基于支持向量机的蛋白质同源寡聚体分类研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

西北工业大学博士创新基金资助.


Classification of Protein Homo-oligomers Using Support Vector Machine
Author:
Affiliation:

Fund Project:

This work was supported by a grant from The Doctor Innovation Grant of Northwestern Polytechnical University.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于支持向量机和贝叶斯方法,从蛋白质一级序列出发对蛋白质同源二聚体、同源三聚体、同源四聚体、同源六聚体进行分类研究,结果表明:基于支持向量机, 采用“一对多”和“一对一”策略, 其分类总精度分别为77.36%和93.43%, 分别比基于贝叶斯协方差判别法的分类总精度50.64%提高26.72和42.79个百分点.从而说明支持向量机可用于蛋白质同源寡聚体分类,且是一种非常有效的方法.对于多类蛋白质同源寡聚体分类,基于相同的机器学习方法(如支持向量机),采用“一对一”策略比“一对多”效果好.同时亦表明蛋白质同源寡聚体一级序列包含四级结构信息.

    Abstract:

    The homo-dimer, homo-trimer, homo-tetramer and homo-hexamer of protein were classified using both of support vector machine and Bayes covariant discriminant methods. It was found that the total accuracies of “one-versus-rest” and “all-versus-all” are 77.36% and 93.43% respectively using support vector machine in jackknife test, which are 26.72 and 42.79 percentile higher respectively than that of Bayes covariant discriminant method in the same test. These results show that the support vector machine is a specially effective method for classifying the higher protein homo-oligomers from protein primary sequences. Using “all-versus-all” policy is better than “one-versus-rest” policy for classifying homo-oligomers based on the same machine learning method (such as support vector machine). And it was also indicated that the primary sequences of homo-oligomeric proteins contain quaternary information.

    参考文献
    相似文献
    引证文献
引用本文

张绍武,潘泉,陈润生,张洪才.基于支持向量机的蛋白质同源寡聚体分类研究[J].生物化学与生物物理进展,2003,30(6):879-883

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-03-28
  • 最后修改日期:2003-04-26
  • 接受日期:
  • 在线发布日期:
  • 出版日期:
关闭