基于Blast-GO的蛋白质亚线粒体定位预测
DOI:
CSTR:
作者:
作者单位:

内蒙古大学物理科学与技术学院,内蒙古大学物理科学与技术学院,内蒙古大学物理科学与技术学院,内蒙古大学物理科学与技术学院,内蒙古大学物理科学与技术学院,内蒙古大学物理科学与技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61461038),内蒙古自治区自然科学基金(2013MS0504),内蒙古自治区高等学校科学研究项目(NJZY13014),内蒙古大学高层次人才引进科研项目(135147)和内蒙古大学大学生创新创业训练计划项目(201412155)资助


Predicting Proteins Submitochondria Locations Using Blast-GO
Author:
Affiliation:

Department of Physics, College of Sciences and Technology, Inner Mongolia University,Department of Physics, College of Sciences and Technology, Inner Mongolia University,Department of Physics, College of Sciences and Technology, Inner Mongolia University,Department of Physics, College of Sciences and Technology, Inner Mongolia University,Department of Physics, College of Sciences and Technology, Inner Mongolia University,Department of Physics, College of Sciences and Technology, Inner Mongolia University

Fund Project:

This work was supported by grants from The National Natural Science Foundation of China (61461038), The Scientific Research Program at Universities of Inner Mongolia Autonomous Region of China (NJZY13014),The Natural Science Foundation of Inner Mongolia Autonomous Region of China (2013MS0504), The Program of Higher-level Talents of Inner Mongolia University (135147) and The Students Innovation Training Program of the Inner Mongolia University(201412155)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文建立了一个最新的蛋白质亚线粒体定位数据集,包含4个亚线粒体定位的1 293条序列,结合基因本体(GO)信息和同源信息对线粒体蛋白质进行特征提取,利用支持向量机算法建立分类器,经Jackknife检验,对于4个亚线粒体位置的总体预测准确率为93.27%,其中3个亚线粒体位置的总体预测准确率为94.73%.

    Abstract:

    In this study, a novel protein submitochondia locations dataset was constructed which contained 1 293 proteins classified into four kinds of submitochondria locations. The GO information and homologous information was extracted to combine the feature vectors of proteins and the Supported Vector Machine algorithm was used to construct the classifier. As a result, by using the Jackknife Cross-Validation, an accuracy of 93.27% for four kinds of protein submitochondria locations and that of 94.73% for three kinds of protein submitochondria locations was obtained. Especially, the predictive accuracy for outer membrane of protein submitochondia locations was enhanced than previous methods. The data set of protein submitochondia locations constructed by ours has the intermembrane proteins compared to old ones. The intermembrane proteins have important functions in protein apoptosis. The integrity of data set and the improvement of prediction accuracy can help to understand the cell activity and internal biochemical process.

    参考文献
    相似文献
    引证文献
引用本文

曩毅,梅含雪,赵燕,侯宝妍,赵志远,樊国梁.基于Blast-GO的蛋白质亚线粒体定位预测[J].生物化学与生物物理进展,2015,42(12):1136-1143

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-06-25
  • 最后修改日期:2015-09-08
  • 接受日期:2015-09-21
  • 在线发布日期: 2015-12-18
  • 出版日期: 2015-12-20
关闭