, 2015, 32(2): 168-180

    • 34

      Coyaud E, Mis M, Laurent E M, et al. BioID-based identification of Skp cullin F-box (SCF)beta-TrCP1/2 E3 ligase substrates. Molecular & Cellular Proteomics, 2015, 14(7): 1781-1795

    • 35

      Yeh C, Coyaud E, Bashkurov M, et al. The deubiquitinase USP37 regulates chromosome cohesion and mitotic progression. Current Biology, 2015, 25(17): 2290-2299

    • 36

      Kueck T, Foster T L, Weinelt J, et al. Serine phosphorylation of HIV-1 Vpu and its binding to tetherin regulates interaction with clathrin adaptors. Plos pathogens, 2015, 11(8): e1005141

    • 37

      Le Sage V, Cinti A, Valiente-Echeverria F, et al. Proteomic analysis of HIV-1 Gag interacting partners using proximity-dependent biotinylation. Virology Journal, 2015, 12: 138

    • 38

      Ritchie C, Cylinder I, Platt E J, et al. Analysis of HIV-1 Gag protein interactions via biotin ligase tagging. Journal of Virology, 2015, 89(7): 3988-4001

    • 39

      De Munter S, Gornemann J, Derua R, et al. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Letters, 2017, 591(2): 415-424

    • 40

      Schopp I M, Amaya Ramirez C C, Debeljak J, et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nature Communications, 2017, 8: 15690

    • 41

      Chojnowski A, Sobota R M, Ong P F, et al. 2C-BioID: An advanced two component BioID system for precision mapping of protein interactomes. iScience, 2018, 10: 40-52

    • 42

      Branon T C, Bosch J A, Sanchez A D, et al. Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 2018, 36(9): 880-887

    • 43

      Ramanathan M, Majzoub K, Rao D S, et al. RNA-protein interaction detection in living cells. Nature Methods, 2018, 15(3): 207-212

    • 44

      Fernandez-Suarez M, Chen T S, Ting A Y. Protein-protein interaction detection in vitro and in cells by proximity biotinylation. Journal of the American Chemical Society, 2008, 130(29): 9251-9253

    • 45

      Lajko M, Haddad A F, Robinson C A, et al. Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: Limitations for integral membrane glycoproteins. Journal of Virological Methods, 2015, 221: 81-89

    • 46

      Belshan M, Schweitzer C J, Donnellan M R, et al. In vivo biotinylation and capture of HIV-1 matrix and integrase proteins. Journal of Virological Methods, 2009, 159(2): 178-184

    • 47

      Steel E, Murray V L, Liu A P. Multiplex detection of homo- and heterodimerization of g protein-coupled receptors by proximity biotinylation. Plos One, 2014, 9(4): e93646

    • 48

      Shoaib M, Kulyyassov A, Robin C, et al. PUB-NChIP--"in vivo biotinylation" approach to study chromatin in proximity to a protein of interest. Genome Research, 2013, 23(2): 331-340

    • 49

      Thyagarajan A, Ting A Y. Imaging activity-dependent regulation of neurexin-neuroligin interactions using trans-synaptic enzymatic biotinylation. Cell, 2010, 143(3): 456-469

    • 50

      Kotani N, Gu J, Isaji T, et al. Biochemical visualization of cell surface molecular clustering in living cells. Proc Natl Acad Sci USA, 2008, 105(21): 7405-7409

    • 51

      Honke K, Kotani N. Identification of cell-surface molecular interactions under living conditions by using the enzyme-mediated activation of radical sources (EMARS) method. Sensors, 2012, 12(12): 16037-16045

    • 52

      Miyagawa-Yamaguchi A, Kotani N, Honke K. Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. Plos One, 2014, 9(3): e93054

    • 53

      Yamashita R, Kotani N, Ishiura Y, et al. Spatiotemporally-regulated interaction between beta1 integrin and ErbB4 that is involved in fibronectin-dependent cell migration. Journal of Biochemistry, 2011, 149(3): 347-355

    • 54

      Li X W, Rees J S, Xue P, et al. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. The Journal of Biological Chemistry, 2014, 289(21): 14434-14447

    • 55

      Loh K H, Stawski P S, Draycott A S, et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell, 2016, 166(5): 1295-1307.e1221

    • 56

      Martell J D, Deerinck T J, Sancak Y, et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nature Biotechnology, 2012, 30(11): 1143-1148

    • 57

      Rhee H W, Zou P, Udeshi N D, et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 2013, 339(6125): 1328-1331

    • 58

      Mick D U, Rodrigues R B, Leib R D, et al. Proteomics of primary cilia by proximity labeling. Developmental Cell, 2015, 35(4): 497-512

    • 59

      Chen C L, Hu Y, Udeshi N D, et al. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc Natl Acad Sci USA, 2015, 112(39): 12093-12098

    • 60

      Chung C Y, Khurana V, Yi S, et al. In situ peroxidase labeling and mass-spectrometry connects alpha-synuclein directly to endocytic trafficking and mRNA metabolism in neurons. Cell Systems, 2017, 4(2): 242-250.e244

    • 61

      Lam S S, Martell J D, Kamer K J, et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature Methods, 2015, 12(1): 51-54

    • 62

      张舒策, 何涟, 周育斌, 等. 内质网-细胞质膜连接区蛋白质组鉴定及对其中的STIMATE的功能研究. 中国细胞生物学学报, 2016, 38(5): 461-466

      Zhang S C, He L, Zhou Y B, et al. Chin J Cell Biol, 2016, 38(5): 461-466

    • 63

      Jing J, He L, Sun A, et al. Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca(2)(+) influx. Nature Cell Biology, 2015, 17(10): 1339-1347

    • 64

      Hung V, Udeshi N D, Lam S S, et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nature Protocols, 2016, 11(3): 456-475

    • 65

      Rathore A, Chu Q, Tan D, et al. MIEF1 microprotein regulates mitochondrial translation. Biochemistry, 2018, 57(38): 5564-5575

    • 66

      Zhen Y, Haugsten E M, Singh S K, et al. Proximity labeling by a recombinant APEX2-FGF1 fusion protein reveals interaction of FGF1 with the proteoglycans CD44 and CSPG4. Biochemistry, 2018, 57(26): 3807-3816

    • 67

      Zuzow N, Ghosh A, Leonard M, et al. Mapping the mammalian ribosome quality control complex interactome using proximity labeling approaches. Molecular Biology of the Cell, 2018, 29(10): 1258-1269

    • 68

      Ganapathy U S, Bai L, Wei L, et al. Compartment-specific labeling of bacterial periplasmic proteins by peroxidase-mediated biotinylation. ACS Infectious Diseases, 2018, 4(6): 918-925

    • 69

      Hwang J, Espenshade P J. Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2. The Biochemical Journal, 2016, 473(16): 2463-2469

    • 70

      Xue M, Hou J, Wang L, et al. Optimizing the fragment complementation of APEX2 for detection of specific protein-protein interactions in live cells. Sci Rep, 2017, 7(1): 12039

    • 71

      Han Y, Branon T C, Martell J D, et al. Directed Evolution of Split APEX2 Peroxidase. ACS Chem Biol, 2019, 14(4): 619-635

    • 72

      Lobingier B T, Huttenhain R, Eichel K, et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell, 2017, 169(2): 350-360.e312

    • 73

      Liu Q, Zheng J, Sun W, et al. A proximity-tagging system to identify membrane protein-protein interactions. Nature Methods, 2018, 15(9): 715-722