1)中国科学院生态环境研究中心,北京 100085;2)中国科学院大学资源与环境学院,北京 100049
国家自然科学基金(42276116)资助项目。
1)Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;2)College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
This work was supported by a grant fromThe National Natural Science Foundation of China (42276116).
部分水生生物可以通过特殊的器官、组织或结构所分泌的生物大分子黏附在水下材料表面,引起严重的生物污损问题,影响水生态系统健康和人类生产生活。生物污损已经成为亟待解决的全球性生态环境难题之一。黏附行为是生物污损发生的基础,深入了解水生生物的黏附机制对解决生物污损治理问题至关重要。蛋白质、脂质和碳水化合物等生物大分子是水生污损生物黏附物质中的主要功能成分。这些生物大分子在不同的水生物种中既具有种类和特征的多样性,又具有黏附机制的统一性。尽管科学研究在这些方面取得了很大进展,但对于生物大分子介导的水生污损生物的黏附机制尚缺乏全面的总结,尤其是对脂质和碳水化合物在其中的作用缺乏系统了解。通过对现有文献报道的梳理,本文全面总结了三类生物大分子在水生污损生物黏附过程中的作用机制:蛋白质通过特殊功能氨基酸、保守结构域和翻译后修饰主导界面黏附与内聚,在水生污损生物黏附过程中起核心作用;脂质通过疏水屏障形成抗氧化保护等功能增强黏附结构的稳定性;碳水化合物则通过参与内聚过程及增强黏附物质的抗酶解能力来保障黏附界面的长效性。基于上述机制,本文还提出了强化蛋白质的黏附功能、明确脂质在黏附过程中的作用、厘清碳水化合物的黏附作用方式以及关注多种生物大分子的协同作用机制等未来该学科领域的潜在研究方向和亟待解决问题。本综述内容可以为深入了解水生污损生物的水下黏附行为提供参考,并为制定高效的以机制为基础的防污策略提供理论指导。
Aquatic organisms can secrete biomacromolecules through specialized organs, tissues, or structures, enabling adhesion to underwater material surfaces and leading to severe biofouling issues. This phenomenon adversely impacts aquatic ecosystem health and human activities. Biofouling has emerged as an emerging global environmental challenge. Adhesion serves as the foundation of biofouling, representing a critical step toward a comprehensive understanding of the adhesion mechanisms of aquatic organisms. Biomacromolecules, including proteins, lipids, and carbohydrates, are the primary functional components in the adhesive substances of aquatic fouling organisms. Research indicates that these biomacromolecules exhibit diversity in types and characteristics across different aquatic organisms, yet their adhesion mechanisms show unifying features. Despite significant progress, there remains a lack of comprehensive reviews on the adhesion mechanisms mediated by biomacromolecules in aquatic fouling organisms, particularly on the roles of lipids and carbohydrates. Through a comprehensive analysis of existing literature, this review systematically summarizes the mechanistic roles of three classes of macromolecules in aquatic biofouling adhesion processes. Proteins demonstrate central functionality in interfacial adhesion and cohesion through specialized functional amino acids, conserved structural domains, and post-translational modifications. Lipids enhance structural stability via hydrophobic barrier formation and antioxidative protection mechanisms. Carbohydrates contribute to adhesion persistence through cohesive reinforcement and enzymatic resistance of adhesive matrices. Building upon these mechanisms, this review proposes four prospective research directions: optimization of protein-mediated adhesion functionality, elucidation of lipid participation in adhesion dynamics, systematic characterization of carbohydrate adhesion modalities, and investigation of macromolecular synergy in composite adhesive systems. The synthesized knowledge provides critical insights into underwater adhesion mechanisms of aquatic fouling organisms and establishes a theoretical foundation for developing mechanism-driven antifouling strategies. This work advances fundamental understanding of bioadhesion phenomena while offering practical guidance for next-generation antifouling technology development.
何丹,李世国,战爱斌.生物大分子介导的水生污损生物黏附机制[J].生物化学与生物物理进展,2025,52(7):1833-1852
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号