en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
ZhangY M, RockC O. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol, 2008, 6(3): 222-233
参考文献 2
CronanJ E. Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol Biol Rev, 2016, 80(2): 429-450
参考文献 3
WangX, QuinnP J. Lipopolysaccharide: biosynthetic pathway and structure modification. Prog Lipid Res, 2010, 49(2): 97-107
参考文献 4
Nhu LamM, DudekulaD, DurhamB, et al. Insights into β-ketoacyl-chain recognition for β-ketoacyl-ACP utilizing AHL synthases. Chemical Communications, 2018, 54(64): 8838-8841
参考文献 5
ZhouL, ZhangL H, CamaraM, et al. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends in Microbiology, 2017, 25(4): 293-303
参考文献 6
ParsonsJ B, RockC O. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res, 2013, 52(3): 249-276
参考文献 7
CronanJ E, ThomasJ. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol, 2009, 459: 395-433
参考文献 8
FisherM, SedelnikovaS E, MartindaleW, et al. Crystallization of the NADP-dependent β-keto acyl-carrier protein reductase from Brassica napus. Acta Crystallogr D Biol Crystallogr, 2000, 56(Pt 1): 86-88
参考文献 9
LaiC Y, CronanJ E. Isolation and characterization of β-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol, 2004, 186(6): 1869-1878
参考文献 10
FengS X, MaJ C, YangJ, et al. Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons. BMC Microbiol, 2015, 15:223
参考文献 11
MaoY H, LiF, MaJ C, et al. Sinorhizobium meliloti functionally replaces 3-oxoacyl-acyl carrier protein reductase (FabG) by overexpressing NodG during fatty acid synthesis. Mol Plant Microbe Interact, 2016, 29(6): 458-467
参考文献 12
HuZ, DongH, MaJ C, et al. Novel Xanthomonas campestris long-chain-specific 3-oxoacyl-acyl carrier protein reductase involved in diffusible signal factor synthesis. MBio, 2018, 9(3). pii: e00596-18
参考文献 13
GuoQ Q, ZhangW B, ZhangC, et al. Characterization of 3-oxacyl-acyl carrier protein reductase homolog genes in Pseudomonas aeruginosa PAO1. Front Microbiol, 2019, 10:1028
参考文献 14
YonezukaK, ShimodairaJ, TabataM, et al. Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group. J Gen Appl Microbiol, 2017, 63(1): 1-10
参考文献 15
WangQ, LiY, LiJ, et al. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Environ Sci Pollut R, 2015, 22(1): 565-573
参考文献 16
CanovasD, CasesI, De LorenzoV. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol, 2003, 5(12): 1242-1256
参考文献 17
KennedyR K, NaikP R, VeenaV, et al. 5-Methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem Biol Interact, 2015, 231: 71-82
参考文献 18
ZinnM, WitholtB, EgliT. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliver Rev, 2001, 53(1): 5-21
参考文献 19
VoM T, LeeK W, JungY M, et al. Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KCTC1639. J Biosci Bioeng, 2008, 106(1): 95-98
参考文献 20
KhanS R, GainesJ, RoopR M II, et al. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol, 2008, 74(16): 5053-5062
参考文献 21
YuY H, HuZ, DongH J, et al. Xanthomonas campestris FabH is required for branched-chain fatty acid and DSF-family quorum sensing signal biosynthesis. Sci Rep, 2016, 6: 32811
参考文献 22
ZhuL, BiH, MaJ, et al. The two functional enoyl-acyl carrier protein reductases of Enterococcus faecalis do not mediate triclosan resistance. MBio, 2013, 4(5): e00613-13
参考文献 23
JiangY, ChanC H, CronanJ E. The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-CoA synthetase family. Biochemistry, 2006, 45(33): 10008-10019
参考文献 24
冯赛祥, 朱磊, 罗彪, 等. 大肠杆菌(Escherichia coli)体外脂肪酸合成反应的重建. 生物化学与生物物理进展, 2008, 35(8): 954-963
FengS X, ZhuL, LuoB, et al. Prog Biochem Biophys, 2008, 35(8): 954-963
参考文献 25
PriceA C, ZhangY M, RockC O, et al. Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG. Structure, 2004, 12(3): 417-428
参考文献 26
MaoY H, MaJ C, LiF, et al. Ralstonia solanacearum RSp0194 encodes a novel 3-keto-acyl carrier protein synthase III. Plos One, 2015, 10(8): e0136261
参考文献 27
余永红, 马建荣, 王海洪. 野油菜黄单胞菌中烯脂酰ACP还原酶的功能鉴定. 生物化学与生物物理进展, 2016, 43(05): 514-522
YuY H, MaJ R, WangH H. Prog Biochem Biophys, 2016, 43(05): 514-522
参考文献 28
HeathR J, RockC O. Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Investig Drugs, 2004, 5(2): 146-153
参考文献 29
KallbergY, OppermannU, JornvallH, et al. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci, 2002, 11(3): 636-641
目录 contents

    摘要

    3-酮脂酰ACP还原酶(FabG)催化脂肪酸合成中的第一步还原反应,是细菌生长的关键酶之一. 恶臭假单胞菌在环境污染治理和工业聚羟基脂肪酸(PHA)的生产中,都具有重要的应用价值. 生物信息学分析显示,恶臭假单胞菌基因组编码6个FabG同源蛋白质,与大肠杆菌FabG相比较,PpFabG5序列相似性最高(76.5%),其他几个PpFabG也都具有较高的序列相似性(约50%). 除PpFabG4之外,其他的同源蛋白质都具有催化活性位点和N端辅因子结合位点. 为研究恶臭假单胞菌中这6个FabG同源蛋白质的生物学功能,本文进行了异体遗传互补、体外酶学活性分析、体内基因敲除与突变株性状分析等研究. 结果显示,只有PpfabG1PpfabG3、PpfabG5能恢复大肠杆菌fabG温度敏感突变株CL104在42℃时生长,其中PpfabG1互补株生长较弱. 而在体外活性检测中,PpFabG1、PpFabG3和PpFabG5在脂肪酸合成起始反应和延伸反应中都具有催化活性,但PpFabG1活性较弱,PpFabG6仅在起始反应中具有催化活性. PpfabG5是恶臭假单胞菌生长的必需基因,不能被敲除,而其他几个PpfabG基因敲除后不影响菌体的生长,突变株的脂肪酸组成与野生菌也无差异. 但PpfabG1PpfabG2敲除后菌体的运动性下降,PpfabG3PpfabG6突变影响了生物被膜的合成量,而PpfabG4PpfabG6敲除突变株对H2O2的耐受性增强,表明这些基因具有不同的生理功能,可能在菌体的不同逆境中发挥作用.

    Abstract

    3-Ketoacy ACP reducatase (FabG), the key enzyme for bacteria growth, catalyzes the first reduction step in fatty acid synthesis. Pseudomonas putida has important application values in environmental pollution bioremediation and industrial polyhydroxy fatty acid (PHA) production. Bioinformatics analysis showed Pseudomonas putida genome encodes six FabG homologues with E. coli FabG, of which PpFabG5 shows the highest sequence similarity (76.5%) and other five PpFabGs also have high similarity (about 50%). Except PpFabG4, the other homologs have the conserved catalytic activity sites and N-terminal cofactor binding sites. So the paper used different methods, including the genetic complementary, catalytic activity analysis in vitro, gene deletion in vivo, and mutant characteristic analysis, to study the biological functions of the six homologs. The results showed that only PpfabG1, PpfabG3 and PpfabG5 could restore the growth of E.coli fabG temperature-sensitive mutant CL104 at 42℃, and the complementary strain of PpfabG1 grew weakly. While in vitro analysis, PpFabG1, PpFabG3 and PpFabG5 also showed the catalytic activities in the initial and extension reactions of fatty acid synthesis, although the activity of PpFabG1 was really weak. PpFabG6 only had catalytic activity in the initial reaction. PpfabG5 is an essential gene for growth, which can’t be deleted in the genome. While the deletion of the other PpfabG individually does not affect bacteria growth or the compositions of fatty acids comparing with wild type strain. However, the motility of PpfabG1 or PpfabG3 deletion mutant decreased, PpfabG3 or PpfabG6 deletion affected the biofilm formation, and PpfabG3 or PpfabG6 deletion mutant showed higher tolerance to H2O2. These results proved different FabG homologs contained different biological functions, especially when countered with stressful conditions.

    Tel:020-29164616, E-mail:yuyh@gdyzy.edu.cn

    脂肪酸合成是细菌最重要的初级代谢之一,合成的脂肪酸可用于合成磷脂,最终合成细胞膜,并通过改变脂肪酸的种类和组分,适应不同逆境生[1]. 脂肪酸合成的中间产物还参与其他生物活性分子(硫辛酸、生物素等)的合成,同时也为外膜类脂A、群体感应信号分子合成提供原[2,3,4,5]. 细菌采用Ⅱ型脂肪酸合成系统从头合成脂肪酸,其每步反应都由独立的酶催化,包括聚体、还原、脱水和再还原4个步骤,酰基载体蛋白(ACP)携带脂酰基团,在不同酶之间传递中间产[6,7].

    脂肪酸合成中的关键还原反应由3-酮脂酰ACP还原酶(FabG)催化,生成3-羟基脂酰ACP再进行脱水反[8]. 多数细菌中FabG高度保守,是抗菌药物设计开发的重要靶[9]. 但随着研究深入,FabG多样性也被陆续报道. 茄科雷尔氏菌(Ralstonia solanacearum)中FabG1和FabG2都具有活性,但只有FabG1对细菌生长是必需的,而FabG2在抗逆性、致病性中发挥作[10]. 在中华苜蓿根瘤菌(Sinorhizobium meliloti)中,与结瘤相关的NodG也具有FabG活性,细胞内过表达nodG也能替换fabG[11]. 野油菜黄单胞菌(Xanthomonas campestris)中FabG2为新型的3-酮脂酰ACP还原酶,仅对长链底物具有选择性,过表达并添加正辛酸时FabG2也能催化脂肪酸合[12]. 铜绿假单胞菌(Pseudomonas aeruginosa)编码12个FabG同源蛋白,但只有PA2967、PA4389和PA4786具有催化活性,而PA2967是菌体生长所必需[13].

    恶臭假单胞菌(Pesudomonas putida)为专性好氧的革兰氏阴性杆菌,是常见的鱼类致病菌,少数种为人和动物的条件致病[14]. 由于恶臭假单胞菌具有广泛的代谢酶,对难降解的有机物和重金属都具有代谢分解能力,在环境治理中发挥重要作[15,16]. 同时,恶臭假单胞菌还具有强大的生物合成能力,能产生许多次级代谢产物,在工业上也具有重要的应用价值,其生产的聚羟基脂肪酸(PHA)能被生物降解,可作为塑料的潜在替代品,还可用于医疗生物材料的生[17,18]. 虽然研究报道PHA合成的前体来源于脂肪酸合成代谢中间产物,但恶臭假单胞菌的脂肪酸合成研究还未见报[19]. 为此,本研究对恶臭假单胞菌基因组中多个3-酮脂酰ACP还原酶同源蛋白质进行研究,采用异体遗传互补、体外活性分析、基因敲除突变株生理性状分析等方法,分析了这几个同源蛋白质的生物学功能.

  • 1 材料与方法

  • 1.1 材料

  • 1.1.1 菌株、质粒和培养基

    本研究所用到的大肠杆菌有DH-5α、S17-1、BL21(DE3)和CL104菌株,以及恶臭假单胞菌野生菌株PpF1. 使用的质粒有pBAD24M、pSRK-Gm[20]和pET-28(b),其他载体均为上述质粒的衍生质粒(具体构建过程见下文),具体菌株和质粒见表1.LB用作培养大肠杆菌和恶臭假单胞菌的丰富培养基,M9用作恶臭假单胞菌及突变株的基础培养基. 抗生素的使用浓度如下:30 mg/L庆大霉素(Cm)、100 mg/L氨苄青霉素(Amp)、 30 mg/L卡那霉素(Km). 诱导剂L-阿拉伯糖(Ara)浓度为0.02%,异丙基-β-D-硫代吡喃半乳糖苷(IPTG)浓度为1 mmol/L.

    Table 1 The strains and plasmids used in this work

    Strain/PlasmidRelevant genotype or characteristicsSources or reference
    E. coli strains
    DH-5αφ80ΔlacZΔM15 endA1recA1hsdR17(rK-,mK+)Lab collection
    S17-1Tpr SmrrecA,thi,pro,hsdR-M+ RP4::2-Tc::Mu:Km::Tn7,λpirLab collection
    BL21(DE3)ompT hsdS B(rB- mB-)(DE3)Lab collection
    CL104E.coli fabG(Ts)Lab collection
    P. putida
    PpF1Ampr, Wild-type strainLab collection
    ΔPpG1Ampr, PpfabG1 deletion mutantThis study
    ΔPpG2Ampr, PpfabG2 deletion mutantThis study
    ΔPpG3Ampr, PpfabG3 deletion mutantThis study
    ΔPpG4Ampr, PpfabG4 deletion mutantThis study
    ΔPpG6Ampr, PpfabG6 deletion mutantThis study
    ΔPpG1G3Ampr, PpfabG1 and PpfabG3 double deletion mutantThis study
    ΔPpG5XAmpr, Kmr, PpFabG1carry with pK5XThis study
    Plasmids
    pBAD24MAmpr,expression vectorLab collection
    pBAD-EcfabGAmpr, E.coli fabG in pBAD24MLab collection
    pB1Ampr, PpfabG1 in pBAD24MThis study
    pB2Ampr, PpfabG2 in pBAD24MThis study
    pB3Ampr, PpfabG3 in pBAD24MThis study
    pB4Ampr, PpfabG4 in pBAD24MThis study
    pB5Ampr, PpfabG5 in pBAD24MThis study
    pB6Ampr, PpfabG6 in pBAD24MThis study
    pET-28(b)Kmr, expression vectorLab collection
    pET-EcfabGKmr, E.coli fabG in pET-28bLab collection
    pE1Kmr, PpfabG1 in pET-28bThis study
    pE2Kmr, PpfabG2 in pET-28bThis study
    pE3Kmr, PpfabG3 in pET-28bThis study
    pE4Kmr, PpfabG4 in pET-28bThis study
    pE5Kmr, PpfabG5 in pET-28bThis study
    pE6Kmr, PpfabG6 in pET-28bThis study
    pK18mobsacBKmr, conjugation vectorLab collection
    pK1Kmr, PpfabG1 in pK18mobsacBThis study
    pK2Kmr, PpfabG2 in pK18mobsacBThis study
    pK3Kmr, PpfabG3 in pK18mobsacBThis study
    pK4Kmr, PpfabG4 in pK18mobsacBThis study
    pK5Kmr, PpfabG5 in pK18mobsacBThis study
    pK6Kmr, PpfabG6 in pK18mobsacBThis study
    pK5XKmr, PpfabG5X in pK18mobsacBThis study
    pSRK-GmGmr, expression vectorLab collection
    pS5Gmr, PpfabG5 in pSRK-GmThis study
  • 1.1.2 试剂

    限制性内切酶、T4连接酶、PCR mix、Marker DL2000、蛋白质Marker等试剂,质粒提取和DNA凝胶回收等试剂盒均购自大连TaKaRa公司;庆大霉素、氨苄青霉素、卡那霉素、L-阿拉伯糖、IPTG、各种脂肪酸等试剂购自Sigma公司;PCR扩增引物的合成以及核酸序列测定由上海Sangon公司完成.

  • 1.2 表达质粒构建

    本文所使用的PCR引物见附件表S1,以恶臭假单胞菌PpF1总DNA为模板,使用PCR mix分别扩增PpfabG1 ~ PpfabG6基因片段. 回收PCR扩增产物,经NdeⅠ和HindⅢ酶切后,分别连接入pBAD24M,并转化大肠杆菌DH-5α,筛选的阳性克隆经测序验证后,依次得到互补质粒pB1(PpfabG1)~ pB6(PpfabG6).用类似的策略,通过Nde I和Hind III位点,分别将6个基因连入表达载体pET-28(b),测序验证后获得pE1(PpfabG1) ~ pE6(PpfabG6).还将PpfabG5连入pSRK-Gm获得pS5(PpfabG5).

  • 1.3 异体遗传互补分析

    将获得的pBAD24M系列互补质粒pB1(PpfabG1)~ pB6(PpfabG6)以及pBAD-EcfabG、pBAD24M分别转化大肠杆菌CL104获得转化子. 由于大肠杆菌CL104为温度敏感突变株,分别检测不同转化子在42℃的生长情况,进行表型互补鉴定.

  • 1.4 突变株菌株的构建

    以恶臭假单胞菌PpF1总DNA为模板,利用附件表S1中的引物,PCR分别扩增PpfabG1~ PpfabG6基因上下游各约500 bp片段,并利用融合PCR技术获得6个基因的敲除盒. 酶切后分别连接到pK18mobsacB上,获得质粒敲除质粒pK1(ΔPpfabG1)~ pK6(ΔPpfabG6),并测序验证正确.

    敲除质粒分别转化大肠杆菌S17-1后,与恶臭假单胞菌PpF1在LB平板上30℃共培养24 h,然后用1 ml 无菌水培养物悬浮,稀释到10-3后涂布于含有氨苄青霉素(Amp)和卡那霉素(Km)的LB平板,30℃培养48 h获得单菌落. 分别选取单菌落培养后提取总DNA,用P1和P4进行PCR检测,获得一次重组菌株. 进一步将一次菌株在含有Amp的LB中培养18 h后,涂布于含有Amp和10%蔗糖的LBS平板,筛选对Km敏感的菌株,PCR验证并测序后获得突变株ΔPpG1、ΔPpG2、ΔPpG3、ΔPpG4、ΔPpG6.

    以pS5(PpfabG5)质粒为模板,以PpfabG5X FPpfabG5X R为引物(附表S1),扩增获得含有lacI基因、Plac启动子和PpfabG5基因5’端约500 bp的片段,经Xba Ⅰ和Hind Ⅲ酶切后将其连接到pK18mobsacB上,获得质粒pK5X. 将pK5X转化大肠杆菌S17-1后,与恶臭假单胞菌PpF1接合(步骤同上),获得具有Km抗性的接合子ΔPpG5X.

  • 1.5 蛋白质表达与分离纯化

    将构建好的表达质粒pE1(PpfabG1)~ pE6(PpfabG6)以及pET-EcfabG分别转化大肠杆菌BL21(DE3)后,蛋白质的表达和分离纯化参照文献[21,22]进行. 同时参照文献[21,22]的方法,分别纯化大肠杆菌丙二酸单酰CoA:ACP转移酶(FabD)、3-羟基脂酰ACP脱水酶/异构酶(FabA)、烯脂酰ACP还原酶(FabI)、哈氏弧菌脂酰ACP合成酶(AasS)[23]和大肠杆菌holo-ACP蛋白,并且体外合成丙二酸单酰ACP(Mal-ACP)、辛脂酰ACP(C8-ACP)、癸脂酰ACP(C8-ACP).

  • 1.6 体外功能检测

    恶臭假单胞菌PpFabG1~ PpFabG1体外活性检测参照文献[24]. 具体做法如下:反应体系 50 μl,含有0.1 mol/L Tris-HCl (pH 8.0)、50 μmol/L NADH、50 μmol/L NADPH、1 mmol/L β-巯基乙醇、100 μmol/L丙二酸单酰-CoA,50 μmol/L holo-ACP,100 μmol/L乙酰CoA或辛酰ACP,大肠杆菌FabD、FabA、FabI各0.1 μg. 反应在添加不同的0.1 μg FabG后,37℃保温1 h,分离胶浓度为17.5%,用含有1 ~ 3 mol/L尿素的非变性蛋白质凝胶电泳进行分析. 其中起始反应体系中添加乙酰CoA,延伸反应中添加辛酰ACP. 而辛酰ACP合成反应体系为30 μl,含有0.1 mol/L Tris-HCl (pH 8.0)、1 mmol/L辛酸、5 mmol/L DTT(二硫苏糖醇)、10 mmol/L MgSO4、10 mmol/L ATP、 50 μmol/L holo-ACP、添加0.1 μg AasS后37℃保温1 h.

  • 2 结果与分析

  • 2.1 生物信息学分析

    为研究恶臭假单胞菌PpF1来源的3-酮脂酰ACP还原酶,本文利用大肠杆菌FabG(EcFabG)蛋白序列与其基因组进行Blast分析,结果发现Pput_0620、Pput_2199、Pput_2972、Pput_3177、Pput_3800和Pput_3860共6个基因编码FabG同源蛋白,也都标注为3-酮脂酰ACP还原酶,因此本文将这6个基因依次命名为PpfabG1~ PpfabG6. 其中PpfabG5位于推测的脂肪酸合成基因簇中,其他5个基因均位于功能未知基因簇中. PpFabG1与大肠杆菌FabG的序列相似性(76.5%)和一致性(65.2%)都最高,其他5个的序列相似性和一致性由高到低依次为PpFabG3、PpFabG1、PpFabG6、PpFabG2、PpFabG4(表2). 除PpFabG4外,5个FabG同源蛋白都具有Ser-Tyr-Lys催化活性中心,以及N端辅因子结合域(Gly-X3-Gly-X1-Gly)[25]. PpfabG2~ PpfabG6分子质量大小与EcFabG相当,但PpFabG1分子质量约为EcFabG的2倍,共451个氨基酸(表2). 而PpFabG1与铜绿假单胞菌中具有活性的PA4786也具有65.5%的序列相似性. 生物信息学分析结果显示,PpFabG5极有可能具有 3-酮脂酰ACP还原酶活性,而PpFabG4可能没有该活性,其他几个蛋白质是否具有这一活性,需要进一步实验分析. 为此,本文对以上几个FabG同源蛋白进行了以下研究.

    Table 2 Alignment of P. putida 3-keoacyl ACP reductase homologs with E. coli FabG

    FabG homologsLengthSimilarity/%Identity/%

    Catalytic motif

    (Ser-Tyr-Lys)

    N-terminal cofactor binding motif (Gly-X3-Gly-X1-Gly)
    PpFabG145138.654.9YesYes
    PpFabG224732.050.4YesYes
    PpFabG324639.357.7YesYes
    PpFabG425928.146.6NoNo
    PpFabG525065.276.5YesYes
    PpFabG624737.854.6YesYes
  • 2.2 PpfabGs遗传互补大肠杆菌fabG温度敏感突变株CL104

    大肠杆菌CL104是fabG的温度敏感突变株,30℃正常生长,但在非允许温度(42℃)时不能合成3-酮脂酰ACP还原酶,菌体不能生[9]. 为检测恶臭假单胞菌中6个FabG同源蛋白是否具有3-酮脂酰ACP还原酶活性,本研究首先将PpfabG1~ PpfabG6基因分别转化CL104菌株,并检测转化子在42℃的生长情况(图1).

    Fig. 1 Complementation of E. coli fabG (ts) mutant CL104 with PpfabGs

    异体遗传互补结果显示,在添加诱导剂阿拉伯糖(Ara)的平板上,与阳性对照类似,含有pB1(PpfabG1)、pB3(PpfabG3)和pB5(PpfabG5)的转化子能生长,但含有pB2(PpfabG2)、pB4(PpfabG4)、pB6(PpfabG6)以及空载体pBAD24M的转化子都不能生长. 而pB5(PpfabG5)转化子也能在不添加Ara的平板上生长. 42℃测定不同转化子的生长曲线也得到类似的结果,互补了PpfabG1PpfabG3PpfabG5菌株在添加诱导剂时都能恢复生长(结果未列). 以上结果说明PpfabG1PpfabG3PpfabG5的编码产物具有3-酮脂酰ACP还原酶活性,而PpFabG2、PpFabG4和PpFabG6可能不具有该活性.

  • 2.3 FabG同源蛋白的表达纯化与体外活性测定

    为进一步研究这6个FabG同源蛋白在体外的生物学功能,分别将PpfabG1~PpfabG6基因克隆到pET-28(b)上,获得表达质粒pE1(PpfabG1) ~ pE6(PpfabG6),转化大肠杆菌BL(DE3)后,在37℃诱导表达,并采用Ni-NTA亲和层析法纯化获得N端融合有His-tag的PpFabG1~PpFabG6. 经SDS-PAGE检测为单一条带,分子质量与推测相符,表明纯化成功(图2a).

    Fig. 2 Purification and enzymatic characterization of PpFabGs in fatty acid biosynthesis

    NOTE: (a)Pseudomonas putida FabG homologues purification. 1: protein marker;2~7:purified PpFabG1~ PpFabG6, respectively. (b)The initial reaction. The migration positions of holo-ACP and butyryl-ACP on gel are shown. 1:holo-ACP;2~7:PpFabG1~ PpFabG6,respectively; 8:EcFabG. (c)The elongation reaction. The migration positions of octanoyl-ACP and capryl-ACP on gel are shown. 1:EcFabG;2:No FabG;3~8:hexanoyl-ACP PpFabG1~ PpFabG6,respectively;9:capryl-ACP.In the initial reaction,fatty acid biosynthesis was reconstructed by adding each purified FabG to a reaction mixture containing Tris-HCl,NADH,NADPH,Mal-ACP,E.coli FabH/FabA/FabI and acetyl-CoA primer. In the elongation reaction,each purified FabG was added to the mixture containing Tris-HCl,NADH,NADPH,Mal-ACP,octanoyl-ACP,RsFabW,E.coli FabA/FabI. The reaction products were resolved by conformational sensitive gel electrophoresis on 17.5% polyacrylamide gels containing concentrations of urea optimized to effect the separation.

    为了验证PpFabG1~PpFabG6是否具有3-酮脂酰ACP还原酶活性,首先体外重建了脂肪酸合成起始反应(图2b). 大肠杆菌FabH催化乙酰-CoA前体与丙二酸单酰ACP聚合,生成3-酮基丁酰ACP,而后在还原酶FabG催化下生成3-羟基丁酰ACP,再依次在脱水酶FabA、还原酶FabI催化下生成丁酰ACP (C4:0-ACP). 结果显示,与阳性对照大肠杆菌FabG(泳道8)类似,PpFabG1(泳道2)、PpFabG3(泳道4)、PpFabG5(泳道6)和PpFabG6(泳道7)都催化生成了丁酰ACP,说明PpFabG1、PpFabG3、PpFabG5和PpFabG6都具有3-酮脂酰ACP还原酶催化能力,而PpFabG2和PpFabG4没有该活性. 但催化生成的产物浓度有所不同,PpFabG3和PpFabG5催化活性较高,PpFabG6活性弱一些,而PpFabG1催化活性比较微弱.

    其次,进一步构建了不同FabG同源蛋白参与的脂肪酸合成延伸反应(图2c). 利用哈氏弧菌脂酰ACP合成酶(AasS),以正辛酸和holo-ACP为底物,合成辛脂酰ACP. 而后利用茄科雷尔氏菌中FabW(RSp0194)[26]催化辛脂酰ACP与丙二酸单酰ACP聚合,生成3-酮基癸脂酰ACP,可进一步被脱水酶FabA、还原酶FabI催化生成癸脂酰ACP. 结果显示,PpFabG1(泳道3)、PpFabG3(泳道5)和PpFabG5(泳道7)都生成了癸脂酰ACP,三者都具有3-酮脂酰ACP还原酶活性. 但PpFabG1催化生成的产物浓度较低,再次证明其活性较弱,该结果与异体遗传互补实验中,PpfabG1互补菌株生长相对较弱的表型相吻合.

  • 2.4 恶臭假单胞菌PpfabGs突变株的构建

    异体遗传互补和体外活性检测结果显示,恶臭假单胞菌中不同的PpfabG基因可能具有不同的生理功能. 为进一步研究这6个PpfabG的生理功能,本研究采用同源重组的方式构建了基因敲除突变株.首先采用融合PCR的方法,分别构建了6个PpfabG敲除质粒,导入大肠杆菌S17-1菌株后,与恶臭假单胞菌PpF1接合,筛选获得一次重组菌株,其中PpfabG1~ PpfabG4PpfabG6进一步筛选后顺利获得敲除突变株ΔPpG1~ΔPpG4和ΔPpG6. 但多次筛选后都不能获得PpfabG5的敲除突变株,推测PpfabG5为恶臭假单胞菌生长的必需基因,敲除后将导致细菌死[27].

    为验证以上推测,首先将PpfabG5基因连入pSRK-Gm,并以此为模板扩增获得含有lacI基因、启动子PlacPpfabG5基因5’端约500 bp序列的片段,连入pK18mobsacB获得质粒pK5X,进一步通过接合方式将其导入恶臭假单胞菌PpF1,获得重组菌ΔPpG5X. 平板检测ΔPpG5X生长情况,结果显示在添加诱导剂IPTG时,由于解除了LacI蛋白对Plac启动子的抑制,ΔPpG5X生长良好,而在无IPTG的培养基中,ΔPpG5X不生长(图3). 这一结果充分说明PpfabG5是恶臭假单胞菌生长的必需基因.

    Fig. 3 The growth of ΔPpG5X on LB NYG plate with or without IPTG

  • 2.5 恶臭假单胞菌PpfabGs突变株生理性状分析

    为研究PpfabG1~ PpfabG4PpfabG6突变对恶臭假单胞菌的影响,本研究进一步分析了突变株的生理功能. a. 测定了突变株在丰富培养基和基础培养基上生长曲线,结果显示突变株的生长与野生菌无差异,说明这5个基因突变都不影响菌体生长. 由于3-酮脂酰ACP还原酶在脂肪酸合成中发挥作用,进一步测定了不同突变株的脂肪酸组成,结果显示各个突变株的脂肪酸组成与野生菌无统计学差异,说明这5个基因不参与菌体的脂肪酸合成. b. 分析了突变株的运动性(swimming),结果显示,与野生菌相比,ΔPpG3、ΔPpG4和ΔPpG6的运动性没有变化,但ΔPpG1和ΔPpG2的运动性明显下降,有统计学差异(P<0.01)(图4a). c. 检测了恶臭假单胞菌PpF1和突变株生物被膜的生成量. 结果显示,与野生菌相比较,PpfabG3PpfabG6基因敲除突变株的生物被膜生成量显著下降,但PpfabG1、PpfabG2PpfabG4突变后没有明显影响生物被膜的生成(图4b). d. 检测了PpfabG基因突变对菌体抗逆性方面的影响. 结果显示,与野生菌相比,ΔPpG1~ΔPpG4和ΔPpG6突变株在耐盐实验(1.5%~3.0%)、耐酸实验(pH=4.7~5.0)和耐SDS实验(0.02%~0.06%)中都没有差异(结果未列). 但在抗氧化实验中,当H2O2浓度为 2.2 mmol/L时,突变株与野生菌的耐受性无明显差异,而当H2O2浓度升高为4.4 mmol/L和8.8 mmol/L时,ΔPpG4和ΔPpG6表现出更强的耐受性,其他3个突变株与野生菌无差异(图4c). 以上结果表明,不同PpfabG具有不同的生理功能.

    Fig. 4 Physiological characters analysis of different PpfabG mutants

    NOTE: (a)Motility assay on LB plates with 0.3% agarose. (b)Biofilm assay. (c)Growth of PpfabG mutants treated with different concentration of H2O2. The statistical analysis was performed with P values by two-tailed student t tests. Significant differences were indicated by asterisks (*P < 0.05;**P < 0.01).

  • 3 讨论

    在细菌脂肪酸合成循环中,3-酮脂酰ACP还原酶(FabG)以NADPH为辅因子,催化第一步还原反应,是脂肪酸合成的关键[9]. 由于不同细菌的3-酮脂酰ACP还原酶相对保守,其多样性报道相对较少,因此FabG也被认为是抗菌药物筛选的理想靶[28]. FabG蛋白属于短链脱氢酶家族(SDR),该家族含有大量成员催化多种代谢途径的氧化还原反[29]. 由于细菌基因组编码大量的SDR蛋白,也通常有许多被预测具有3-酮脂酰ACP还原酶活[13]. 恶臭假单胞菌中有6个基因预测编码3-酮脂酰ACP还原酶,但是否具有相关的酶活性以及具体的生物学功能,国内外都未见相关报道.

    同源性分析结果显示,与模式生物大肠杆菌FabG相比较,PpFabG5的序列相似性最高(76.5%),其他5个同源蛋白质的序列相似性也较高(46.6%~57.7%). 除PpFabG4之外,其他5个同源蛋白质都具有保守的活性位点和N端辅因子结合位点,推测PpFabG4可能没有3-酮脂酰ACP还原酶活性. 本文首先将这6个fabG同源基因异体遗传互补大肠杆菌fabG温度敏感突变株. 结果显示,在42℃时,PpfabG5PpfabG3互补株生长良好,而PpfabG1互补株微弱生长,但其他3个同源基因不能恢复突变株的生长. 该结果初步说明PpFabG1、PpFabG3、PpFabG5均具有3-酮脂酰ACP还原酶活性,但活性强弱有差别.

    进一步体外酶活性分析也得到相似的结果. 只有PpFabG1、PpFabG3、PpFabG5在体外重建的脂肪酸合成反应和循环反应中,都显示具有3-酮脂酰ACP还原酶活性,但PpFabG1催化活性较弱. 体外重建的脂肪酸合成起始反应中,PpFabG6也检测到了反应产物,而在脂肪酸合成循环反应中,又没有检测到相应的活性,说明PpFabG6可能只对短链底物具有催化活性,而对长链底物没有催化活性,而这也可能是PpfabG6不能恢复大肠杆菌fabG温度敏感突变株CL104在42℃生长的原因,推测PpFabG6为新型的3-酮脂酰ACP还原酶.

    本文还采用同源重组方法,对恶臭假单胞菌中6个fabG同源基因进行了敲除,顺利获得PpfabG1~ PpfabG4以及PpfabG6的基因敲除突变株但不能获得PpfabG5基因敲除突变株. 将PpfabG5启动子原位替换为Plac后,突变株只在添加IPTG时才能生长,证明PpfabG5是菌体生长的必需基因. PpfabG1~ PpfabG4PpfabG6敲除突变株的生长、脂肪酸组成都与野生菌无差异,说明这几个基因不是生长的必需基因,也不参与脂肪酸合成. 但与野生菌相比,PpfabG1 PpfabG2敲除后菌体的运动性下降,PpfabG3 PpfabG6突变影响了生物被膜的合成量,而PpfabG4 PpfabG6敲除突变株对H2O2的耐受性增强,表明这些基因具有不同的生理功能,可能在菌体的不同逆境中发挥作用,但每个基因编码蛋白具体的作用机制,还有待进一步深入研究.

    附件 表S1见本文网络版(http://www.cnki.nethttp://www.pibb.ac.cn).

    Tel: 86-20-29164616, E-mail: yuyh@gdyzy.edu.cn

  • 参 考 文 献

    • 1

      Zhang Y M, Rock C O. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol, 2008, 6(3): 222-233

    • 2

      Cronan J E. Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol Biol Rev, 2016, 80(2): 429-450

    • 3

      Wang X, Quinn P J. Lipopolysaccharide: biosynthetic pathway and structure modification. Prog Lipid Res, 2010, 49(2): 97-107

    • 4

      Nhu Lam M, Dudekula D, Durham B, et al. Insights into β-ketoacyl-chain recognition for β-ketoacyl-ACP utilizing AHL synthases. Chemical Communications, 2018, 54(64): 8838-8841

    • 5

      Zhou L, Zhang L H, Camara M, et al. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends in Microbiology, 2017, 25(4): 293-303

    • 6

      Parsons J B, Rock C O. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res, 2013, 52(3): 249-276

    • 7

      Cronan J E, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol, 2009, 459: 395-433

    • 8

      Fisher M, Sedelnikova S E, Martindale W, et al. Crystallization of the NADP-dependent β-keto acyl-carrier protein reductase from Brassica napus. Acta Crystallogr D Biol Crystallogr, 2000, 56(Pt 1): 86-88

    • 9

      Lai C Y, Cronan J E. Isolation and characterization of β-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol, 2004, 186(6): 1869-1878

    • 10

      Feng S X, Ma J C, Yang J, et al. Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons. BMC Microbiol, 2015, 15:223

    • 11

      Mao Y H, Li F, Ma J C, et al. Sinorhizobium meliloti functionally replaces 3-oxoacyl-acyl carrier protein reductase (FabG) by overexpressing NodG during fatty acid synthesis. Mol Plant Microbe Interact, 2016, 29(6): 458-467

    • 12

      Hu Z, Dong H, Ma J C, et al. Novel Xanthomonas campestris long-chain-specific 3-oxoacyl-acyl carrier protein reductase involved in diffusible signal factor synthesis. MBio, 2018, 9(3). pii: e00596-18

    • 13

      Guo Q Q, Zhang W B, Zhang C, et al. Characterization of 3-oxacyl-acyl carrier protein reductase homolog genes in Pseudomonas aeruginosa PAO1. Front Microbiol, 2019, 10:1028

    • 14

      Yonezuka K, Shimodaira J, Tabata M, et al. Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group. J Gen Appl Microbiol, 2017, 63(1): 1-10

    • 15

      Wang Q, Li Y, Li J, et al. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Environ Sci Pollut R, 2015, 22(1): 565-573

    • 16

      Canovas D, Cases I, De Lorenzo V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol, 2003, 5(12): 1242-1256

    • 17

      Kennedy R K, Naik P R, Veena V, et al. 5-Methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem Biol Interact, 2015, 231: 71-82

    • 18

      Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliver Rev, 2001, 53(1): 5-21

    • 19

      Vo M T, Lee K W, Jung Y M, et al. Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KCTC1639. J Biosci Bioeng, 2008, 106(1): 95-98

    • 20

      Khan S R, Gaines J, Roop R M II, et al. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol, 2008, 74(16): 5053-5062

    • 21

      Yu Y H, Hu Z, Dong H J, et al. Xanthomonas campestris FabH is required for branched-chain fatty acid and DSF-family quorum sensing signal biosynthesis. Sci Rep, 2016, 6: 32811

    • 22

      Zhu L, Bi H, Ma J, et al. The two functional enoyl-acyl carrier protein reductases of Enterococcus faecalis do not mediate triclosan resistance. MBio, 2013, 4(5): e00613-13

    • 23

      Jiang Y, Chan C H, Cronan J E. The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-CoA synthetase family. Biochemistry, 2006, 45(33): 10008-10019

    • 24

      冯赛祥, 朱磊, 罗彪, 等. 大肠杆菌(Escherichia coli)体外脂肪酸合成反应的重建. 生物化学与生物物理进展, 2008, 35(8): 954-963

      Feng S X, Zhu L, Luo B, et al. Prog Biochem Biophys, 2008, 35(8): 954-963

    • 25

      Price A C, Zhang Y M, Rock C O, et al. Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG. Structure, 2004, 12(3): 417-428

    • 26

      Mao Y H, Ma J C, Li F, et al. Ralstonia solanacearum RSp0194 encodes a novel 3-keto-acyl carrier protein synthase III. Plos One, 2015, 10(8): e0136261

    • 27

      余永红, 马建荣, 王海洪. 野油菜黄单胞菌中烯脂酰ACP还原酶的功能鉴定. 生物化学与生物物理进展, 2016, 43(05): 514-522

      Yu Y H, Ma J R, Wang H H. Prog Biochem Biophys, 2016, 43(05): 514-522

    • 28

      Heath R J, Rock C O. Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Investig Drugs, 2004, 5(2): 146-153

    • 29

      Kallberg Y, Oppermann U, Jornvall H, et al. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci, 2002, 11(3): 636-641

郭剑英

机 构:华南农业大学兽医学院,广州 510642

Affiliation:College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China

陈博

机 构:华南农业大学生命科学学院/广东省农业生物蛋白质功能与调控重点实验室,广州 510642

Affiliation:College of Life Sciences, South China Agricultural University/Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China

李先其

机 构:华南农业大学生命科学学院/广东省农业生物蛋白质功能与调控重点实验室,广州 510642

Affiliation:College of Life Sciences, South China Agricultural University/Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China

况承伟

机 构:华南农业大学生命科学学院/广东省农业生物蛋白质功能与调控重点实验室,广州 510642

Affiliation:College of Life Sciences, South China Agricultural University/Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China

王海洪

机 构:华南农业大学生命科学学院/广东省农业生物蛋白质功能与调控重点实验室,广州 510642

Affiliation:College of Life Sciences, South China Agricultural University/Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China

马建荣

机 构:广东食品药品职业学院,广州 510520

Affiliation:Guangdong Food and Drug Vocational College, Guangzhou 510520, China

余永红

机 构:广东食品药品职业学院,广州 510520

Affiliation:Guangdong Food and Drug Vocational College, Guangzhou 510520, China

角 色:通讯作者

Role:Corresponding author

Strain/PlasmidRelevant genotype or characteristicsSources or reference
E. coli strains
DH-5αφ80ΔlacZΔM15 endA1recA1hsdR17(rK-,mK+)Lab collection
S17-1Tpr SmrrecA,thi,pro,hsdR-M+ RP4::2-Tc::Mu:Km::Tn7,λpirLab collection
BL21(DE3)ompT hsdS B(rB- mB-)(DE3)Lab collection
CL104E.coli fabG(Ts)Lab collection
P. putida
PpF1Ampr, Wild-type strainLab collection
ΔPpG1Ampr, PpfabG1 deletion mutantThis study
ΔPpG2Ampr, PpfabG2 deletion mutantThis study
ΔPpG3Ampr, PpfabG3 deletion mutantThis study
ΔPpG4Ampr, PpfabG4 deletion mutantThis study
ΔPpG6Ampr, PpfabG6 deletion mutantThis study
ΔPpG1G3Ampr, PpfabG1 and PpfabG3 double deletion mutantThis study
ΔPpG5XAmpr, Kmr, PpFabG1carry with pK5XThis study
Plasmids
pBAD24MAmpr,expression vectorLab collection
pBAD-EcfabGAmpr, E.coli fabG in pBAD24MLab collection
pB1Ampr, PpfabG1 in pBAD24MThis study
pB2Ampr, PpfabG2 in pBAD24MThis study
pB3Ampr, PpfabG3 in pBAD24MThis study
pB4Ampr, PpfabG4 in pBAD24MThis study
pB5Ampr, PpfabG5 in pBAD24MThis study
pB6Ampr, PpfabG6 in pBAD24MThis study
pET-28(b)Kmr, expression vectorLab collection
pET-EcfabGKmr, E.coli fabG in pET-28bLab collection
pE1Kmr, PpfabG1 in pET-28bThis study
pE2Kmr, PpfabG2 in pET-28bThis study
pE3Kmr, PpfabG3 in pET-28bThis study
pE4Kmr, PpfabG4 in pET-28bThis study
pE5Kmr, PpfabG5 in pET-28bThis study
pE6Kmr, PpfabG6 in pET-28bThis study
pK18mobsacBKmr, conjugation vectorLab collection
pK1Kmr, PpfabG1 in pK18mobsacBThis study
pK2Kmr, PpfabG2 in pK18mobsacBThis study
pK3Kmr, PpfabG3 in pK18mobsacBThis study
pK4Kmr, PpfabG4 in pK18mobsacBThis study
pK5Kmr, PpfabG5 in pK18mobsacBThis study
pK6Kmr, PpfabG6 in pK18mobsacBThis study
pK5XKmr, PpfabG5X in pK18mobsacBThis study
pSRK-GmGmr, expression vectorLab collection
pS5Gmr, PpfabG5 in pSRK-GmThis study
FabG homologsLengthSimilarity/%Identity/%

Catalytic motif

(Ser-Tyr-Lys)

N-terminal cofactor binding motif (Gly-X3-Gly-X1-Gly)
PpFabG145138.654.9YesYes
PpFabG224732.050.4YesYes
PpFabG324639.357.7YesYes
PpFabG425928.146.6NoNo
PpFabG525065.276.5YesYes
PpFabG624737.854.6YesYes
html/pibbcn/20190132/alternativeImage/2f759699-9dee-4517-af4f-1185846c0640-F001.png
html/pibbcn/20190132/alternativeImage/2f759699-9dee-4517-af4f-1185846c0640-F002.png
html/pibbcn/20190132/alternativeImage/2f759699-9dee-4517-af4f-1185846c0640-F003.png
html/pibbcn/20190132/alternativeImage/2f759699-9dee-4517-af4f-1185846c0640-F004.png

Table 1 The strains and plasmids used in this work

Table 2 Alignment of P. putida 3-keoacyl ACP reductase homologs with E. coli FabG

Fig. 1 Complementation of E. coli fabG (ts) mutant CL104 with PpfabGs

Fig. 2 Purification and enzymatic characterization of PpFabGs in fatty acid biosynthesis

Fig. 3 The growth of ΔPpG5X on LB NYG plate with or without IPTG

Fig. 4 Physiological characters analysis of different PpfabG mutants

image /

无注解

无注解

无注解

(a)Pseudomonas putida FabG homologues purification. 1: protein marker;2~7:purified PpFabG1~ PpFabG6, respectively. (b)The initial reaction. The migration positions of holo-ACP and butyryl-ACP on gel are shown. 1:holo-ACP;2~7:PpFabG1~ PpFabG6,respectively; 8:EcFabG. (c)The elongation reaction. The migration positions of octanoyl-ACP and capryl-ACP on gel are shown. 1:EcFabG;2:No FabG;3~8:hexanoyl-ACP PpFabG1~ PpFabG6,respectively;9:capryl-ACP.In the initial reaction,fatty acid biosynthesis was reconstructed by adding each purified FabG to a reaction mixture containing Tris-HCl,NADH,NADPH,Mal-ACP,E.coli FabH/FabA/FabI and acetyl-CoA primer. In the elongation reaction,each purified FabG was added to the mixture containing Tris-HCl,NADH,NADPH,Mal-ACP,octanoyl-ACP,RsFabW,E.coli FabA/FabI. The reaction products were resolved by conformational sensitive gel electrophoresis on 17.5% polyacrylamide gels containing concentrations of urea optimized to effect the separation.

无注解

(a)Motility assay on LB plates with 0.3% agarose. (b)Biofilm assay. (c)Growth of PpfabG mutants treated with different concentration of H2O2. The statistical analysis was performed with P values by two-tailed student t tests. Significant differences were indicated by asterisks (*P < 0.05;**P < 0.01).

  • 参 考 文 献

    • 1

      Zhang Y M, Rock C O. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol, 2008, 6(3): 222-233

    • 2

      Cronan J E. Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol Biol Rev, 2016, 80(2): 429-450

    • 3

      Wang X, Quinn P J. Lipopolysaccharide: biosynthetic pathway and structure modification. Prog Lipid Res, 2010, 49(2): 97-107

    • 4

      Nhu Lam M, Dudekula D, Durham B, et al. Insights into β-ketoacyl-chain recognition for β-ketoacyl-ACP utilizing AHL synthases. Chemical Communications, 2018, 54(64): 8838-8841

    • 5

      Zhou L, Zhang L H, Camara M, et al. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends in Microbiology, 2017, 25(4): 293-303

    • 6

      Parsons J B, Rock C O. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res, 2013, 52(3): 249-276

    • 7

      Cronan J E, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol, 2009, 459: 395-433

    • 8

      Fisher M, Sedelnikova S E, Martindale W, et al. Crystallization of the NADP-dependent β-keto acyl-carrier protein reductase from Brassica napus. Acta Crystallogr D Biol Crystallogr, 2000, 56(Pt 1): 86-88

    • 9

      Lai C Y, Cronan J E. Isolation and characterization of β-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol, 2004, 186(6): 1869-1878

    • 10

      Feng S X, Ma J C, Yang J, et al. Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons. BMC Microbiol, 2015, 15:223

    • 11

      Mao Y H, Li F, Ma J C, et al. Sinorhizobium meliloti functionally replaces 3-oxoacyl-acyl carrier protein reductase (FabG) by overexpressing NodG during fatty acid synthesis. Mol Plant Microbe Interact, 2016, 29(6): 458-467

    • 12

      Hu Z, Dong H, Ma J C, et al. Novel Xanthomonas campestris long-chain-specific 3-oxoacyl-acyl carrier protein reductase involved in diffusible signal factor synthesis. MBio, 2018, 9(3). pii: e00596-18

    • 13

      Guo Q Q, Zhang W B, Zhang C, et al. Characterization of 3-oxacyl-acyl carrier protein reductase homolog genes in Pseudomonas aeruginosa PAO1. Front Microbiol, 2019, 10:1028

    • 14

      Yonezuka K, Shimodaira J, Tabata M, et al. Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group. J Gen Appl Microbiol, 2017, 63(1): 1-10

    • 15

      Wang Q, Li Y, Li J, et al. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Environ Sci Pollut R, 2015, 22(1): 565-573

    • 16

      Canovas D, Cases I, De Lorenzo V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol, 2003, 5(12): 1242-1256

    • 17

      Kennedy R K, Naik P R, Veena V, et al. 5-Methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem Biol Interact, 2015, 231: 71-82

    • 18

      Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliver Rev, 2001, 53(1): 5-21

    • 19

      Vo M T, Lee K W, Jung Y M, et al. Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KCTC1639. J Biosci Bioeng, 2008, 106(1): 95-98

    • 20

      Khan S R, Gaines J, Roop R M II, et al. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol, 2008, 74(16): 5053-5062

    • 21

      Yu Y H, Hu Z, Dong H J, et al. Xanthomonas campestris FabH is required for branched-chain fatty acid and DSF-family quorum sensing signal biosynthesis. Sci Rep, 2016, 6: 32811

    • 22

      Zhu L, Bi H, Ma J, et al. The two functional enoyl-acyl carrier protein reductases of Enterococcus faecalis do not mediate triclosan resistance. MBio, 2013, 4(5): e00613-13

    • 23

      Jiang Y, Chan C H, Cronan J E. The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-CoA synthetase family. Biochemistry, 2006, 45(33): 10008-10019

    • 24

      冯赛祥, 朱磊, 罗彪, 等. 大肠杆菌(Escherichia coli)体外脂肪酸合成反应的重建. 生物化学与生物物理进展, 2008, 35(8): 954-963

      Feng S X, Zhu L, Luo B, et al. Prog Biochem Biophys, 2008, 35(8): 954-963

    • 25

      Price A C, Zhang Y M, Rock C O, et al. Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG. Structure, 2004, 12(3): 417-428

    • 26

      Mao Y H, Ma J C, Li F, et al. Ralstonia solanacearum RSp0194 encodes a novel 3-keto-acyl carrier protein synthase III. Plos One, 2015, 10(8): e0136261

    • 27

      余永红, 马建荣, 王海洪. 野油菜黄单胞菌中烯脂酰ACP还原酶的功能鉴定. 生物化学与生物物理进展, 2016, 43(05): 514-522

      Yu Y H, Ma J R, Wang H H. Prog Biochem Biophys, 2016, 43(05): 514-522

    • 28

      Heath R J, Rock C O. Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Investig Drugs, 2004, 5(2): 146-153

    • 29

      Kallberg Y, Oppermann U, Jornvall H, et al. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci, 2002, 11(3): 636-641