en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
ZhangL, LuaL H L, MiddelbergA P J, et al. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem Soc Rev, 2015, 44(23): 8608-8618
参考文献 2
LuaL H L, ConnorsN K, FrankS, et al. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng, 2014, 111(3): 425-440
参考文献 3
Rodríguez-LimasW A, SekarK, TyoK E. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotech, 2013, 24(6): 1089-1093
参考文献 4
TeunissenE A, De RaadM, MastrobattistaE. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Controlled Release, 2013, 172(1): 305-321
参考文献 5
YanD, WeiY Q, GuoH C, et al. The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol, 2015, 99(24): 10415-10432
参考文献 6
ZeltinsA. Construction and characterization of virus-like particles: a review. Mol Biotechnol, 2013, 53(1): 92-107
参考文献 7
StephenS L, BealesL, PeyretH, et al. Recombinant expression of tandem-HBc virus-like particles (VLPs). Methods Mol Biol, 2018, 1776: 97-123
参考文献 8
DhanasoorajD, KumarR A, MundayoorS. Subunit protein vaccine delivery system for tuberculosis based on hepatitis B virus core VLP (HBc-VLP) particles. Methods Mol Biol, 2016, 1404: 377-392
参考文献 9
KononovaO, MaksudovF, MarxK A, et al. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid. J Phys Condens Matter, 2018, 30(4): 044006
参考文献 10
SchoonenL, Van EldijkM B, Van HestJ C M. Metal ion-induced self-assembly and packaging of CCMV nanocapsules. Methods Mol Biol, 2018, 1798: 57-67
参考文献 11
SchoonenL, MaasR J M, NolteR J M, et al. Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron, 2017, 73(33): 4968-4971
参考文献 12
SchoonenL, MaassenS, NolteR J M, et al. Stabilization of a virus-like particle and its application as a nanoreactor at physiological conditions. Biomacromolecules, 2017, 18(11): 3492-3497
参考文献 13
FanX Z, NavesL, SiwakN P, et al. Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology, 2015, 26(20): 205501
参考文献 14
ZhaiL, PeabodyJ, PangY S, et al. A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9. Antiviral Res, 2017, 147: 116-123
参考文献 15
LinoC A, CaldeiraJ C, PeabodyD S. Display of single-chain variable fragments on bacteriophage MS2 virus-like particles. J Nanobiotechnology, 2017, 15(1): 13
参考文献 16
DongY M, ZhangG G, HuangX J, et al. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease. Antiviral Res, 2015, 117: 39-43
参考文献 17
SalunkeD M, CasparD L D, GarceaR L. Self-assembly of purified polyomavirus capsid protein VP1. Cell, 1986, 46(6): 895-904
参考文献 18
TegerstedtK, FranzénA V, AndreassonK, et al. Murine polyomavirus virus-like particles (VLPs) as vectors for gene and immune therapy and vaccines against viral infections and cancer. Anticancer Res, 2005, 25(4): 2601-2608
参考文献 19
TsaiB, GilbertJ M, StehleT, et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J, 2014, 22(17): 4346-4355
参考文献 20
BuchM H, LiaciA M, O'haraS D, et al. Structural and functional analysis of murine polyomavirus capsid proteins establish the determinants of ligand recognition and pathogenicity. Plos Path, 2015, 11(10): e1005104
参考文献 21
PattendenL K, MiddelbergA P J, NiebertM, et al. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol, 2005, 23(10): 523-529
参考文献 22
StehleT, YanY W, BenjaminT L, et al. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature, 1994, 369(6476): 160-163
参考文献 23
YanY W, StehleT, LiddingtonR C, et al. Structure determination of simian virus 40 and murine polyomavirus by a combination of 30-fold and 5-fold electron-density averaging. Structure, 1996, 4(2): 157-164
参考文献 24
StehleT, HarrisonS C. Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure, 1996, 4(2): 183-194
参考文献 25
BradyJ N, ConsigliR A. Chromatographic separation of the polyoma virus proteins and renaturation of the isolated VP1 major capsid protein. J Virol, 1978, 27(2): 436-442
参考文献 26
LiY Y, LiuX D, DongX Y, et al. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle. Langmuir, 2014, 30(28): 8500-8508
参考文献 27
LiewM W, RajendranA, MiddelbergA P J. Microbial production of virus-like particle vaccine protein at gram-per-litre levels. J Biotechnol, 2010, 150(2): 224-231
参考文献 28
Wro´BelB, YosefY, OppenheimA B, et al. Production and purification of SV40 major capsid protein (VP1) in Escherichia coli strains deficient for the GroELS chaperone machine. J Biotechnol, 2000, 84(3): 285-289
参考文献 29
W-COu, WangM, C-YFung, et al. The major capsid protein, VP1, of human JC virus expressed in Escherichia coli is able to self-assemble into a capsid-like particle and deliver exogenous DNA into human kidney cells. J Gen Virol, 1999, 80(Pt 1): 39-46
参考文献 30
PalkovaZ, AdamecT, LieblD, et al. Production of polyomavirus structural protein VP1 in yeast cells and its interaction with cell structures. FEBS Lett, 2000, 478(3): 281-289
参考文献 31
ZaveckasM, SnipaitisS, PesliakasH, et al. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 991: 21-28
参考文献 32
KimH J, ChoS Y, ParkM H, et al. Comparison of the size distributions and immunogenicity of human papillomavirus type 16 L1 virus-like particles produced in insect and yeast cells. Arch Pharm Res, 2018, 41(5): 544-553
参考文献 33
FranzénA V, TegerstedtK, HolländerovaD, et al. Murine polyomarivus-VP1 virus-like particles immunize against some polyomavirus-induced tumours. In Vivo, 2005, 19(2): 323-326
参考文献 34
KawanoM, MorikawaK, SudaT, et al. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants. Virology, 2014, 448: 159-167
参考文献 35
PastranaD V, TolstovY L, BeckerJ C, et al. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. Plos Pathog, 2009, 5(9): e1000578
参考文献 36
TolstovY L, PastranaD V, FengH, et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer, 2009, 125(6): 1250-1256
参考文献 37
ChiJ N, WuC Y, ChienM S, et al. The preparation of porcine circovirus type 2 (PCV2) virus-like particles using a recombinant pseudorabies virus and its application to vaccine development. J Biotechnol, 2014, 181: 12-19
参考文献 38
MangelW F, HewickR M, BayleyS T, et al. Polyoma virus complementary RNA directs the in vitro synthesis of capsid proteins VP1 and VP2. J Virol, 1978, 25(2): 570-578
参考文献 39
LuY, ChanW, KoB Y, et al. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci USA, 2015, 112(40): 12360-12365
参考文献 40
BundyB C, FranciszkowiczM J, SwartzJ R. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng, 2008, 100(1): 28-37
参考文献 41
GarmannR F, KnoblerC M, GelbartW M. Protocol for efficient cell-free synthesis of cowpea chlorotic mottle virus-like particles containing heterologous RNAs. Methods Mol Biol, 2018, 1776: 249-265
参考文献 42
ChuanY P, LuaL H L, MiddelbergA P J. High-level expression of soluble viral structural protein in Escherichia coli. J Biotechnol, 2008, 134(1-2): 64-71
参考文献 43
WetzelD, RolfT, SuckowM, et al. Establishment of a yeast-based VLP platform for antigen presentation. Microb Cell Fact, 2018, 17(1): 17
参考文献 44
SasnauskasK, BulavaiteA, HaleA, et al. Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology, 2002, 45(4-6): 308-317
参考文献 45
Zackova SuchanovaJ, NeburkovaJ, SpanielovaH, et al. Retargeting polyomavirus-like particles to cancer cells by chemical modification of capsid surface. Bioconjug Chem, 2017, 28(2): 307-313
参考文献 46
NakanoH, YamaneT. Cellfree protein synthesis systems. Biotechnol Adv, 1998, 16(2): 367-384
参考文献 47
LuY, WelshJ P, SwartzJ R. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci USA, 2014, 111(1): 125-130
参考文献 48
NakanoH, MatsudaK, OkumuraR, et al. Accumulation of translational inhibitor during multi-hour cell-free protein synthesis reaction using rabbit reticulocyte lysate. J Ferment Bioeng, 1997, 83(5): 470-473
参考文献 49
EndoY, SawasakiT. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol Adv, 2003, 21(8): 695-713
参考文献 50
WheelerT, BayleyS T, HarveyR, et al. Cell-free synthesis of polyoma virus capsid proteins VP1 and VP2. J Virol, 1977, 21(1): 215-224
参考文献 51
LuY. Cell-free synthetic biology: engineering in an open world. Synth Syst Biotechnol, 2017, 2(1): 23-27
参考文献 52
DingY, ChuanY P, HeL Z, et al. Modeling the competition between aggregation and self-assembly during virus-like particle processing. Biotechnol Bioeng, 2010, 107(3): 550-560
参考文献 53
PerlmutterJ D, HaganM F. Mechanisms of virus assembly. Annu Rev Phys Chem, 2015, 66(1): 217-239
参考文献 54
ChuanY P, FanY Y, LuaL H L, et al. Virus assembly occurs following a pH- or Ca2+-triggered switch in the thermodynamic attraction between structural protein capsomeres. J R Soc Interface, 2010, 7(44): 409-421
参考文献 55
ZhangL, TangR H, BaiS, et al. Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations. J Phys Chem B, 2013, 117(18): 5411-5421
参考文献 56
Caparrós-WanderleyW, ClarkB, GriffinB E. Effect of dose and long-term storage on the immunogenicity of murine polyomavirus VP1 virus-like particles. Vaccine, 2004, 22(3-4): 352-361
参考文献 57
HamachiI, BernardesG J L. Protein engineering through chemical, genetic and computational manipulation. Chem Soc Rev, 2018, 47(24): 8977-8979
参考文献 58
PeaceyM, WilsonS, BairdM A, et al. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol Bioeng, 2007, 98(5): 968-977
参考文献 59
EwersH, SmithA E, SbalzariniI F, et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci USA, 2005, 102(42): 15110-15115
参考文献 60
KrauzewiczN, CoxC, SoedaE, et al. Sustained ex vivo and in vivo transfer of a reporter gene using polyoma virus pseudocapsids. Gene Ther, 2000, 7(13): 1094-1102
参考文献 61
SuchanovaJ Z, NeburkovaJ, SpanielovaH, et al. Retargeting polyomavirus-like particles to cancer cells by chemical modification of capsid surface. Bioconjugate Chem, 2017, 28(2): 307-313
参考文献 62
MathildaE, KalleA, JoachimW, et al. Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor. Plos One, 2011, 6(8): e23828
参考文献 63
SethA, KongI G, LeeS H, et al. Modular virus-like particles for sublingual vaccination against group A streptococcus. Vaccine, 2016, 34(51): 6472-6480
参考文献 64
TekeweA, ConnorsN K, MiddelbergA P J, et al. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle. Protein Sci, 2016, 25(8): 1507-1516
参考文献 65
SkrastinaD, BulavaiteA, SominskayaI, et al. High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine, 2008, 26(16): 1972-1981
参考文献 66
SchmidtU, RudolphR, BöhmG. Binding of external ligands onto an engineered virus capsid. Protein Eng, 2001, 14(10): 769-774
参考文献 67
WibowoN, ChuanY P, LuaL H L, et al. Modular engineering of a microbially-produced viral capsomere vaccine for influenza. Chem Eng Sci, 2013, 103(22): 12-20
参考文献 68
ZhangL, TangR H, BaiS, et al. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations. Plos One, 2014, 9(9): e107313
参考文献 69
TekeweA, FanY Y, TanE, et al. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen. Biotechnol Bioeng, 2017, 114(2): 397-406
参考文献 70
MiddelbergA P J, Rivera-HernandezT, WibowoN, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29(41): 7154-7162
参考文献 71
Rivera-HernandezT, HartasJ, WuY, et al. Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine, 2013, 31(15): 1950-1955
参考文献 72
WibowoN, WuY, FanY, et al. Non-chromatographic preparation of a bacterially produced single-shot modular virus-like particle capsomere vaccine for avian influenza. Vaccine, 2015, 33(44): 5960-5965
参考文献 73
TekeweA, ConnorsN K, SainsburyF, et al. A rapid and simple screening method to identify conditions for enhanced stability of modular vaccine candidates. Biochem Eng J, 2015, 100: 50-58
参考文献 74
AnggraeniM R, ConnorsN K, WuY, et al. Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle. Vaccine, 2013, 31(40): 4428-4435
参考文献 75
MiddelbergA P, Rivera-HernandezT, WibowoN, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29(41): 7154-7162
参考文献 76
DingX W, LiuD, BoothG, et al. Virus-like particle engineering: from rational design to versatile applications. Biotechnol J, 2018, 13(5): e1700324
参考文献 77
RohovieM J, NagasawaM, SwartzJ R. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med, 2017, 2(1): 43-57
参考文献 78
WuY Z, YangH T, H-JShin. Viruses as self-assembled nanocontainers for encapsulation of functional cargoes. Korean J Chem Eng, 2013, 30(7): 1359-1367
参考文献 79
SlilatyS N, AposhianH V. Gene transfer by polyoma-like particles assembled in a cell-free system. Science, 1983, 220(4958): 725-727
参考文献 80
ForstovaJ, KrauzewiczN, SandigV, et al. Polyoma virus pseudocapsids as efficient carriers of heterologous DNA into mammalian cells. Hum Gene Ther, 1995, 6(3): 297-306
参考文献 81
AbbingA, BlaschkeU K, GreinS, et al. Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. J Biol Chem, 2004, 279(26): 27410-27421
参考文献 82
SharmaJ, UchidaM, MiettinenH M, et al. Modular interior loading and exterior decoration of a virus-like particle. Nanoscale, 2017, 9(29): 10420-10430
参考文献 83
MastrobattistaE, MaV D A, HenninkW E, et al. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov, 2006, 5(2): 115-121
参考文献 84
Comellas-AragonesM, EngelkampH, ClaessenV I, et al. A virus-based single-enzyme nanoreactor. Nat Nanotechnol, 2007, 2(10): 635-639
参考文献 85
AbidinR. Murine polyomavirus VLPs as a platform for cytotoxic T cell epitope-based influenza vaccine candidates [D]. Australia: The University of Queensland, 2016
参考文献 86
DashtiN H, AbidinR S, SainsburyF. Programmable in vitro coencapsidation of guest proteins for intracellular delivery by virus-like particles. ACS Nano, 2018, 12(5): 4615-4623
参考文献 87
YeX, KuZ, LiuQ, et al. Chimeric virus-like particle vaccines displaying conserved enterovirus 71 epitopes elicit protective neutralizing antibodies in mice through divergent mechanisms. J Virol, 2014, 88(1): 72-81
参考文献 88
LeeK W, TeyB T, HoK L, et al. Delivery of chimeric hepatitis B core particles into liver cells. J Appl Microbiol, 2012, 112(1): 119-131
参考文献 89
AzizgolshaniO, GarmannR F, Cadena-NavaR, et al. Reconstituted plant viral capsids can release genes to mammalian cells. Virology, 2013, 441(1): 12-17
参考文献 90
ZangF, GerasopoulosK, BrownA D, et al. Capillary microfluidics-assembled virus-like particle bionanoreceptor interfaces for label-free biosensing. ACS Appl Mater Interfaces, 2017, 9(10): 8471-8479
参考文献 91
LiJ, SunY, JiaT, et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int J Cancer, 2014, 134(7): 1683-1694
参考文献 92
TegerstedtK, AndreassonK, VlastosA, et al. Murine pneumotropic virus VP1 virus-like particles (VLPs) bind to several cell types independent of sialic acid residues and do not serologically cross react with murine polyomavirus VP1 VLPs. J Gen Virol, 2003, 84(Pt 12): 3443-3452
目录 contents

    摘要

    鼠多瘤病毒(murine polyomavirus,MPV)的病毒样颗粒(virus-like particle,VLP)是通过MPV的衣壳结构蛋白VP1自组装而成的球形纳米壳状结构. MPV VLP具有独特的纳米结构,在一定条件下能够进行体内或体外自组装,具有丰富的可修饰位点. 因此,容易通过结构的修饰改造实现MPV VLP在诸多领域的应用. 本文从MPV VLP的结构特点着眼,回顾MPV VLP的发现历程,介绍MPV VLP的制备表达系统和组装机理,综述MPV VLP的修饰. 重点介绍化学修饰和基因工程修饰方法,并通过实例阐述MPV VLP在疫苗开发、药物及其他分子载体等领域的应用及其研究进展. 基于对已有研究进展的分析,指出大规模生产、组装机理解析及其应用研究的关键环节,服务于MPV VLP的应用开发.

    Abstract

    The virus-like particle (VLP) of murine polyomavirus (MPV) is a spherical shell with nanostructure. It assembles from protein VP1, the major structural protein of capsid. MPV VLP has a unique nanostructure that can self-assemble in vivo or in vitro and many sites that can be modified. The special architecture make it an ideal nanoscale model in scientific fields such as biochemistry. With the modification of the protein capsid and the transformation of the core cavity, researchers have developed a series of vaccines, multifunctional diagnostic agents and versatile nanocage systems. Recent studies of MPV VLP modification have focused on the interface modification between subunits to facilitate the assemble process, and the interior or exterior modification to develop diverse applications. This paper reviews the structural characteristics of MPV VLP, and briefly introduces the expression systems and assembly mechanism. The modification of MPV VLP was summarized, with emphasis on chemical modification and modification using genetic engineering. In addition, the applications of MPV VLP in the fields of vaccine development, delivery of drug and other molecules were described with examples. Then the prospect of research on MPV VLP was discussed, focusing on the large-scale production and in-depth analysis of assembly mechanism, beneficial from the use of advanced science and technology.

    病毒样颗粒(virus-like particle,VLP)通常是由病毒衣壳的一种或多种结构蛋白组装而成的球形空腔结[1]. VLP的形态尺寸与天然病毒类似,但没有天然病毒的遗传物质,因而VLP没有致病性和传染[2,3,4]. 由于具有较高的溶解度、细胞摄取效率、良好的生物相容性以及靶向给药和载药能力,VLP被认为是一种理想的生物载[5]. 随着人们对生物产品和治疗技术等方面要求的增高,基于VLP的应用具有广阔的发展前景.

    迄今为止,研究者已经构建和评估了来自75个不同病毒家族的110种VLP[5,6]. 研究较多的有乙肝病毒(hepatitis B virus,HBV)或乙肝病毒核心蛋白(hepatitis B core,HBc)的VLP[7,8]、豇豆褪绿斑驳病毒(cowpea chlorotic mottle virus,CCMV)的VLP[9,10,11,12]、烟草普通花叶病病毒(tobacco mosaic virus,TMV)的VLP[13]、二十面体噬菌体MS2的VLP[14,15,16]等. 多瘤病毒(polyomavirus)是一类小型的非包膜二十面对称体病毒,能够引起哺乳动物感染,但感染后通常没有明显的症状. 鼠多瘤病毒(murine polyomavirus,MPV)是一种典型的多瘤病毒,为环状双链DNA病毒,基因组大小约5.3 kb. 其衣壳结构蛋白VP1可以单独组装成VLP[17],该特性使得研究者们对MPV VLP组装机制、结构修饰等方面的研究更加方便. 由于MPV不感染人类,人类体内不存在自然状态下针对MPV产生的抗体,因此用MPV VLP进行疫苗或基因治疗载体等方面的研究具有一定的优[18]. 近年来,对于以MPV VLP为模型的VLP功能应用研究在国内外备受关注,基于MPV VLP的相关研究也取得较大进展. 本文主要综述MPV VLP的纳米结构、制备表达系统、组装及稳定性、化学和基因工程修饰方法以及在生物学方面的应用,展示其研究进展,展望其未来发展.

  • 1 MPV VLP的结构

    天然MPV颗粒呈二十面立体对称结构(T= 7 d),直径大约45 nm. 病毒衣壳包括3种结构蛋白,分别是VP1、VP2和VP3,分子质量大小依次约为45 ku、34 ku和23 ku[18]. MPV结构示意图见图1a. 其中,VP1是主要结构蛋白,其数量占据结构蛋白总量的75%,其N端与MPV的DNA分子结合. VP1可以识别细胞表面神经节苷脂上的唾液酸寡糖残基,从而使VLP能与大多数哺乳动物细胞相结合,该特性对于细胞的摄取过程至关重[19,20]. VP2和VP3为次要结构蛋白,由同一个基因序列编码,它们不与DNA分子结合. VP2的N端比VP3多115个氨基酸. 由于VP3从下游开始启动翻译,所以其氨基酸序列较VP2短,相当于N端截短型的VP2. 每5个VP1通过二硫键相互作用形成一个桶状衣壳粒,72个衣壳粒按照T=7 d的方式构成病毒衣壳外壳,每个衣壳粒的底部可以结合1个VP2或者1个VP3,呈现于MPV的内表[21]. Stehle[22,23,24]对MPV结构的解析做出极大贡献. 在其研究基础上获得MPV更高精度的晶体结构. 研究表明,VP1的N端位于VLP的内部,C端形成“手臂”伸入相邻的衣壳粒,相互交锁从而形成稳定的VLP空腔结构. VP1的核心向外伸展划分出5个环状结构,分别为BC环、DE环、EF环、GH环和HI环. 其中,BC环、DE环、EF环和HI环暴露于VLP的外表面,紧密相凑,具有高度可变性,赋予MPV受体结合特异性.

    图1
                            MPV和MPV VLP结构示意图

    图1 MPV和MPV VLP结构示意图

    Fig. 1 Schematic illustration of MPV and MPV VLP

    注:(a) MPV结构示意图. (b) 由VP1、VP2、VP3组装而成的MPV VLP结构示意图. (c) 仅由VP1组装而成的MPV VLP结构示意图.

    MPV VLP是由MPV的衣壳结构蛋白自组装而成的高度有序的多亚基蛋白质复合物,形态尺寸与天然MPV类似. MPV VLP也呈二十面立体对称结构,直径大约45 nm. MPV VLP不含有MPV的遗传物质(图1b). 目前大多数研究所用的MPV VLP通常都是指仅由VP1组装成的VLP(图1c). 1978年,MPV的VP1结构蛋白被通过色谱方法分离纯化,并被证实可形成五聚体亚基,这种五聚体亚基与天然MPV的衣壳粒相[25]. 1986年,Salunke[17]发现VP1可自发形成五聚体衣壳粒. 在高离子强度下,可进一步形成病毒衣壳状组装体. 之后,通过原核细胞、杆状病毒/昆虫细胞、酵母细胞表达的重组VP1都被证实可以组装成与天然MPV尺寸、形态类似的类病毒结构,即MPV VLP[18]. 虽然VP2和VP3对MPV VLP的形成来说不是必要的,但是其存在仍然具有重要意义. 例如,VP2或VP3与衣壳粒结合的特性对VLP生产制备过程中的分离纯化步骤具有指导意义. Li[26]通过分子动力学模拟结合分子力学/泊松-玻尔兹曼表面积(molecular mechanics/Poisson-Boltzman surface area,MM-PBSA)分析方法,解析VP2与衣壳粒相互作用机制,构建VP2的简化模型,以此为基础开发衣壳粒的亲和肽配基DWDLRLLY,能够有效纯化VP1,服务于其大规模制备和应用.

  • 2 MPV VLP的制备表达系统

    MPV的衣壳蛋白具有天然的自我装配能力,MPV VLP可以直接从细胞或培养基中分离得到,也可以先将衣壳蛋白亚基纯化后,在体外组装.

    目前,MPV VLP的制备和大多数种类VLP的制备方法一样,主要通过将病毒的结构蛋白基因克隆到表达载体上,并将载体转入原核或真核细胞中进行诱导表达. 不同的制备表达系统及相关实例见表1.

    表1 用于制备VLP的表达系统

    Table 1 Different systems used for the production of VLP

    表达系统转录后修饰核酸污染培养成本培养周期VLP实例
    原核细胞有,较多MPV[27],SV40 (simian virus 40)[28],JCPV (JC polyomavirus)[29]
    酵母细胞有,较少MPV[30],PCV2 (porcine circovirus type 2)[31],HPV16 L1 (human papillomavirus type 16 L1)[32]
    杆状病毒/昆虫细胞有,较多MPV[33],SV40[34],HPV16 L1[32]
    哺乳动物细胞MPV[35],MCV (Merkel cell polyomavirus)[35,36],PCV2[37]
    无细胞表达MPV[38],HBc[39],MS2[40],CCMV[41]

    原核细胞表达系统不需要昂贵的培养基、成本低、高效、安全性高,使得VLP的大规模生产成为可能. 原核细胞表达系统主要为大肠杆菌表达系统. 但是原核细胞表达无法进行转录后修饰,容易残留内毒素,因此一般用来表达MPV VLP这种无包膜类型的病毒VLP. 并且原核细胞表达易产生包涵体,得到的蛋白质可溶性较低,需要通过降低诱导温度,添加标签蛋白进行融合表达等措施增加可溶性. Chuna[42]对于用大肠杆菌表达体系制备MPV VLP做出了很大贡献. 他们通过对宿主、表达载体、诱导剂浓度和诱导时间等表达条件进行筛选和优化后,成功表达了MPV VLP的可溶性结构蛋白. 低密度摇瓶培养条件下VP1的产量达到 180 mg/L,谷胱甘肽S-转移酶(glutathione S-transferase,GST)标签融合表达的GST-VP1蛋白产量达到90 mg/L. 高密度补料分批培养模式下,GST-VP1融合蛋白的产量达到4.38 g/L[27]. GST标签蛋白的存在会影响VP1的组装,但是可以通过特定的酶切除GST后再进行体外组装,然而这会增加成本,操作也会更加复杂.

    真核细胞表达能够辅助蛋白质折叠,具有转录后修饰功能. 酵母细胞表达系统能对表达的蛋白质进行糖基化修饰,表达水平高、易于放大、成本[43]. 与原核细胞表达相比,通过酵母细胞表达的VLP受到的宿主核酸污染较小,并且不需要解组装,只需要透析或核酸酶处理就能除去污染的宿主DNA[44]. 但是许多基因在采用酵母细胞表达时需要进行密码子优化. 杆状病毒/昆虫细胞表达系统容纳外源基因的能力强大,能够同时表达多种VLP结构蛋白,并进行多种修[45]. 杆状病毒/昆虫细胞表达系统生产周期短、表达量较高,但也存在易受宿主细胞和杆状病毒DNA污染的问题. 哺乳动物细胞表达体系可以对蛋白质进行修饰,有利于蛋白质正确折叠,这是其主要优势. 但是这种表达体系不常用. 因为哺乳动物细胞表达周期长,培养基需要含有昂贵的血清,使得成本较高,且培养过程不便操[36].

    与基于细胞的表达系统不同,无细胞蛋白质合成系统(cell-free protein synthesis system,CFPS)是一种体外表达系统,CFPS表达蛋白质的过程直接在反应液里完成. CFPS以线性DNA或环形质粒,甚至直接使用mRNA为模板,通过额外添加T7RNA聚合酶调控转录,在细胞提取物的酶系作用下合成蛋白[46]. 根据细胞提取物的来源,CFPS可以分为原核无细胞系统和真核无细胞系统. 原核无细胞系统中应用较多的系统之一是大肠杆菌无细胞系[40,47]. 真核无细胞系统主要包括兔网织红细胞裂解物系[48]和麦胚提取物系[49]. 通过病毒mRNA生产MPV VLP的小麦胚芽无细胞表达技术早已被报道[38,50]. CFPS培养周期短、产率高、没有细胞培养的限制、操作的可控性较高、易于进行高通量筛选,加快VLP的制备进[51]. 随着研究者们逐步优化和改进反应条件,如改进细胞提取物的制备方法、在系统中连续添加细胞提取物和能量物质等,CFPS日渐成熟,已成为高效表达蛋白质的工具. 近年来,CFPS已经发展成为一种潜在的具有工业前景的VLP表达系统. 通过CFPS在体外实现MPV VLP衣壳粒的表达和自组装,将为MPV VLP的研究带来全新突破.

  • 3 MPV VLP的组装及稳定性

    MPV VLP可以在体内或体外组装. 与体内组装相比,体外组装的可操作性更强,可受多方面因素的调控. 首先,体外组装需要通过特定的组装缓冲液辅助实现,组装效果在很大程度上取决于缓冲液的温度、pH值、离子强度、盐浓度、蛋白质浓度[52,53]. 这些条件能够诱发VLP的组装,但如果控制不好也会阻碍组装甚至引起蛋白亚基聚集. 其次,二硫键的存在对于维持VLP的稳定性非常重要. 对于组装过程来说,二硫键不是必要条件,但是其存在可以促进组装过程的进行. 二硫键一旦错配将会阻碍正常组装. DTT和EDTA的去除可以促进二硫键的形成,CaCl2的添加可以促进钙桥的形[54]. 另外,有研究表明VLP结构蛋白自身的性质对组装有重要影响. VP1结合界面疏水位点的存在有利于衣壳粒的形成,但衣壳粒内部较强的负电荷引起的静电排斥不利于VLP形[55].

    成功组装的MPV VLP一般可以在高盐浓度缓冲液中4℃存放一个月. 同时研究发现,低离子强度下添加钙离子也可以增强其稳定[17];MPV VLP可以在PBS缓冲液中室温放置9 w,其形态和免疫学性能没有明显改[56];当VP1被插入某些外源片段后可能有助于提高VLP的稳定性,如半胱氨酸的插入可以引入人工二硫键,增强结构蛋白亚基之间的相互作用.

  • 4 MPV VLP的修饰

    VLP的结构需要根据具体的应用需求进行重新设计. 如前所述,MPV VLP是由72个五聚体衣壳粒组装而成的中空球形纳米颗粒,其外表面、内表面以及衣壳粒相接触的界面都具有丰富的可修饰位点. 外表面能够连接功能分子,内表面可以封装负载物,衣壳粒接触面可以用于VLP组装、解组装研究.

    MPV VLP的修饰方法主要有化学修饰和基因工程修饰(表2). VLP表面丰富的氨基酸残基和活性基团能够进行化学反应从而进行化学修饰. 基于基因工程的生物修饰,能够改变氨基酸序列,进而实现从一级结构到高级结构的改变. 化学修饰方法的影响因素较多,需要严格控制反应条件,如反应温度、溶液pH值、反应时间、修饰物与修饰位点的比例等. 反应过后体系中存在多种物质,如催化酶,需要进一步分离纯化,增加了操作的复杂[57,58]. 基于基因工程的修饰,反应条件较温和,主要通过基因序列的改变来实现蛋白质结构和功能的转变. 从实验操作的复杂性上来比较,基因工程修饰操作较简便,实验条件相对容易控制.

    表2 MPV VLP的修饰方法

    Table 2 Modification types of MPV VLP

    修饰方法关键优点缺点用途

    化学修饰

    化学反应

    可以在VLP组装完成之后

    连接大分子功能分子

    反应条件严苛,操作复杂

    连接多肽、荧光分子、大分子蛋白质等

    基因工程修饰基因序列改变操作简便,专一性高外源片段不宜过大插入多肽、抗原片段、标签蛋白等
  • 4.1 化学修饰

    蛋白质的许多氨基酸残基都可以用来进行化学反应. 而通过VLP表面修饰扩展其功能研究是研究者关注的热点. 例如,可以通过荧光标记研究VLP在细胞膜上或细胞内的行为. 荧光标记常用于定位和追踪纳米粒子在细胞中运动轨迹或监测化学反应进程. 异硫氰酸荧光素(fluorescein isothiocyanate,FITC)是一种常用的荧光标记物,其携带的硫氰酸基团能够与蛋白质上的伯胺基团反应形成硫脲键,从而实现蛋白质的荧光标记. Ewers[59]用FITC和Alexa Fluor 568标记组装后的MPV VLP,借助全内反射荧光(total internal reflection fluorescence,TIRF)显微镜,研究单个MPV VLP颗粒在活细胞和人工脂质双层膜上的横向迁移特性,发现MPV VLP与细胞表面结合后,首先在5~10 s内经历游离的、依赖胆固醇的横向扩散,诱导神经节苷脂分子聚集引起跨膜偶联,然后迅速被肌动蛋白丝依赖的细胞骨架限制. 通过荧光标记手段,借助TIRF显微镜研究细胞表面结合MPV VLP或MPV VLP在细胞内部运动的行为,有助于加深对质膜性质的理解,对MPV VLP在药物运输载体应用领域的研究具有指导意义.

    通过MPV VLP外表面的化学修饰构建靶向性载体也获得研究组普遍关注. 由于MPV VLP的结构蛋白VP1能与分布广泛的唾液酸残基相互作用,所以MPV VLP在动物组织细胞中具有广泛的趋向[60]. 为了实现VLP对细胞的靶向选择,Suchanova[61]通过对MPV VLP的外表面进行化学修饰,使其特异性靶向于转铁蛋白受体异常增多的癌细胞. 首先将MPV VLP用罗丹明标记,并在其余赖氨酸残基上连接带有丙炔基的PEG短连接臂,同时将人转铁蛋白(Tf)用Alexa Fluor 488标记并修饰成Tf-叠氮化物偶联物(Tf *),通过一价铜催化的“点击化学”反应,将两者连接在一起构成PVLP-Tf *共轭复合物. 通过该修饰过程,阻断VP1蛋白表面构象表位,抑制VP1与唾液酸残基的特异性相互作用,从而提高MPV VLP的细胞吸收效率. 研究发现,修饰后的MPV VLP能够选择性靶向于骨肉瘤细胞系(U2OS)、淋巴母细胞性白血病细胞系(CCRF-GEM).

  • 4.2 基因工程修饰

    基因工程修饰MPV VLP是通过基因重组技术进行精确位点修饰,专一性较高. 该修饰方法是在基因序列的特定位置进行改造,例如插入特定的外源序列,然后通过合适的载体转入原核或真核细胞,表达能够满足特定需求的功能化VLP.

    MPV VLP的基因工程修饰包括其末端修饰和中间特定环状区域的修饰. 末端修饰包括N端氨 基修饰和C端羧基修饰,用可替代性的功能基团 与肽链末端进行融合. 通过MPV VLP的内部或外部暴露的末端基团功能化,可以使其他分子附着于表面. Mathilda[62]通过丙氨酸连接臂将人前列腺特异性抗原(prostate specific antigen,PSA)融合到MPV的VP2/VP3结构蛋白的C端,将其用于免疫小鼠,发现修饰后的VLP能够保护小鼠不受PSA引起的肿瘤的影响,并在不同的体外免疫方案中均检测到细胞免疫和体液免疫的发生. 针对MPV VLP的中间特定环状区域的修饰,包括VP1中的BC环、DE环、EF环和HI环. 这些环状结构暴露于VLP的外表面,便于插入外源片段,实现VLP的功能[63,64]. 例如,外源抗原片段插入VLP并呈现于外表面,是开发病毒样颗粒疫苗的重要手段. 在上述各环状结构中,DE环与VP1亚基之间的相互作用有关,EF环直接与其他亚基接触,因此相比而言,BC环和HI环更适合于外源片段的插入. 而在BC环和HI环这两者之中,HI环的优势更大,使用HI环进行研究的报道较多. HI环上Asn293和Tyr294氨基酸残基之间是常用的插入位[65,66].

    基因工程修饰方法简便,但也存在制约. 例如,插入外源片段不宜过大. 如果插入片段过大,可能会影响组装单体蛋白质的正确折叠,也可能因为空间位阻效应阻碍VLP的正常组装或引起VLP聚[67]. Zhang[68]曾考察过在HI环上插入外源人流感病毒的表面抗原片段对MPV VLP稳定性的影响. 他们利用分子动力学模拟,结合MM-PBSA自由能分解方法,考察发现HI环上外源抗原片段的插入会增强静电相互作用,不利于VP1亚基之间的结合,从而不利于VLP的稳定. 因此基因工程修饰方法通常只能插入氨基酸序列较短或者分子质量较小的外源片段.

    Tekewe[69]将分子技术与生物工艺工程方法相结合,简化携带轮状病毒抗原片段类凝集域(VP8*)的MPV VLP的生产流程. 他们通过基因工程,在VP1基因序列插入VP8*基因(VP1-VP8*),将其与未插入VP8*基因的VP1基因连接于同一载体上,通过大肠杆菌体内共表达,获得了五聚体衣壳粒(这些衣壳粒含有的VP1-VP8*亚基的数量不同),之后在体外成功组装成携带VP8*模块的VLP(图2). 研究发现修饰后的VLP能诱导小鼠产生高水平的VP8*抗体.

    图2
                            携带轮状病毒VP8*抗原的衣壳粒制备过程示意图[69]

    图2 携带轮状病毒VP8*抗原的衣壳粒制备过程示意[69]

    Fig. 2 Schematic illustration of the preparation process of engineering modular capsomere to display a rotavirus 18 ku VP8* module[69]

    注:(a)通过将VP1和VP1-VP8*基因构建于同一载体,实现VP1单体和VP1-VP8*模块蛋白的双表达. (b)通过大肠杆菌表达体系表达并在体内完成五聚体的组装. (c)从大肠杆菌中回收五聚体.

  • 5 MPV VLP的应用

    高度有序的空腔纳米结构、自组装/解组装的特性和便于修饰的特点赋予MPV VLP较高的应用价值. 近年来,基于MPV VLP的应用研究不断报道,主要集中在疫苗开发、运载药物或其他分子等方面.

  • 5.1 用于疫苗开发

    迄今为止,MPV VLP在疫苗开发方面的应用最为常见. VLP作为疫苗的方式主要有两种:一种是自身作为疫苗使用,这是由于其结构与天然病毒相似,外表面具有免疫抗原表位,能够引起较强的免疫反应,且不包含病毒基因,安全性较高;另一种是通过修饰携带抗[70,71,72,73,74]形成嵌合VLP疫苗. Middelberg[75]利用MPV VP1表达甲类链球菌(group A streptococcus,GAS)的J8肽,嵌合型J8-VP1 VLP产生的免疫抗体是针对一种GAS参考株的杀菌性抗体. 对小鼠皮下注射的结果表明,VLP具有自佐剂效应,添加免疫佐剂在抗体滴度方面没有明显增强作用. 研究者实现了VP1在生物反应器中每升多克的水平产生,这种技术有助于实现包括欠发达国家在内的快速、经济有效地疫苗的生产.

    目前基于VLP开发的疫苗产品除针对人体外,也有针对农场动物的预防接种. 这对于控制动物疾病向人类传播,保护人类健康十分有利. 此外,VLP可以用于构建针对不同病毒基因型具有交叉保护的新型疫苗候选[76]. 交叉保护能够提高对异种病原的免疫力,从而减少疫苗的更新频率,为新型流行病提供更好的预防措施. 由于疫苗的热稳定性较弱,未来需要开发新型有效的保护剂以降低低温储存引起的能源消耗,达到室温就能储存的目标. 目前,资源贫乏国家对于疫苗的迫切需求受到广泛关注,这就需要尽可能地缩短VLP生产周期,降低生产成本,并促进新型疫苗生产平台的开发.

  • 5.2 用作载体

    MPV VLP具有良好的生物相容性、溶解度、吸收效率以及靶向输送和载药能[5,77]. MPV VLP能够作为载体主要基于其独特的空腔纳米结构和有规律的自组装/解组装特性,从而便于封装包裹多种物质. 因此可以作为基因或药物运输的载[18]. 其封装的方式主要有两[78]:一种是利用病毒DNA呈负电性的原理,通过静电相互作用完成封装,但该方式受限于被封装物质的带电性;另一种是通过化学修饰或基因工程修饰,将能与被封装物质发生特异相互作用的物质共价固定于VLP内部,从而实现封装(图3).

    图3
                            MPV VLP封装过程示意图[78]

    图3 MPV VLP封装过程示意[78]

    Fig. 3 Schematic diagram of encapsulation of foreign cargoes by MPV VLP[78]

    注:(a)静电相互作用驱动的封装:带负电的物质可以充当被压缩的遗传核心来促进病毒衣壳按照天然类型进行组装. (b)基于化学修饰的封装:被封装物质(蓝色)通过肽(酰胺)键等共价键与衣壳内表面氨基酸残基官能团(橙色)相互作用. (c)通过基因工程进行封装:特定外源片段(红色)通过基因修饰引入病毒衣壳,它们通过特定的化学偶联作用来携带其他分子(蓝色).

    图3a所示的封装方法一般是在VLP组装过程中直接进行. 1983年,研究者发现MPV VLP可以在体外封装病毒DNA并将其转入细胞,从而表达病毒基因产[79]. 之后,Forstova[80]利用质粒DNA开展了类似的实验,证实了利用MPV VLP封装运载基因的可能性. 利用基因工程或化学偶联的方法,有研究者将绿色荧光蛋白和甲氨蝶呤分别固定在VP2上,利用VP2与VP1五聚体衣壳粒的相互作用,将它们封装在VLP内[81]. 类似的,也有研究者将噬菌体P22的VLP的支架蛋白与链霉亲和素蛋白融合表达,通过支架蛋白与VLP原衣壳内部的结合,将链霉亲和素封装于VLP内[82].

    在现有载体研究中,病毒载体由于遗传基因可能引起安全性问题,而非病毒载体具有较高的安全性,但是可能受限于转染效率较低的问[83]. VLP的应用能够同时避免上述两问题. 1995年,Forstova[80]通过渗透休克法,将DNA负载于MPV VLP结构蛋白VP1组成的五聚体衣壳粒上转染细胞,发现转染效率高于磷酸钙介导的转染效率. 虽然DNA整合到宿主基因组后拷贝数较少,但是目的蛋白的表达量却相当高. 使用VLP运载基因药物需要注意VLP的免疫原性. 人群中可能已经存在相应的中和抗体,或者患者在经过第一轮治疗后就已经获得中和抗体,这样会限制其适用性,并可能导致疗效丧失,甚至引起严重的免疫反应. 因其具有足够大的内部空间,除了运载基因,MPV VLP还能运载蛋白质,这对需要使用蛋白质药物进行治疗的疾病具有重要意义. 值得注意的是,在作为载体的应用过程中,MPV VLP可能存在包裹物泄露问题. 对于运载药物来说,封装包裹的步骤非常关键,当运送到特异位置,可以通过调控使VLP解组装从而使药物分子释放.

    通过封装运载酶分子,被封装的酶仍然保留其活性. 对于酶这种生物大分子来说,其封装可以通过衣壳粒的组装来实现. 将酶分子加入衣壳粒的组装体系中,随着衣壳粒组装成VLP,酶分子将会被部分封装在VLP内[84]. 封闭的纳米空间将酶集中起来,缩短反应距离,使酶与底物充分接触,对于VLP用作酶催化的纳米反应器具有指导意义. 对于酶分子来说,为了保证其催化性能和能重复利用,需要保持其一直处于VLP内部. 由于VLP结构的多孔性,小分子底物可以自由穿梭于VLP内外,但是如何将反应底物加以控制,使其定向聚拢于VLP内部却是个难点. 反应进行过程中,反应产物会渗透到VLP所处的溶液里,但也会有部分残存在VLP内部,这时,如何将反应产物全部转移出也是个难点.

    由于VLP种类繁多,有些病毒的VLP与MPV VLP相比更易制备,因此很多研究者也会采用其他病毒的VLP进行疫苗开发、药物分子载体等研究(表3).

    表3 MPV VLP及其他VLPs的应用

    Table 3 Application of MPV VLP and other VLPs

    VLP类型来源英文全称应用参考文献

    MPV

    鼠多瘤病毒

    murine polyomavirus

    开发基于细胞毒性T细胞表位的流感疫苗[85]
    携带抗原用于免疫治疗[62]
    介导蛋白胞内转运[86]
    靶向定位癌细胞[45]

    HBc

    乙肝病毒核心抗原

    hepatitis B core antigen

    开发肠病毒71型疫苗[87]
    携带肝细胞特异性配体用于细胞靶向传递[88]

    CCMV

    豇豆褪绿斑驳病毒

    cowpea chlorotic mottle virus

    携载RNA进入哺乳动物细胞并在胞内释放[89]
    作为纳米反应器包封T4溶菌酶[12]
    TMV烟草普通花叶病病毒tobacco mosaic virus用于生物传感器[90]
    MS2噬菌体MS2bacteriophage MS2开发针对前列腺癌的mRNA疫苗[91]
  • 5.3 用于其他方面

    MPV VLP的结构与天然病毒类似,具有很强的免疫原性,用MPV VLP免疫动物可以获得高滴度的抗体,产生的抗体可以用来进行相应病毒的免疫学检测. 病毒的衣壳蛋白上可能存在着优势抗原表位,当病毒感染动物后,可以刺激机体产生针对抗原表位的抗体. 衣壳蛋白组装成VLP后,由于各亚单位之间的相互作用,会形成单个蛋白质亚基不具有的立体构象,因此相对于单个蛋白质亚基,使用VLP对抗体进行检测可能具有更高的灵敏度和特异性. 常用的免疫学检测法有酶联免疫吸附测定法(enzyme linked immunosorbent assay,ELISA),以MPV VLP作抗原,通过ELISA检测MPV VLP免疫过的小鼠血清中的抗[92]. 在ELISA的基础上,基于VLP包裹一个报告基因结构,开发出了MPV VLP的中和试[35]. 在转染过程中添加中和抗体可以降低转染效率,便于定量检测抗体滴度.

  • 6 结论与展望

    MPV VLP在形态尺寸等方面与天然MPV相似,可通过修饰改造构建功能VLP,应用于疫苗、药物或其他分子载体等领域. MPV VLP的遗传操作相对容易,有利于其生物工程方面的灵活设计. 目前已经有建立好的MPV VLP生产平台,但是仍然需要不断探索,优化生产工艺,尽可能更大程度地降低生产成本,节约生产时间. 作为VLP研究的重要模型,MPV VLP虽然在疫苗和基因治疗等方面具有应用可能性,但是其实际应用仍受到诸多限制. 例如,化学修饰虽然可以将非生物组分连接到VLP,但是化学反应具有不确定性. 基因工程修饰在插入片段尺寸方面具有一定限制. 因此,对于MPV VLP的研究还需不断深入和完善. 后续研究可以在以下方面开展:a.兼顾MPV VLP的生产效率,在提高产量的情况下保证并提高其稳定性. b.深入研究MPV VLP的组装机理和结构修饰前后的能量变化,重新设计MPV VLP的结构,改善应用性能. 随着生物技术的发展,计算机科学技术、合成生物学、生物信息学等多种技术的综合运用,将推动MPV VLP的研究,有助于生化工程和生物医学的发展.

    Tel: 86-22-27403389, E-mail: linzhang@tju.edu.cn

  • 参 考 文 献

    • 1

      Zhang L, Lua L H L, Middelberg A P J, et al. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem Soc Rev, 2015, 44(23): 8608-8618

    • 2

      Lua L H L, Connors N K, Frank S, et al. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng, 2014, 111(3): 425-440

    • 3

      Rodríguez-Limas W A, Sekar K, Tyo K E. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotech, 2013, 24(6): 1089-1093

    • 4

      Teunissen E A, De Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Controlled Release, 2013, 172(1): 305-321

    • 5

      Yan D, Wei Y Q, Guo H C, et al. The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol, 2015, 99(24): 10415-10432

    • 6

      Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol, 2013, 53(1): 92-107

    • 7

      Stephen S L, Beales L, Peyret H, et al. Recombinant expression of tandem-HBc virus-like particles (VLPs). Methods Mol Biol, 2018, 1776: 97-123

    • 8

      Dhanasooraj D, Kumar R A, Mundayoor S. Subunit protein vaccine delivery system for tuberculosis based on hepatitis B virus core VLP (HBc-VLP) particles. Methods Mol Biol, 2016, 1404: 377-392

    • 9

      Kononova O, Maksudov F, Marx K A, et al. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid. J Phys Condens Matter, 2018, 30(4): 044006

    • 10

      Schoonen L, Van Eldijk M B, Van Hest J C M. Metal ion-induced self-assembly and packaging of CCMV nanocapsules. Methods Mol Biol, 2018, 1798: 57-67

    • 11

      Schoonen L, Maas R J M, Nolte R J M, et al. Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron, 2017, 73(33): 4968-4971

    • 12

      Schoonen L, Maassen S, Nolte R J M, et al. Stabilization of a virus-like particle and its application as a nanoreactor at physiological conditions. Biomacromolecules, 2017, 18(11): 3492-3497

    • 13

      Fan X Z, Naves L, Siwak N P, et al. Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology, 2015, 26(20): 205501

    • 14

      Zhai L, Peabody J, Pang Y S, et al. A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9. Antiviral Res, 2017, 147: 116-123

    • 15

      Lino C A, Caldeira J C, Peabody D S. Display of single-chain variable fragments on bacteriophage MS2 virus-like particles. J Nanobiotechnology, 2017, 15(1): 13

    • 16

      Dong Y M, Zhang G G, Huang X J, et al. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease. Antiviral Res, 2015, 117: 39-43

    • 17

      Salunke D M, Caspar D L D, Garcea R L. Self-assembly of purified polyomavirus capsid protein VP1. Cell, 1986, 46(6): 895-904

    • 18

      Tegerstedt K, Franzén A V, Andreasson K, et al. Murine polyomavirus virus-like particles (VLPs) as vectors for gene and immune therapy and vaccines against viral infections and cancer. Anticancer Res, 2005, 25(4): 2601-2608

    • 19

      Tsai B, Gilbert J M, Stehle T, et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J, 2014, 22(17): 4346-4355

    • 20

      Buch M H, Liaci A M, O'hara S D, et al. Structural and functional analysis of murine polyomavirus capsid proteins establish the determinants of ligand recognition and pathogenicity. Plos Path, 2015, 11(10): e1005104

    • 21

      Pattenden L K, Middelberg A P J, Niebert M, et al. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol, 2005, 23(10): 523-529

    • 22

      Stehle T, Yan Y W, Benjamin T L, et al. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature, 1994, 369(6476): 160-163

    • 23

      Yan Y W, Stehle T, Liddington R C, et al. Structure determination of simian virus 40 and murine polyomavirus by a combination of 30-fold and 5-fold electron-density averaging. Structure, 1996, 4(2): 157-164

    • 24

      Stehle T, Harrison S C. Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure, 1996, 4(2): 183-194

    • 25

      Brady J N, Consigli R A. Chromatographic separation of the polyoma virus proteins and renaturation of the isolated VP1 major capsid protein. J Virol, 1978, 27(2): 436-442

    • 26

      Li Y Y, Liu X D, Dong X Y, et al. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle. Langmuir, 2014, 30(28): 8500-8508

    • 27

      Liew M W, Rajendran A, Middelberg A P J. Microbial production of virus-like particle vaccine protein at gram-per-litre levels. J Biotechnol, 2010, 150(2): 224-231

    • 28

      Wro´Bel B, Yosef Y, Oppenheim A B, et al. Production and purification of SV40 major capsid protein (VP1) in Escherichia coli strains deficient for the GroELS chaperone machine. J Biotechnol, 2000, 84(3): 285-289

    • 29

      Ou W-C, Wang M, Fung C-Y, et al. The major capsid protein, VP1, of human JC virus expressed in Escherichia coli is able to self-assemble into a capsid-like particle and deliver exogenous DNA into human kidney cells. J Gen Virol, 1999, 80(Pt 1): 39-46

    • 30

      Palkova Z, Adamec T, Liebl D, et al. Production of polyomavirus structural protein VP1 in yeast cells and its interaction with cell structures. FEBS Lett, 2000, 478(3): 281-289

    • 31

      Zaveckas M, Snipaitis S, Pesliakas H, et al. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 991: 21-28

    • 32

      Kim H J, Cho S Y, Park M H, et al. Comparison of the size distributions and immunogenicity of human papillomavirus type 16 L1 virus-like particles produced in insect and yeast cells. Arch Pharm Res, 2018, 41(5): 544-553

    • 33

      Franzén A V, Tegerstedt K, Holländerova D, et al. Murine polyomarivus-VP1 virus-like particles immunize against some polyomavirus-induced tumours. In Vivo, 2005, 19(2): 323-326

    • 34

      Kawano M, Morikawa K, Suda T, et al. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants. Virology, 2014, 448: 159-167

    • 35

      Pastrana D V, Tolstov Y L, Becker J C, et al. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. Plos Pathog, 2009, 5(9): e1000578

    • 36

      Tolstov Y L, Pastrana D V, Feng H, et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer, 2009, 125(6): 1250-1256

    • 37

      Chi J N, Wu C Y, Chien M S, et al. The preparation of porcine circovirus type 2 (PCV2) virus-like particles using a recombinant pseudorabies virus and its application to vaccine development. J Biotechnol, 2014, 181: 12-19

    • 38

      Mangel W F, Hewick R M, Bayley S T, et al. Polyoma virus complementary RNA directs the in vitro synthesis of capsid proteins VP1 and VP2. J Virol, 1978, 25(2): 570-578

    • 39

      Lu Y, Chan W, Ko B Y, et al. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci USA, 2015, 112(40): 12360-12365

    • 40

      Bundy B C, Franciszkowicz M J, Swartz J R. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng, 2008, 100(1): 28-37

    • 41

      Garmann R F, Knobler C M, Gelbart W M. Protocol for efficient cell-free synthesis of cowpea chlorotic mottle virus-like particles containing heterologous RNAs. Methods Mol Biol, 2018, 1776: 249-265

    • 42

      Chuan Y P, Lua L H L, Middelberg A P J. High-level expression of soluble viral structural protein in Escherichia coli. J Biotechnol, 2008, 134(1-2): 64-71

    • 43

      Wetzel D, Rolf T, Suckow M, et al. Establishment of a yeast-based VLP platform for antigen presentation. Microb Cell Fact, 2018, 17(1): 17

    • 44

      Sasnauskas K, Bulavaite A, Hale A, et al. Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology, 2002, 45(4-6): 308-317

    • 45

      Zackova Suchanova J, Neburkova J, Spanielova H, et al. Retargeting polyomavirus-like particles to cancer cells by chemical modification of capsid surface. Bioconjug Chem, 2017, 28(2): 307-313

    • 46

      Nakano H, Yamane T. Cellfree protein synthesis systems. Biotechnol Adv, 1998, 16(2): 367-384

    • 47

      Lu Y, Welsh J P, Swartz J R. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci USA, 2014, 111(1): 125-130

    • 48

      Nakano H, Matsuda K, Okumura R, et al. Accumulation of translational inhibitor during multi-hour cell-free protein synthesis reaction using rabbit reticulocyte lysate. J Ferment Bioeng, 1997, 83(5): 470-473

    • 49

      Endo Y, Sawasaki T. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol Adv, 2003, 21(8): 695-713

    • 50

      Wheeler T, Bayley S T, Harvey R, et al. Cell-free synthesis of polyoma virus capsid proteins VP1 and VP2. J Virol, 1977, 21(1): 215-224

    • 51

      Lu Y. Cell-free synthetic biology: engineering in an open world. Synth Syst Biotechnol, 2017, 2(1): 23-27

    • 52

      Ding Y, Chuan Y P, He L Z, et al. Modeling the competition between aggregation and self-assembly during virus-like particle processing. Biotechnol Bioeng, 2010, 107(3): 550-560

    • 53

      Perlmutter J D, Hagan M F. Mechanisms of virus assembly. Annu Rev Phys Chem, 2015, 66(1): 217-239

    • 54

      Chuan Y P, Fan Y Y, Lua L H L, et al. Virus assembly occurs following a pH- or Ca2+-triggered switch in the thermodynamic attraction between structural protein capsomeres. J R Soc Interface, 2010, 7(44): 409-421

    • 55

      Zhang L, Tang R H, Bai S, et al. Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations. J Phys Chem B, 2013, 117(18): 5411-5421

    • 56

      Caparrós-Wanderley W, Clark B, Griffin B E. Effect of dose and long-term storage on the immunogenicity of murine polyomavirus VP1 virus-like particles. Vaccine, 2004, 22(3-4): 352-361

    • 57

      Hamachi I, Bernardes G J L. Protein engineering through chemical, genetic and computational manipulation. Chem Soc Rev, 2018, 47(24): 8977-8979

    • 58

      Peacey M, Wilson S, Baird M A, et al. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol Bioeng, 2007, 98(5): 968-977

    • 59

      Ewers H, Smith A E, Sbalzarini I F, et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci USA, 2005, 102(42): 15110-15115

    • 60

      Krauzewicz N, Cox C, Soeda E, et al. Sustained ex vivo and in vivo transfer of a reporter gene using polyoma virus pseudocapsids. Gene Ther, 2000, 7(13): 1094-1102

    • 61

      Suchanova J Z, Neburkova J, Spanielova H, et al. Retargeting polyomavirus-like particles to cancer cells by chemical modification of capsid surface. Bioconjugate Chem, 2017, 28(2): 307-313

    • 62

      Mathilda E, Kalle A, Joachim W, et al. Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor. Plos One, 2011, 6(8): e23828

    • 63

      Seth A, Kong I G, Lee S H, et al. Modular virus-like particles for sublingual vaccination against group A streptococcus. Vaccine, 2016, 34(51): 6472-6480

    • 64

      Tekewe A, Connors N K, Middelberg A P J, et al. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle. Protein Sci, 2016, 25(8): 1507-1516

    • 65

      Skrastina D, Bulavaite A, Sominskaya I, et al. High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine, 2008, 26(16): 1972-1981

    • 66

      Schmidt U, Rudolph R, Böhm G. Binding of external ligands onto an engineered virus capsid. Protein Eng, 2001, 14(10): 769-774

    • 67

      Wibowo N, Chuan Y P, Lua L H L, et al. Modular engineering of a microbially-produced viral capsomere vaccine for influenza. Chem Eng Sci, 2013, 103(22): 12-20

    • 68

      Zhang L, Tang R H, Bai S, et al. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations. Plos One, 2014, 9(9): e107313

    • 69

      Tekewe A, Fan Y Y, Tan E, et al. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen. Biotechnol Bioeng, 2017, 114(2): 397-406

    • 70

      Middelberg A P J, Rivera-Hernandez T, Wibowo N, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29(41): 7154-7162

    • 71

      Rivera-Hernandez T, Hartas J, Wu Y, et al. Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine, 2013, 31(15): 1950-1955

    • 72

      Wibowo N, Wu Y, Fan Y, et al. Non-chromatographic preparation of a bacterially produced single-shot modular virus-like particle capsomere vaccine for avian influenza. Vaccine, 2015, 33(44): 5960-5965

    • 73

      Tekewe A, Connors N K, Sainsbury F, et al. A rapid and simple screening method to identify conditions for enhanced stability of modular vaccine candidates. Biochem Eng J, 2015, 100: 50-58

    • 74

      Anggraeni M R, Connors N K, Wu Y, et al. Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle. Vaccine, 2013, 31(40): 4428-4435

    • 75

      Middelberg A P, Rivera-Hernandez T, Wibowo N, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29(41): 7154-7162

    • 76

      Ding X W, Liu D, Booth G, et al. Virus-like particle engineering: from rational design to versatile applications. Biotechnol J, 2018, 13(5): e1700324

    • 77

      Rohovie M J, Nagasawa M, Swartz J R. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med, 2017, 2(1): 43-57

    • 78

      Wu Y Z, Yang H T, Shin H-J. Viruses as self-assembled nanocontainers for encapsulation of functional cargoes. Korean J Chem Eng, 2013, 30(7): 1359-1367

    • 79

      Slilaty S N, Aposhian H V. Gene transfer by polyoma-like particles assembled in a cell-free system. Science, 1983, 220(4958): 725-727

    • 80

      Forstova J, Krauzewicz N, Sandig V, et al. Polyoma virus pseudocapsids as efficient carriers of heterologous DNA into mammalian cells. Hum Gene Ther, 1995, 6(3): 297-306

    • 81

      Abbing A, Blaschke U K, Grein S, et al. Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. J Biol Chem, 2004, 279(26): 27410-27421

    • 82

      Sharma J, Uchida M, Miettinen H M, et al. Modular interior loading and exterior decoration of a virus-like particle. Nanoscale, 2017, 9(29): 10420-10430

    • 83

      Mastrobattista E, Ma V D A, Hennink W E, et al. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov, 2006, 5(2): 115-121

    • 84

      Comellas-Aragones M, Engelkamp H, Claessen V I, et al. A virus-based single-enzyme nanoreactor. Nat Nanotechnol, 2007, 2(10): 635-639

    • 85

      Abidin R. Murine polyomavirus VLPs as a platform for cytotoxic T cell epitope-based influenza vaccine candidates [D]. Australia: The University of Queensland, 2016

    • 86

      Dashti N H, Abidin R S, Sainsbury F. Programmable in vitro coencapsidation of guest proteins for intracellular delivery by virus-like particles. ACS Nano, 2018, 12(5): 4615-4623

    • 87

      Ye X, Ku Z, Liu Q, et al. Chimeric virus-like particle vaccines displaying conserved enterovirus 71 epitopes elicit protective neutralizing antibodies in mice through divergent mechanisms. J Virol, 2014, 88(1): 72-81

    • 88

      Lee K W, Tey B T, Ho K L, et al. Delivery of chimeric hepatitis B core particles into liver cells. J Appl Microbiol, 2012, 112(1): 119-131

    • 89

      Azizgolshani O, Garmann R F, Cadena-Nava R, et al. Reconstituted plant viral capsids can release genes to mammalian cells. Virology, 2013, 441(1): 12-17

    • 90

      Zang F, Gerasopoulos K, Brown A D, et al. Capillary microfluidics-assembled virus-like particle bionanoreceptor interfaces for label-free biosensing. ACS Appl Mater Interfaces, 2017, 9(10): 8471-8479

    • 91

      Li J, Sun Y, Jia T, et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int J Cancer, 2014, 134(7): 1683-1694

    • 92

      Tegerstedt K, Andreasson K, Vlastos A, et al. Murine pneumotropic virus VP1 virus-like particles (VLPs) bind to several cell types independent of sialic acid residues and do not serologically cross react with murine polyomavirus VP1 VLPs. J Gen Virol, 2003, 84(Pt 12): 3443-3452

李郭安

机 构:天津大学化工学院,天津 300350

Affiliation:School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

张麟

机 构:天津大学化工学院,天津 300350

Affiliation:School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

角 色:通讯作者

Role:Corresponding author

html/pibbcn/20190099/alternativeImage/6ff2e49e-f1e5-469c-81cb-70f129470f2f-F001.png
表达系统转录后修饰核酸污染培养成本培养周期VLP实例
原核细胞有,较多MPV[27],SV40 (simian virus 40)[28],JCPV (JC polyomavirus)[29]
酵母细胞有,较少MPV[30],PCV2 (porcine circovirus type 2)[31],HPV16 L1 (human papillomavirus type 16 L1)[32]
杆状病毒/昆虫细胞有,较多MPV[33],SV40[34],HPV16 L1[32]
哺乳动物细胞MPV[35],MCV (Merkel cell polyomavirus)[35,36],PCV2[37]
无细胞表达MPV[38],HBc[39],MS2[40],CCMV[41]
修饰方法关键优点缺点用途

化学修饰

化学反应

可以在VLP组装完成之后

连接大分子功能分子

反应条件严苛,操作复杂

连接多肽、荧光分子、大分子蛋白质等

基因工程修饰基因序列改变操作简便,专一性高外源片段不宜过大插入多肽、抗原片段、标签蛋白等
html/pibbcn/20190099/alternativeImage/6ff2e49e-f1e5-469c-81cb-70f129470f2f-F002.png
html/pibbcn/20190099/alternativeImage/6ff2e49e-f1e5-469c-81cb-70f129470f2f-F003.png
VLP类型来源英文全称应用参考文献

MPV

鼠多瘤病毒

murine polyomavirus

开发基于细胞毒性T细胞表位的流感疫苗[85]
携带抗原用于免疫治疗[62]
介导蛋白胞内转运[86]
靶向定位癌细胞[45]

HBc

乙肝病毒核心抗原

hepatitis B core antigen

开发肠病毒71型疫苗[87]
携带肝细胞特异性配体用于细胞靶向传递[88]

CCMV

豇豆褪绿斑驳病毒

cowpea chlorotic mottle virus

携载RNA进入哺乳动物细胞并在胞内释放[89]
作为纳米反应器包封T4溶菌酶[12]
TMV烟草普通花叶病病毒tobacco mosaic virus用于生物传感器[90]
MS2噬菌体MS2bacteriophage MS2开发针对前列腺癌的mRNA疫苗[91]

图1 MPV和MPV VLP结构示意图

Fig. 1 Schematic illustration of MPV and MPV VLP

表1 用于制备VLP的表达系统

Table 1 Different systems used for the production of VLP

表2 MPV VLP的修饰方法

Table 2 Modification types of MPV VLP

图2 携带轮状病毒VP8*抗原的衣壳粒制备过程示意[69]

Fig. 2 Schematic illustration of the preparation process of engineering modular capsomere to display a rotavirus 18 ku VP8* module[69]

图3 MPV VLP封装过程示意[78]

Fig. 3 Schematic diagram of encapsulation of foreign cargoes by MPV VLP[78]

表3 MPV VLP及其他VLPs的应用

Table 3 Application of MPV VLP and other VLPs

image /

(a) MPV结构示意图. (b) 由VP1、VP2、VP3组装而成的MPV VLP结构示意图. (c) 仅由VP1组装而成的MPV VLP结构示意图.

无注解

无注解

(a)通过将VP1和VP1-VP8*基因构建于同一载体,实现VP1单体和VP1-VP8*模块蛋白的双表达. (b)通过大肠杆菌表达体系表达并在体内完成五聚体的组装. (c)从大肠杆菌中回收五聚体.

(a)静电相互作用驱动的封装:带负电的物质可以充当被压缩的遗传核心来促进病毒衣壳按照天然类型进行组装. (b)基于化学修饰的封装:被封装物质(蓝色)通过肽(酰胺)键等共价键与衣壳内表面氨基酸残基官能团(橙色)相互作用. (c)通过基因工程进行封装:特定外源片段(红色)通过基因修饰引入病毒衣壳,它们通过特定的化学偶联作用来携带其他分子(蓝色).

无注解

  • 参 考 文 献

    • 1

      Zhang L, Lua L H L, Middelberg A P J, et al. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem Soc Rev, 2015, 44(23): 8608-8618

    • 2

      Lua L H L, Connors N K, Frank S, et al. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng, 2014, 111(3): 425-440

    • 3

      Rodríguez-Limas W A, Sekar K, Tyo K E. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotech, 2013, 24(6): 1089-1093

    • 4

      Teunissen E A, De Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Controlled Release, 2013, 172(1): 305-321

    • 5

      Yan D, Wei Y Q, Guo H C, et al. The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol, 2015, 99(24): 10415-10432

    • 6

      Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol, 2013, 53(1): 92-107

    • 7

      Stephen S L, Beales L, Peyret H, et al. Recombinant expression of tandem-HBc virus-like particles (VLPs). Methods Mol Biol, 2018, 1776: 97-123

    • 8

      Dhanasooraj D, Kumar R A, Mundayoor S. Subunit protein vaccine delivery system for tuberculosis based on hepatitis B virus core VLP (HBc-VLP) particles. Methods Mol Biol, 2016, 1404: 377-392

    • 9

      Kononova O, Maksudov F, Marx K A, et al. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid. J Phys Condens Matter, 2018, 30(4): 044006

    • 10

      Schoonen L, Van Eldijk M B, Van Hest J C M. Metal ion-induced self-assembly and packaging of CCMV nanocapsules. Methods Mol Biol, 2018, 1798: 57-67

    • 11

      Schoonen L, Maas R J M, Nolte R J M, et al. Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron, 2017, 73(33): 4968-4971

    • 12

      Schoonen L, Maassen S, Nolte R J M, et al. Stabilization of a virus-like particle and its application as a nanoreactor at physiological conditions. Biomacromolecules, 2017, 18(11): 3492-3497

    • 13

      Fan X Z, Naves L, Siwak N P, et al. Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology, 2015, 26(20): 205501

    • 14

      Zhai L, Peabody J, Pang Y S, et al. A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9. Antiviral Res, 2017, 147: 116-123

    • 15

      Lino C A, Caldeira J C, Peabody D S. Display of single-chain variable fragments on bacteriophage MS2 virus-like particles. J Nanobiotechnology, 2017, 15(1): 13

    • 16

      Dong Y M, Zhang G G, Huang X J, et al. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease. Antiviral Res, 2015, 117: 39-43

    • 17

      Salunke D M, Caspar D L D, Garcea R L. Self-assembly of purified polyomavirus capsid protein VP1. Cell, 1986, 46(6): 895-904

    • 18

      Tegerstedt K, Franzén A V, Andreasson K, et al. Murine polyomavirus virus-like particles (VLPs) as vectors for gene and immune therapy and vaccines against viral infections and cancer. Anticancer Res, 2005, 25(4): 2601-2608

    • 19

      Tsai B, Gilbert J M, Stehle T, et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J, 2014, 22(17): 4346-4355

    • 20

      Buch M H, Liaci A M, O'hara S D, et al. Structural and functional analysis of murine polyomavirus capsid proteins establish the determinants of ligand recognition and pathogenicity. Plos Path, 2015, 11(10): e1005104

    • 21

      Pattenden L K, Middelberg A P J, Niebert M, et al. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol, 2005, 23(10): 523-529

    • 22

      Stehle T, Yan Y W, Benjamin T L, et al. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature, 1994, 369(6476): 160-163

    • 23

      Yan Y W, Stehle T, Liddington R C, et al. Structure determination of simian virus 40 and murine polyomavirus by a combination of 30-fold and 5-fold electron-density averaging. Structure, 1996, 4(2): 157-164

    • 24

      Stehle T, Harrison S C. Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure, 1996, 4(2): 183-194

    • 25

      Brady J N, Consigli R A. Chromatographic separation of the polyoma virus proteins and renaturation of the isolated VP1 major capsid protein. J Virol, 1978, 27(2): 436-442

    • 26

      Li Y Y, Liu X D, Dong X Y, et al. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle. Langmuir, 2014, 30(28): 8500-8508

    • 27

      Liew M W, Rajendran A, Middelberg A P J. Microbial production of virus-like particle vaccine protein at gram-per-litre levels. J Biotechnol, 2010, 150(2): 224-231

    • 28

      Wro´Bel B, Yosef Y, Oppenheim A B, et al. Production and purification of SV40 major capsid protein (VP1) in Escherichia coli strains deficient for the GroELS chaperone machine. J Biotechnol, 2000, 84(3): 285-289

    • 29

      Ou W-C, Wang M, Fung C-Y, et al. The major capsid protein, VP1, of human JC virus expressed in Escherichia coli is able to self-assemble into a capsid-like particle and deliver exogenous DNA into human kidney cells. J Gen Virol, 1999, 80(Pt 1): 39-46

    • 30

      Palkova Z, Adamec T, Liebl D, et al. Production of polyomavirus structural protein VP1 in yeast cells and its interaction with cell structures. FEBS Lett, 2000, 478(3): 281-289

    • 31

      Zaveckas M, Snipaitis S, Pesliakas H, et al. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 991: 21-28

    • 32

      Kim H J, Cho S Y, Park M H, et al. Comparison of the size distributions and immunogenicity of human papillomavirus type 16 L1 virus-like particles produced in insect and yeast cells. Arch Pharm Res, 2018, 41(5): 544-553

    • 33

      Franzén A V, Tegerstedt K, Holländerova D, et al. Murine polyomarivus-VP1 virus-like particles immunize against some polyomavirus-induced tumours. In Vivo, 2005, 19(2): 323-326

    • 34

      Kawano M, Morikawa K, Suda T, et al. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants. Virology, 2014, 448: 159-167

    • 35

      Pastrana D V, Tolstov Y L, Becker J C, et al. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. Plos Pathog, 2009, 5(9): e1000578

    • 36

      Tolstov Y L, Pastrana D V, Feng H, et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer, 2009, 125(6): 1250-1256

    • 37

      Chi J N, Wu C Y, Chien M S, et al. The preparation of porcine circovirus type 2 (PCV2) virus-like particles using a recombinant pseudorabies virus and its application to vaccine development. J Biotechnol, 2014, 181: 12-19

    • 38

      Mangel W F, Hewick R M, Bayley S T, et al. Polyoma virus complementary RNA directs the in vitro synthesis of capsid proteins VP1 and VP2. J Virol, 1978, 25(2): 570-578

    • 39

      Lu Y, Chan W, Ko B Y, et al. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci USA, 2015, 112(40): 12360-12365

    • 40

      Bundy B C, Franciszkowicz M J, Swartz J R. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng, 2008, 100(1): 28-37

    • 41

      Garmann R F, Knobler C M, Gelbart W M. Protocol for efficient cell-free synthesis of cowpea chlorotic mottle virus-like particles containing heterologous RNAs. Methods Mol Biol, 2018, 1776: 249-265

    • 42

      Chuan Y P, Lua L H L, Middelberg A P J. High-level expression of soluble viral structural protein in Escherichia coli. J Biotechnol, 2008, 134(1-2): 64-71

    • 43

      Wetzel D, Rolf T, Suckow M, et al. Establishment of a yeast-based VLP platform for antigen presentation. Microb Cell Fact, 2018, 17(1): 17

    • 44

      Sasnauskas K, Bulavaite A, Hale A, et al. Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology, 2002, 45(4-6): 308-317

    • 45

      Zackova Suchanova J, Neburkova J, Spanielova H, et al. Retargeting polyomavirus-like particles to cancer cells by chemical modification of capsid surface. Bioconjug Chem, 2017, 28(2): 307-313

    • 46

      Nakano H, Yamane T. Cellfree protein synthesis systems. Biotechnol Adv, 1998, 16(2): 367-384

    • 47

      Lu Y, Welsh J P, Swartz J R. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci USA, 2014, 111(1): 125-130

    • 48

      Nakano H, Matsuda K, Okumura R, et al. Accumulation of translational inhibitor during multi-hour cell-free protein synthesis reaction using rabbit reticulocyte lysate. J Ferment Bioeng, 1997, 83(5): 470-473

    • 49

      Endo Y, Sawasaki T. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol Adv, 2003, 21(8): 695-713

    • 50

      Wheeler T, Bayley S T, Harvey R, et al. Cell-free synthesis of polyoma virus capsid proteins VP1 and VP2. J Virol, 1977, 21(1): 215-224

    • 51

      Lu Y. Cell-free synthetic biology: engineering in an open world. Synth Syst Biotechnol, 2017, 2(1): 23-27

    • 52

      Ding Y, Chuan Y P, He L Z, et al. Modeling the competition between aggregation and self-assembly during virus-like particle processing. Biotechnol Bioeng, 2010, 107(3): 550-560

    • 53

      Perlmutter J D, Hagan M F. Mechanisms of virus assembly. Annu Rev Phys Chem, 2015, 66(1): 217-239

    • 54

      Chuan Y P, Fan Y Y, Lua L H L, et al. Virus assembly occurs following a pH- or Ca2+-triggered switch in the thermodynamic attraction between structural protein capsomeres. J R Soc Interface, 2010, 7(44): 409-421

    • 55

      Zhang L, Tang R H, Bai S, et al. Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations. J Phys Chem B, 2013, 117(18): 5411-5421

    • 56

      Caparrós-Wanderley W, Clark B, Griffin B E. Effect of dose and long-term storage on the immunogenicity of murine polyomavirus VP1 virus-like particles. Vaccine, 2004, 22(3-4): 352-361

    • 57

      Hamachi I, Bernardes G J L. Protein engineering through chemical, genetic and computational manipulation. Chem Soc Rev, 2018, 47(24): 8977-8979

    • 58

      Peacey M, Wilson S, Baird M A, et al. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol Bioeng, 2007, 98(5): 968-977

    • 59

      Ewers H, Smith A E, Sbalzarini I F, et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci USA, 2005, 102(42): 15110-15115

    • 60

      Krauzewicz N, Cox C, Soeda E, et al. Sustained ex vivo and in vivo transfer of a reporter gene using polyoma virus pseudocapsids. Gene Ther, 2000, 7(13): 1094-1102

    • 61

      Suchanova J Z, Neburkova J, Spanielova H, et al. Retargeting polyomavirus-like particles to cancer cells by chemical modification of capsid surface. Bioconjugate Chem, 2017, 28(2): 307-313

    • 62

      Mathilda E, Kalle A, Joachim W, et al. Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor. Plos One, 2011, 6(8): e23828

    • 63

      Seth A, Kong I G, Lee S H, et al. Modular virus-like particles for sublingual vaccination against group A streptococcus. Vaccine, 2016, 34(51): 6472-6480

    • 64

      Tekewe A, Connors N K, Middelberg A P J, et al. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle. Protein Sci, 2016, 25(8): 1507-1516

    • 65

      Skrastina D, Bulavaite A, Sominskaya I, et al. High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine, 2008, 26(16): 1972-1981

    • 66

      Schmidt U, Rudolph R, Böhm G. Binding of external ligands onto an engineered virus capsid. Protein Eng, 2001, 14(10): 769-774

    • 67

      Wibowo N, Chuan Y P, Lua L H L, et al. Modular engineering of a microbially-produced viral capsomere vaccine for influenza. Chem Eng Sci, 2013, 103(22): 12-20

    • 68

      Zhang L, Tang R H, Bai S, et al. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations. Plos One, 2014, 9(9): e107313

    • 69

      Tekewe A, Fan Y Y, Tan E, et al. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen. Biotechnol Bioeng, 2017, 114(2): 397-406

    • 70

      Middelberg A P J, Rivera-Hernandez T, Wibowo N, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29(41): 7154-7162

    • 71

      Rivera-Hernandez T, Hartas J, Wu Y, et al. Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine, 2013, 31(15): 1950-1955

    • 72

      Wibowo N, Wu Y, Fan Y, et al. Non-chromatographic preparation of a bacterially produced single-shot modular virus-like particle capsomere vaccine for avian influenza. Vaccine, 2015, 33(44): 5960-5965

    • 73

      Tekewe A, Connors N K, Sainsbury F, et al. A rapid and simple screening method to identify conditions for enhanced stability of modular vaccine candidates. Biochem Eng J, 2015, 100: 50-58

    • 74

      Anggraeni M R, Connors N K, Wu Y, et al. Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle. Vaccine, 2013, 31(40): 4428-4435

    • 75

      Middelberg A P, Rivera-Hernandez T, Wibowo N, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29(41): 7154-7162

    • 76

      Ding X W, Liu D, Booth G, et al. Virus-like particle engineering: from rational design to versatile applications. Biotechnol J, 2018, 13(5): e1700324

    • 77

      Rohovie M J, Nagasawa M, Swartz J R. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med, 2017, 2(1): 43-57

    • 78

      Wu Y Z, Yang H T, Shin H-J. Viruses as self-assembled nanocontainers for encapsulation of functional cargoes. Korean J Chem Eng, 2013, 30(7): 1359-1367

    • 79

      Slilaty S N, Aposhian H V. Gene transfer by polyoma-like particles assembled in a cell-free system. Science, 1983, 220(4958): 725-727

    • 80

      Forstova J, Krauzewicz N, Sandig V, et al. Polyoma virus pseudocapsids as efficient carriers of heterologous DNA into mammalian cells. Hum Gene Ther, 1995, 6(3): 297-306

    • 81

      Abbing A, Blaschke U K, Grein S, et al. Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. J Biol Chem, 2004, 279(26): 27410-27421

    • 82

      Sharma J, Uchida M, Miettinen H M, et al. Modular interior loading and exterior decoration of a virus-like particle. Nanoscale, 2017, 9(29): 10420-10430

    • 83

      Mastrobattista E, Ma V D A, Hennink W E, et al. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov, 2006, 5(2): 115-121

    • 84

      Comellas-Aragones M, Engelkamp H, Claessen V I, et al. A virus-based single-enzyme nanoreactor. Nat Nanotechnol, 2007, 2(10): 635-639

    • 85

      Abidin R. Murine polyomavirus VLPs as a platform for cytotoxic T cell epitope-based influenza vaccine candidates [D]. Australia: The University of Queensland, 2016

    • 86

      Dashti N H, Abidin R S, Sainsbury F. Programmable in vitro coencapsidation of guest proteins for intracellular delivery by virus-like particles. ACS Nano, 2018, 12(5): 4615-4623

    • 87

      Ye X, Ku Z, Liu Q, et al. Chimeric virus-like particle vaccines displaying conserved enterovirus 71 epitopes elicit protective neutralizing antibodies in mice through divergent mechanisms. J Virol, 2014, 88(1): 72-81

    • 88

      Lee K W, Tey B T, Ho K L, et al. Delivery of chimeric hepatitis B core particles into liver cells. J Appl Microbiol, 2012, 112(1): 119-131

    • 89

      Azizgolshani O, Garmann R F, Cadena-Nava R, et al. Reconstituted plant viral capsids can release genes to mammalian cells. Virology, 2013, 441(1): 12-17

    • 90

      Zang F, Gerasopoulos K, Brown A D, et al. Capillary microfluidics-assembled virus-like particle bionanoreceptor interfaces for label-free biosensing. ACS Appl Mater Interfaces, 2017, 9(10): 8471-8479

    • 91

      Li J, Sun Y, Jia T, et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int J Cancer, 2014, 134(7): 1683-1694

    • 92

      Tegerstedt K, Andreasson K, Vlastos A, et al. Murine pneumotropic virus VP1 virus-like particles (VLPs) bind to several cell types independent of sialic acid residues and do not serologically cross react with murine polyomavirus VP1 VLPs. J Gen Virol, 2003, 84(Pt 12): 3443-3452