1)Department of Molecular Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang 110122, China;2)Department of Pathology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao 266000, China;3)Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang 110122, China
This work was supported by a grant from The National Natural Science Foundation of China (81672920).
Objective This study sought to investigate the impact of exosomes derived from LoVo cells (LoVo-Exos) in colorectal cancer (CRC) on tumor angiogenesis, as well as to elucidate the potential molecular mechanisms underlying their pro-angiogenic effects.Methods LoVo-Exos were isolated via ultracentrifugation, and their internalization into recipient human umbilical vein endothelial cells (HUVECs) was visualized using confocal microscopy. The influence of LoVo-Exos on angiogenesis was assessed through an in vitro tube formation assay. Additionally, the pro-angiogenic effects of LoVo-Exos were evaluated in vivo using a matrix gluing assay in mice. To investigate the molecular mechanisms through which LoVo-Exos facilitate angiogenesis, Western blot analysis was employed to examine the transfer of pEGFR by LoVo-Exos into recipient cells. Both Western blot and ELISA were utilized to assess the expression levels of key signaling proteins within the EGFR-ERK pathway, as well as the expression of downstream angiogenic core molecules. Furthermore, the impact of EGFR knockdown and ERK inhibitor treatment on angiogenesis was evaluated, with subsequent analysis of the expression of downstream angiogenic core molecules following these interventions.Results Confocal microscopy demonstrated the internalization of LoVo-Exos into HUVECs. In vitro angiogenesis assays further indicated that LoVo-Exos significantly enhanced the formation of tubular structures in HUVECs. Additionally, macroscopic examination of subcutaneous matrix plug formation in mice revealed a substantial increase in vascular-like structures within the matrix plugs following the administration of LoVo-Exos, compared to the PBS control group. Hematoxylin and eosin (HE) staining revealed the presence of erythrocyte-filled microvessels within the matrix plugs combined with LoVo-Exos. Furthermore, immunohistochemical analysis demonstrated the expression of the endothelial cell marker CD31 in these matrix plugs. The presence of CD31-positive cells in the LoVo-Exos-treated matrix plugs was associated with a significant enhancement in the formation of luminal structures. These findings suggest that LoVo-Exos facilitate the in vivo development of vascular-like structures. Subsequent investigations demonstrated that LoVo-Exos facilitated the delivery of pEGFR to HUVEC, thereby enhancing angiogenesis. Conversely, LoVo-Exos with EGFR knockdown exhibited a diminished capacity to promote angiogenesis, an effect that was further attenuated by the ERK phosphorylation inhibitor U0126. Western blot analysis assessing the activation of the EGFR-ERK signaling pathway in HUVEC indicated that LoVo-Exos augmented angiogenesis through the activation of this pathway. Furthermore, analysis of the impact of LoVo-Exos on the expression of downstream angiogenic core molecules revealed an increase in interleukin-8 (IL-8) secretion in HUVEC. The enhancement observed was diminished in LoVo-Exos following EGFR knockdown, and this reduction was counteracted by the ERK phosphorylation inhibitor U0126.Conclusion The underlying mechanism may involve the delivery of pEGFR in LoVo-Exos to HUVECs, leading to increased IL-8 secretion via the EGFR-ERK signaling pathway, thereby enhancing the angiogenic potential of HUVECs. This finding may offer new insights into the mechanisms underlying cancer metastasis.
CHENG Ya-Jie, ZHOU Xue-Tong, WANG Rui, FANG Jin. Promotion of Angiogenesis by Colorectal Cancer Cell LoVo Derived-exosomes Through Transferring pEGFR[J]. Progress in Biochemistry and Biophysics,,():1229-1240
Copy® 2025 All Rights Reserved ICP:京ICP备05023138号-1 京公网安备 11010502031771号