en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BrunetL J, GoldG H, NgaiJ. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron , 1996, 17(4):681-693
参考文献 2
JohnsonJ L, LerouxM R. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol, 2010, 20(8):435-444
参考文献 3
DeferN, BestbelpommeM, HanouneJ. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. American Journal of Physiology Renal Physiology, 2000, 279(3):F400
参考文献 4
WangZ, ZhouY, LuoY, et al. Gene Expression profiles of main olfactory epithelium in adenylyl cyclase 3 knockout mice. Int J Mol Sci, 2015, 16(12):28320-28333
参考文献 5
BirdA. Perceptions of epigenetics. Nature, 2007, 447(7143):396-398
参考文献 6
LiE, ZhangY. DNA methylation in mammals. Cold Spring Harb Perspect Biol, 2014, 6(5):a019133
参考文献 7
SuzukiM M, BirdA. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9(6):465-476
参考文献 8
ZhangZ, YangD, ZhangM, et al.Deletion of type 3 adenylyl cyclase perturbs the postnatal maturation of olfactory sensory neurons and olfactory cilium ultrastructure in mice. Front Cell Neurosci, 2017, 11:1
参考文献 9
周艳芬, 韩绍芳, 舒俐,等. 腺苷酸环化酶3缺失对小鼠主要嗅觉表皮组织内相关因子及信号通路的影响. 中国生物化学与分子生物学学报,2016,32(7):816-822
ZhouY F, HanS F, ShuL, et al. Chinese Journal of Biochemistry and Molecular Biology,2016,32(7):816-822
参考文献 10
周艳芬,王伟娜,袁焕娜等.腺苷酸环化酶3缺失下调小鼠嗅觉受体基因表达. 中国生物化学与分子生物学报,2017,33 (11):1143-1151
ZhouY F, WangW N, YuanH N, et al. Chinese Journal of Biochemistry and Molecular Biology,2017,33 (11):1143-1151
参考文献 11
WangZ, StormD R. Extraction of DNA from mouse tails. Biotechniques, 2006, 41(4):410-412
参考文献 12
WeberM, DaviesJ J, WittigD, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 2005, 37(8):853-862
参考文献 13
MengH, CaoY, QinJ, et al. DNA methylation, its mediators and genome integrity. International Journal of Biological Sciences, 2015, 11(5):604-617
参考文献 14
SchultzM D, HeY, WhitakerJ W, et al. Corrigendum: human body epigenome maps reveal noncanonical DNA methylation variation. Nature, 2016, 530(7589):242
参考文献 15
ProkhortchoukE, DefossezP A. The cell biology of DNA methylation in mammals. Biochim Biophys Acta, 2008, 1783(11):2167-2173
参考文献 16
EckhardtF, LewinJ, CorteseR, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet, 2006, 38(12):1378-1385
参考文献 17
IllingworthR, KerrA, DesousaD, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol, 2008, 6(1):e22
参考文献 18
HanF, DongY, LiuW, et al. Epigenetic regulation of sox30 is associated with testis development in mice. PLoS One, 2014, 9(5):e97203
参考文献 19
RollinsR A, HaghighiF, EdwardsJ R, et al. Large-scale structure of genomic methylation patterns. Genome Res, 2006, 16(2):157-163
参考文献 20
HackettJ A, ReddingtonJ P, NestorC E, et al. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development, 2012, 139(19): 3623-3632
参考文献 21
RohT Y, CuddapahS, ZhaoK. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev, 2005, 19(5):542-552
参考文献 22
WeberM, HellmannI, StadlerM B, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007, 39(4):457-466
参考文献 23
LovkvistC, SneppenK, HaerterJ O. Exploring the link between nucleosome occupancy and DNA methylation. Front Genet, 2017, 8:232
参考文献 24
ZhaoS, TianH, MaL, et al. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium. PLoS One, 2013, 8(7):e69862
参考文献 25
BuckL, AxelR. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 1991, 65(1):175-187
参考文献 26
KrautwurstD, YauK W, ReedR R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell, 1998, 95(7):917-926
参考文献 27
GiladY, PrzeworskiM, LancetD. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology, 2004, 2(1):E5
参考文献 28
LaskaM, GenzelD, WieserA. The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predi ctors of olfactory discrimination performance with enantiomers. Chemical Senses, 2005, 30(2):171-175
参考文献 29
NiimuraY, NeiM. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. Journal of Human Genetics, 2006, 51(6):505-517
参考文献 30
MombaertsP. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol, 2004, 14(1):31-36
参考文献 31
BozzaT, FeinsteinP, ZhengC, et al. Odorant receptor expression defines functional units in the mouse olfactory system. Journal of Neuroscience, 2002, 22(8):3033-3043
参考文献 32
Rodriguez-GilD J, BartelD L, JaspersA W, et al. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons. Proc Natl Acad Sci USA, 2015, 112(18): 5821-5826
参考文献 33
SecundoL, SnitzK, SobelN. The perceptual logic of smell. Current Opinion in Neurobiology, 2014, 25(4):107-115
参考文献 34
ZouD J, CheslerA, FiresteinS. How the olfactory bulb got its glomeruli: a just so story?. Nature Reviews Neuroscience, 2009, 10(8): 611-618
参考文献 35
WangZ, Balet SindreuC, LiV, et al. Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J Neurosci, 2006, 26(28):7375-7379
目录 contents

    摘要

    腺苷酸环化酶3(adenylate cyclase Ⅲ,AC3)是嗅觉系统中的重要成分,AC3缺失后小鼠的主要嗅觉表皮组织(main olfactory epidermal,MOE)随年龄增长逐渐变薄,MOE内基因表达谱发生改变. DNA甲基化在动物发育、基因表达调控中具有重要作用. 为了探讨AC3缺失后小鼠MOE内基因启动子甲基化水平的改变以及对基因表达的影响,本文采用DNA甲基化免疫共沉淀芯片(methylated DNA immunoprecipitation chip,MeDIP-chip)筛选AC3缺失小鼠MOE内启动子区甲基化差异表达基因,利用甲基化特异PCR(methylation-specific PCR,MSP)、实时荧光定量PCR(qRT-PCR)进一步检测部分甲基化差异基因的DNA甲基化水平改变和表达差异. 结果表明,AC3缺失小鼠中有1 978个基因启动子的甲基化水平发生了改变,占总探针数的9%,其中727个基因启动子甲基化水平升高,1 251个甲基化水平降低. 功能分析表明,这些启动子甲基化发生改变的基因主要涉及的功能分别与嗅觉受体、神经发育、cAMP信号通路、ATP结合、钙离子调控、乙酰化修饰、转录因子等相关. MSP检测表明,嗅觉受体基因Olfr1153、Olfr231、Olfr378、Olfr651、Olfr691启动子区的甲基化水平升高,Cngb1、Pde4aOlfr1394基因启动子区的甲基化水平降低. qRT-PCR结果显示,基因Cngb1、Hcn4、Olfm1、Olfr1394、Olfr1153、Olfr231、Olfr378、Olfr691的表达水平显著下降,而Pde4aOlfr651基因的表达水平显著升高. 总之,AC3缺失后MOE内嗅觉受体基因、神经发育相关基因、cAMP信号通路等相关基因启动子甲基化水平发生显著改变,影响核苷酸切除修复、DNA复制、错配修复等信号通路的传导,从而综合调控小鼠MOE内的基因表达数量和水平.

    Abstract

    Adenylate cyclase Ⅲ (AC3) is an important component of odorant perception signaling in the olfactory system. The thinness of main olfactory epithelium (MOE) become thin with ageing, and the gene expression profile alters after AC3 deletion. DNA methylation plays a key role in animal development and regulation of gene expression. In the present study, whether the DNA methylation level of gene promoter, as well as their associations with the expression of the genes in MOE will be altered after AC3 deletion, was investigated by using methylated DNA immunoprecipitation chip (MeDIP-chip), methylation-specific PCR (MSP) and real-time fluorescence quantification PCR. The data showed that the DNA methylation levels of promoters of 1 978 genes were altered in AC3-deficient mice, accounting for 9% of the total number of genes. Of which 727 genes with their promoter’s DNA methylation levels were elevated, 1 251 genes with their promoter’s methylation levels were lowered. The functions of these genes are mainly involved with olfactory receptor, neurodevelopmental, cAMP signaling pathway, ATP-binding, calcium regulation, acetylation modification, and transcription factors. It was further confirmed by MSP that methylation levels of promoter of the olfactory receptor genes Olfr1153, Olfr231, Olfr378, Olfr651 and Olfr691 were increased, whereas methylation level of the promoters of Cngb1, Pde4a and Olfr1394 were decreased. In line with MSP results, qRT-PCR data showed that the expression levels of Cngb1, Hcn4, Olfm1, Olfr1394, Olfr1153, Olfr231, Olfr378 and Olfr691 were significantly decreased, whereas the expression levels of Pde4a and Olfr651 were significantly increased. In conclusion, the methylation levels of promoters of olfactory receptor genes, neurodevelopmental related genes and cAMP signaling pathways in MOE are modified significantly after AC3 deletion, which affected the transduction of signal pathways such as nucleotide excision and repair, DNA replication and mismatch repair, thus comprehensively regulating the number and level of gene expression in MOE of mice.

    小鼠的主要嗅觉表皮组织(main olfactory epithelium tissue,MOE)能够感知和分辨环境中的化学气味分[1]. 气味分子通过由嗅觉受体(olfactory receptor,OR)、嗅觉相关G蛋白(olfactory related G protein,Golf)复合体、腺苷酸环化酶3(adenylyl cyclase 3,AC3)和环核苷酸门控离子通道(cyclic nucleotide-gated channel,CNG)等组成的cAMP信号通路,将化学信息转化为电信息并传递到大脑的其他部[2,3]. AC3能够催化腺嘌呤核苷三磷酸(adenine nucleoside triphosphate,ATP)生成第二信使分子环腺苷酸(3'-5' cyclic adenine monphospheate,cAMP). 王振山[4]利用转录组测序、荧光定量PCR技术筛选差异表达基因,发现AC3缺失小鼠嗅觉受体基因、未成熟嗅觉神经细胞和成熟嗅觉神经细胞特异表达的基因显著改变,同时还发现与表观遗传相关的众多基因的表达水平也发生了显著改变.

    表观遗传修饰包括DNA甲基化、RNA干扰、染色质重塑、基因组印记、组蛋白修饰等,在动物发育和基因表达调控方面具有重要作[5,6]. 在哺乳动物基因组中,DNA甲基化主要发生在胞嘧啶-鸟嘌呤位点,即CpG位点. 由DNA甲基化酶将S-腺苷甲硫氨酸的甲基转移到基因组中胞嘧啶核苷酸上,70%~80%的CpG位点发生甲基化修[6],而CpG多富集于基因启动子区域,成簇形成CpG岛(CpG islands). 基因启动子中甲基化的CpG双核苷酸通过募集转录抑制因子或者阻碍转录激活因子的结合进而抑制基因表达,是转录沉默的重要标[7]. 在小鼠发育过程中AC3缺失导致很多基因的表达受到抑[8,9,10],这些基因表达的抑制是否受DNA甲基化水平的影响?小鼠MOE内各个基因的甲基化水平是否发生改变?这些基因甲基化水平的改变是否与其表达量的改变相关?或是某些基因位点产生了特定的变化?这些问题尚不清楚. 本文采用DNA甲基化芯片对AC3缺失小鼠MOE内基因启动子区的甲基化水平进行检测,分析AC3缺失后小鼠MOE内哪些基因的甲基化水平发生了改变,利用甲基化特异PCR(MSP)、荧光定量PCR技术分析部分基因甲基化水平的改变是否与其表达量的改变相关.

  • 1 材料与方法

  • 1.1 实验动物

    AC3+/-(C57BL/6J)小鼠引进于美国华盛顿大学(西雅图分校)Daniel.R.Storm实验室,饲养于河北大学实验动物中心SPF级动物房,杂交子代小鼠剪尾后利用PCR方法鉴定基因[11],选取同窝出生3月龄AC3+/+AC3-/-小鼠作为实验材料. 实验动物的所有处理方法和操作程序均符合中华人民共和国科学技术部颁发的《关于善待实验动物的指导性意见》,并得到河北大学动物伦理及关爱委员会的批准.

  • 1.2 DNA甲基化芯片检测

  • 1.2.1 基因组DNA的提取及片段化

    选取3月龄同窝出生的AC3+/+AC3-/-小鼠作为实验材料,麻醉小鼠后分离MOE组织样本;采用DNeasy Blood & Tissue Kit (Qiagen,Fremont,CA)提取基因组DNA(gDNA);NanoDrop ND-1000定量并评估纯化的DNA. 使用Bioruptor sonicator (Diagenode)超声打断gDNA,片段大小控制在200 ~ 1 000 bp之间;琼脂糖凝胶电泳检测gDNA和打断后的剪切DNA,合格后备用.

  • 1.2.2 甲基化芯片杂交

    基因组DNA甲基化芯片杂交由上海康成生物工程有限公司完成. 采用5-甲基胞嘧啶小鼠单抗(Diagenode)对1 μg 剪切DNA进行免疫沉淀(即为MeDIP);使用NimbleGen Dual-Color DNA Labeling Kit(Cy5-9mer引物/Cy3-9mer引物)双色标记DNA;Cy5-9mer引物标记MeDIP样品;Cy3-9mer引物标记阳性对照(input)样品;与Arraystar 4×180K DNA甲基化芯片(arraystar mouse refseq promoter array)进行杂[12]. 该芯片平均探针间距为205 bp,设计区域为转录起始位点(transcription start site,TSS)的-1 300 bp ~ +500 bp,大约 180 000根探针覆盖22 327个基因启动子区域.

  • 1.2.3 差异甲基化基因的筛选

    使用NimbleScan扫描杂交芯片. 为了消除系统误差和芯片间差异,分别使用中值标准化、分位数标准化和线性平滑的方法对芯片数据标准化,识别甲基化峰. 两组样品进行比较,按log2(MeDIP/input)≥2标准筛选差异甲基化基因(differential enrichment peaks,DEP). 为了了解启动子差异甲基化基因的功能,进行基因本体(gene ontology,GO)注释,包括分子功能(molecular function)、生物过程(biological process)及细胞组成(cell component). 利用KEGG(京都基因与基因组百科全书)富集分析信号通路,了解启动子差异甲基化基因参与的生物学过程.

  • 1.3 DNA甲基化特异性PCR

    为了更好地体现雌雄小鼠甲基化水平的研究,本试验选取3月龄同窝出生的AC3+/+AC3-/-小鼠(n=3)两对雄性和一对雌性作为实验材料,分别收集MOE并均分两份. 采用TIANamp Genomic DNA Kit提取gDNA,NanoDrop 2000定量并评估纯化的DNA. 采用ZYMO EZ DNA Methylation-GoldTM Kit(ZYMO RESEARCH,D5005)对gDNA进行亚硫酸盐转化. 利用Methprimer在线软件(http://www.urogene.org),对选取的10个目的基因保留TSS上游1 500 bp进行甲基化引物和非甲基化引物设计(表1),由生工生物工程(上海)有限公司合成. 以亚硫酸盐转化的gDNA为模板,使用ZymoTaqTM PreMix Kit(ZYMO RESEARCH,E2004)进行扩增. PCR产物采用3.5%琼脂糖凝胶电泳检测,凝胶成像分析系统(G-box,Syngene)采集图像.

    Table 1 Primer sequences of methylated and unmethylated genes

    GeneAccessionPrimer sequencesProduct size/bp
    Cngb1NM_145601M-F: TTTTTATTAAGGTATAAAGTGGCGT188
    M-R: TATAAAATTAAAACACAAAATCGCC
    U-F: TTTTTATTAAGGTATAAAGTGGTGT188
    U-R: TATAAAATTAAAACACAAAATCACC
    Pde4aNM_183408M-F: AGGAAGAATTACGTGTATAATTCGT192
    M-R: AACTACTCCCGCTACTACTATCGAA
    U-F: GAGGAAGAATTATGTGTATAATTTGT193
    U-R: AACTACTCCCACTACTACTATCAAA
    Hcn4NM_001081192M-F: GGTTTAGGAAAATTTTGGGAGTC103
    M-R: CGATCGTAAAACTACGAAACGA
    U-F: GGTTTAGGAAAATTTTGGGAGTT105
    U-R: ACCAATCATAAAACTACAAAACAAC
    Olfm1NM_001038612M-F: GTTTTGATTTGGGTTTTTGC192
    M-R: AAAAAAAATATACCAACCTACCGTC
    U-F: GTTTTGATTTGGGTTTTTGTGA190
    U-R: AAAAAATATACCAACCTACCATC
    Olfr1394NM_146276M-F: TTTTTAGGCGGGAAGTTTATTTC115
    M-R: TATACCTATCGTAAACCATAACGAC
    U-F: TTAGGTGGGAAGTTTATTTTGT112
    U-R: TATACCTATCATAAACCATAACAAC
    Olfr231NM_001005520M-F: TTTTTGGAGATTTGGTATATTACGA255
    M-R: ACCACAAAAACAAAAACCGAC
    U-F: TTTTTGGAGATTTGGTATATTATGA257
    U-R: AAACCACAAAAACAAAAACCAAC
    Olfr378NM_147024M-F: GGAATAATAATATGAATTAATTAATATTCG103
    M-R: AACCTCTCTTTCCACTAATAACCG
    U-F: TGGAATAATAATATGAATTAATTAATATTT103
    U-R: ACCTCTCTTTCCACTAATAACCAAC
    Olfr1153NM_146640M-F: ATTAGTAATTTTTTGATGTATGCGG130
    M-R: AAAAACACAAATAAAATATCAACGTT
    U-F: TTAGTAATTTTTTGATGTATGTGG129
    U-R: AAAAACACAAATAAAATATCAACATT
    Olfr651NM_146813M-F: TTAGGTGTTTTAGGAAAATATACGT150
    M-R: AAAAAATAACAAAAAAATAATCGTA
    U-F: TTAGGTGTTTTAGGAAAATATATGT152
    U-R: AAAAAAAATAACAAAAAAATAATCATA
    Olfr691NM_147061M-F: TTGATAATGGTGATTATTATAGAACGG254
    M-R: AAAACACAAATAACTATAAAACGAT
    U-F: TTGATAATGGTGATTATTATAGAATGG254
    U-R: AAAACACAAATAACTATAAAACAAT
  • 1.4 荧光定量PCR

    TRIzol法(Ambion,15596026)提取MOE组织总RNA;NanoDrop2000(Thermo)检测RNA浓度和纯度;利用PrimeScriptTM RT reagent Kit with gDNA Eraser(Perfect Real Time,TaKaRa, DRR047A)反转录试剂盒合成单链cDNA备用. 对选取的10个目的基因在NCBI数据库分别检索,根据其对应的mRNA序列,使用Primer Premier 5设计引物(表2). 以β-actin为内参,分别采用最佳PCR反应条件进行qRT-PCR检测基因的相对表达量(Agilent Technologies),每组3只小鼠,所有实验重复3次. 各样品的Ct值使用β-actin进行归一化处理,2-Ct法分析计算.

    Table 2 Primer sequences used for qRT-PCR

    GeneAccessionPrimer sequencesProduct size /bp
    Hcn4NM_001081192F: ACCCGCAGAGGATCAAGATGA102
    R: TGCGAGTCTCCACTATAAGGAA
    Cngb1NM_145601F: CAGAGGAGGAACACTACTGCG229
    R: AAGTAATCCATGAGGAGCCAGA
    Pde4aNM_183408F: CATCAATGTCCCACGATTTG166
    R: TAAGTCCCGCTCCTGGAATA
    Olfm1NM_001038612F: CTGCTGAAGATCGGGGTCG101
    R: GAAAGCCGGGTGGTATTGAG
    Olfr231NM_001005520F: TTTCCAGCCTAGTCAGTGAGAA153
    R: GGTAACGGAGAGGATAGCAGA
    Olfr378NM_147024F: TCCCCCTTCATTACATGAGCA183
    R: AAGCCACTTTAAGCAGAGTAGAC
    Olfr1153NM_146640F: AGCAACCCCTTGATGTATGCG369
    R: TGCAACAACAGTTAGATGGGAG
    Olfr691NM_147061F: GGTTGGAGGCTTATCATACCTGG214
    R: TGGGCATGGAGCCAAAAGATG
    Olfr1394NM_146276F: GTTCGGCCACTCACCTTATGA210
    R: GAGAGAAAGTTGGTTGCCATCT
    Olfr651NM_146813F: CTAAGCTGTTACAACCCAGCA115
    R: TGCCTACAATAGCCACAACATAG
    β-actinNM_007393.3F: GACGTTGACATCCGTAAAGACC115
    R: TGCTAGGAGCCAGGGCAGTA
  • 1.5 统计学分析

    各样品实验数据采用SPSS21.0统计分析,采用均值±标准误(x¯±s)表示,组间比较采用独立样本t检验.

  • 2 结果与分析

  • 2.1 差异甲基化基因启动子的筛选

    小鼠样品DNA芯片杂交信号均一,无划痕、气泡等,各项指标均符合质控标准. 本次芯片共检测22 327个基因的启动子,与AC3+/+小鼠相比,AC3-/-小鼠中有1 978个基因启动子甲基化水平发生了改变,占总检测数的9%. 说明AC3在MOE内对基因启动子甲基化水平具有重要作用,AC3缺失导致MOE内9%的基因启动子甲基化水平发生改变,对其正常功能的发挥产生一定影响. 发生改变的基因中,727个基因启动子甲基化水平升高,1 251个甲基化水平降低,降低的数量明显多于升高的数量.

  • 2.2 差异甲基化启动子基因功能分析

    为了寻找启动子区甲基化差异基因可能与哪些基因功能的改变有关,本文对筛选出的1 978个启动子区甲基化差异的基因进行GO分析. 结果显示,AC3缺失导致的差异甲基化基因群体中1 296个基因涉及分子功能,图1a列出基因数量最多的10个分子功能,主要包括蛋白质结合、离子结合、有机环状化合物结合、杂环化合物结合、核酸结合、小分子结合等(全部分子功能基因见附表S1). 有 1 313个基因涉及生物学过程,图1b列出基因数量最多的10个生物学过程(biological process),主要包括细胞进程、代谢过程、初级代谢过程、单有机体的细胞过程、细胞过程的调控、生物调节过程等(全部生物学过程基因见附表S2). 有1 299个基因涉及细胞组成,图1c列出基因数量最多的10个细胞组成,主要包括细胞内组成、细胞器组成、膜组成、膜缘细胞器、细胞内膜缘细胞器等(全部细胞组成基因见附表S3).

    Fig. 1 Gene Ontology analysis of the differentially methylated promoters

    NOTE: Gene Ontology analysis of the differential methylated promoters,which was classed to molecular function, cell composition,and biological process. (a)Shows molecular function,which covers 1 296 differentially methylated promoters. (b)Shows cell composition,which covers 1 313 differentially methylated promoters. (c)Shows biological process,which covers 1 299 differentially methylated promoters.

    对甲基化芯片筛选出的差异甲基化基因进行 Pathway 分析,富集到的比较显著的生物信号通路涉及36条(差异甲基化基因Pathway 分析见附件表S4). 其中与神经突触相关的有D-谷氨酰胺-D-谷氨酸代谢通路、谷氨酸突触、GABA能突触、胆碱能突触、促性腺素释放素(gonadotropin releasing hormone, GnRH)信号通路;与DNA代谢和甲基化修饰相关的有嘌呤代谢、嘧啶代谢、核苷酸切除修复、DNA复制通路、错配修复;与疾病相关的有肿瘤、EB病毒感染、肿瘤中转录的错误调节、乙型肝炎、吗啡成瘾、尼古丁成瘾等;与细胞生理生长相关的有MAPK信号通路、内吞作用、细胞周期等(表3).

    Table 3 Pathway analysis of the differentially methylated promoters

    DefinitionSelection countsCountPercent/%P-ValueThe false discovery rate
    Pathways in cancer47323150.000990.038 099 71
    HTLV-I infection37277130.013210.110 476 9
    MAPK signaling pathway36253140.005430.110 476 9
    Endocytosis32221140.006560.110 476 9
    Epstein-Barr virus infection29213140.020780.110 476 9
    Protein processing in endoplasmic reticulum27168160.002900.110 476 9
    Purine metabolism27174160.004760.110 476 9
    Transcriptional misregulation in cancer25178140.021530.110 476 9
    Ubiquitin mediated proteolysis23139170.003970.110 476 9
    Hippo signaling pathway23154150.013690.110 476 9
    Pyrimidine metabolism22103210.000140.115 667 8
    Cell cycle22126170.002430.115 667 8
    Tight junction22136160.006300.115 667 8
    Glutamatergic synapse20114180.003540.117 497 3
    Hepatitis B20145140.043640.117 497 3
    Oocyte meiosis18111160.012430.117 497 3
    Estrogen signaling pathway1798170.007720.125 711 7
    Cholinergic synapse17113150.029270.172 378
    Insulin secretion1687180.005410.172 378
    Salivary secretion1577190.003990.172 378
    GABAergic synapse1589170.015360.172378
    Circadian entrainment1598150.034110.172378
    Protein digestion and absorption1488160.029730.177 323 2
    GnRH signaling pathway1489160.032410.177 323 2
    Morphine addiction1492150.041510.207 896 9
    Bile secretion1372180.013440.220 875 6
    Cytosolic DNA-sensing pathway1263190.011390.220 875 6
    Nucleotide excision repair1045220.006790.236 687
    Fanconi anemia pathway1052190.018760.251 648 8
    Endocrine and other factor-regulated calcium reabsorption1055180.027050.251 648 8
    RNA polymerase829280.003740.257 367 4
    DNA replication836220.014850.257 367 4
    Nicotine addiction840200.027250.272 081 6
    Proximal tubule bicarbonate reclamation720350.001460.277 892 8
    Mismatch repair723300.003620.328 520 6
    D-Glutamine and D-glutamate metabolism23670.023930.335 807 4

    NOTE: "Selection Counts" stands for the count of the differential enrichment genes' entities directly associated with the listed pathway ID. "Count" stands for the count of the chosen background population genes' entities associated with the listed pathway ID. "Percent" means the % of "Selection counts" to "Count".

    进一步分析AC3缺失小鼠MOE中启动子甲基化差异基因,发现可能影响较大的7个功能区域,分别为嗅觉受体基因、神经发育相关基因、cAMP信号通路相关基因、ATP结合相关基因、钙离子调控相关基因、乙酰化修饰相关基因、转录相关基因. 嗅觉受体基因中Olfr1413、Olfr103、Olfr231、Olfr378、Olfr736、Olfr1153、Olfr561、Olfr651、Olfr691、Olfr472、Olfr945、Olfr90 、Olfm2启动子甲基化水平升高, Olfr1394、Olfm13、Olfm1甲基化水平降低(附表S2). 神经发育相关基因中Htr7、Smarce1、Ncam1甲基化水平升高,Ascl1、Slc6a7甲基化水平降低. cAMP信号通路相关基因中AC3(Adcy3)、AC2(Adcy2)、AC7(Adcy7)、Pde4a 启动子甲基化水平均升高,AC9(Adcy9)、超极环核苷酸门控K+4(Hcn4)、Cngb1启动子甲基化水平降低. ATP结合相关基因中AatkMyo5aRps6ka6、Stk32c甲基化水平升高,Acss2、Actr3bMap3k12、Pkn3、Sgk1、Tars12、Tyro3甲基化水平降低. 钙离子调控相关基因中Clstn2、Myo5aSpna1甲基化水平升高,Cacna1hCdh15、Clstn1、EpxKcnn4、Pcdh10、Tgm2甲基化水平降低. 乙酰化修饰相关基因中Myst4、Myl1、Pdlim5、Arpp21、Cbr1、Rtn3甲基化水平升高,Acot7、Arhgap8、Arid3bClic4、Tgm2、VegfaAcss2、Actr3bAk1、Eya4、Fam192aRlbp1、Tarsl2、Tubb3甲基化水平降低. 转录相关基因中甲基化水平升高的只有2个,Trp73和Myst4,甲基化水平降低的有Arid3bBarh12、Ebf1、Elf5、Eya4、Irf4、Msx3、MypopSox8、Vax2、Vax1、Zfp300、Zfp536、Phf11.

  • 2.3 MSP检测基因启动子区DNA甲基化变化

    根据GO注释和Pathway分析,本文从1 978个差异甲基化基因中筛选出与cAMP相关的3个基因(Hcn4,Cngb1,Pde4a)以及嗅觉受体基因7个(Olfm1,Olfr1394,Olfr231,Olfr378,Olfr1153,Olfr651,Olfr691)(表4),利用MSP对这些基因的启动子区(-1 300 bp ~ +500 bp of TSS)的甲基化水平进行验证(图2).

    Table 4 Selected genes used for MSP

    Gene NameChromosomePromoter Classification
    Cngb1chr5LCP
    Hcn4chr9HCP
    Pde4achr9HCP
    Olfm1chr2HCP
    Olfr1394chr11LCP
    Olfr231chr1LCP
    Olfr378chr11LCP
    Olfr1153chr2LCP
    Olfr651chr7LCP
    Olfr691chr7LCP

    Fig. 2 MSP of differentially methylated genes

    NOTE: The genomic DNA which was extracted from MOE of AC3 knock-out (AC3-/-)(n=3) and wild type (AC3+/+) mice (n=3),was modified by sulfite and subsequently used to conduct MSP (methylation-specific PCR). Differentially methylated level of Cngb1,Hcn4,Pde4a,Olfm1, Olfr1394,Olfr1153,Olfr231,Olfr378,Olfr651,and Olfr691 were determined by MSP (M:methylated. U:unmethylated).

    电泳结果显示,与野生型小鼠相比,AC3缺失小鼠中的Hcn4、Olfm1、Olfr1153、Olfr231、Olfr378、Olfr651、Olfr691启动子区的甲基化水平升高,而Cngb1、Pde4aOlfr1394基因启动子区的甲基化水平降低. 其中Olfr1153、Olfr231、Olfr378、Olfr651、Olfr691、以及Cngb1、Pde4aOlfr1394的甲基化水平与芯片结果一致.

  • 2.4 qRT-PCR检测部分基因mRNA表达情况

    采用qRT-PCR分析上述10个基因的表达水平发现,与野生型相比,AC3缺失小鼠Cngb1、Hcn4、Olfm1、Olfr1394、Olfr1153、Olfr231、Olfr378、Olfr691的表达水平显著下降,分别下降了81.3%、73.7%、77.0%、85.4%、88.2%、78.6%、70.6%和82.0%. Pde4aOlfr651基因的表达水平显著升高,分别升高了12.3倍和4.8倍(图3).

    Fig. 3 The relative expression level of differentially methylated genes by qRT-PCR

    NOTE: Total RNA was extracted from MOE of AC3 knock-out (AC3-/-)(n=3) and wild type(AC3+/+) mice(n=3) by the TRIzol method, and subsequently was reversed into cDNA. The relative mRNA expression level of Cngb1,Hcn4,Pde4a,Olfm1,Olfr1394,Olfr1153,Olfr231,Olfr378,Olfr651 and Olfr691,was determined by qRT-PCR,respectively. β-Actin was used as an internal control. Data was represented by mean ± SD (n=3). *** P<0.001,**P<0.01,*P<0.05.

  • 3 讨论

    大多数哺乳动物的全基因组范围内CpG位点都是甲基化的,而处于基因转录起始位点的CpG位点通常是未甲基化的,因而该基因具备转录活性. 当转录起始位点处的CpG岛呈现甲基化状态时,转录因子与基因的结合就会被抑制,从而抑制基因的转录活[13],因此DNA甲基化水平通常与基因表达呈负相[14]. 另外,DNA甲基化还可以通过影响和改变染色质的结构与蛋白质-DNA相互作用抑制基因的转录活性,这样启动子CpG岛的特异性甲基化很可能使某些基因具有组织特异性表达能力. 已报道许多CpG岛呈现组织特异性的DNA甲基化分[15,16,17],小鼠的性别决定基因SOX30在睾丸组织的表达呈现时空特异性改变,正是由于启动子CpG岛甲基化水平的改变而产生[18]. 因此,哺乳动物基因启动子甲基化水平对基因表达的调控具有时空特异性和组织特异性. 王振山[4]利用转录组测序方法筛选AC3缺失小鼠MOE中差异表达基因时发现,差异基因上调的数量为1 391,下调的数量为1 988,差异基因下调数量明显多于上调数量. 因此,推测利用DNA甲基化芯片筛选AC3缺失小鼠MOE中差异基因启动子甲基化水平升高的数量应多于降低的数量,但实验中发现AC3-/-小鼠MOE中差异基因启动子甲基化水平降低的数量明显多于升高的数量,与预期结果相反. 我们前期多个研究结果表[8,9,10]AC3缺失后小鼠MOE中成熟嗅觉神经元分化受到影响,细胞大量凋亡,调控神经元分化和发育的基因转录因子5 (activating transcription factor 5,ATF5)明显下调,同时可以介导DNA去甲基化的双加氧酶TET3(ten-eleven translocation 3,Tet3)在小鼠MOE中表达量也明显上调,推测可能是由于甲基化的DNA序列与转录因子的结合、与甲基CpG结合蛋白的结合,以及结合强度的改变、小分子的识别或Tet3等的协同作用,改变了染色质的构型,既降低了DNA甲基化水平,也使得部分基因转录抑制. 因此,导致AC3缺失小鼠MOE中启动子甲基化水平降低的数量多于升高的数量.

    在哺乳动物中不同GC含量的基因启动子具有不同的甲基化分布,基于CpG的比率、GC含量和CpG-富集区长度,启动子可以分为高CpG密度启动子(Hgh CpG-density promoters,HCPs)、中CpG密度启动子(intermediate CpG-density promoters,ICPs)和低CpG密度启动子(low CpG-density promoters,LCPs). 在正常的体细胞中大部分HCP呈低甲基[19]. 因此,常常伴随组蛋白H3K4甲基化和H3乙酰化,这可以有效地阻止DNMTs(DNA methyltransferases,DNMTs)与HCP的结合,从而使HCP保持低甲基化状[20,21]. ICP启动子由于缺乏组蛋白H3K4甲基化和H3乙酰化的保护易被DNMT3A和DNMT3B识别,在细胞分化过程中更容易发生从头甲基化,而LCP由于缺乏CpG岛,CpG密度低,一般呈高甲基化状[22]. 本研究筛选得到的1 978个差异甲基化启动子中HCP的1 132个,其中390个甲基化水平升高,742个降低. ICP的450个,其中153个升高,297个降低. LCP的396个,其中184个升高,212个降低. 进一步对部分基因的mRNA表达量进行分析,发现Olfr1394和Olfr651的mRNA表达水平和启动子区甲基化水平改变并不呈负相关,可能是 Olfr1394和Olfr651的启动子区属于LCP,由于CpG密度低,它们的改变不足以对基因表达产生影响,加之与其他一些转录因子或结合蛋白相互协调而产生的综合结[22,23]. MSP检测中发现Hcn4和Olfm1启动子区甲基化水平与芯片结果不符,推测可能是由于Hcn4和Olfm1均为HCP启动子,而HCP启动子大部分保持低甲基化水平,从而影响了Hcn4和Olfm1基因启动子的甲基化水平.

    动物的气味感知是ORs蛋白正常表达所必需的,单侧鼻孔结扎术导致ORs蛋白表达数量下降,成熟神经元细胞凋亡增[24],说明气味分子的感知影响嗅觉神经元的存活. 而嗅觉的广度和敏感度来源于种类繁多的ORs蛋[25,26]. 动物的嗅觉灵敏度与其基因组中功能ORs的数量呈正相[27,28],而ORs的数量可以反映动物对气味的辨别能[29]. 在正常的小鼠MOE内,每个成熟嗅觉神经元仅表达单个等位基因中的一个OR[30],表达的OR决定了该神经元的气味敏感[31],而表达相同OR的神经元轴突汇聚成束,靶向投射到嗅球颗粒层的相同区[32]. OR基因有1 200个左右,其中30%的OR基因为没有功能的假基[33],MOE中具有功能的OR蛋白与不同的气味分子相互识别而结合. OR表达以及气味刺激的cAMP信号通路参与嗅球颗粒细胞层的形成,AC3缺失导致某些嗅觉神经元靶向轴突发育异常,引起颗粒细胞层结构畸[33,34] . 研究表明,AC3缺失小鼠表现为严重的嗅觉缺失,丧失了气味探测能[35]. 因此,AC3缺失小鼠嗅觉相关基因启动子的甲基化水平能够影响嗅觉ORs蛋白的表达、以及嗅觉的广度和灵敏度. 本研究选择的7个嗅觉受体中6个表达量下降,说明绝大部分嗅觉受体受AC3缺失的影响而下调,与前期采用FISH技[10]检测嗅觉受体基因表达结果相符.

    总之,在小鼠特异的组织MOE中,AC3的缺失影响了DNA甲基化水平的改变,推测进一步影响众多基因的表达. 但是,DNA甲基化水平的改变是如何形成的?如何影响这些差异基因的表达?还有待于进一步完善.

  • 参 考 文 献

    • 1

      Brunet L J, Gold G H, Ngai J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron , 1996, 17(4):681-693

    • 2

      Johnson J L, Leroux M R. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol, 2010, 20(8):435-444

    • 3

      Defer N, Bestbelpomme M, Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. American Journal of Physiology Renal Physiology, 2000, 279(3):F400

    • 4

      Wang Z, Zhou Y, Luo Y, et al. Gene Expression profiles of main olfactory epithelium in adenylyl cyclase 3 knockout mice. Int J Mol Sci, 2015, 16(12):28320-28333

    • 5

      Bird A. Perceptions of epigenetics. Nature, 2007, 447(7143):396-398

    • 6

      Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol, 2014, 6(5):a019133

    • 7

      Suzuki M M, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9(6):465-476

    • 8

      Zhang Z, Yang D, Zhang M, et al.Deletion of type 3 adenylyl cyclase perturbs the postnatal maturation of olfactory sensory neurons and olfactory cilium ultrastructure in mice. Front Cell Neurosci, 2017, 11:1

    • 9

      周艳芬, 韩绍芳, 舒俐,等. 腺苷酸环化酶3缺失对小鼠主要嗅觉表皮组织内相关因子及信号通路的影响. 中国生物化学与分子生物学学报,2016,32(7):816-822

      Zhou Y F, Han S F, Shu L, et al. Chinese Journal of Biochemistry and Molecular Biology,2016,32(7):816-822

    • 10

      周艳芬,王伟娜,袁焕娜等.腺苷酸环化酶3缺失下调小鼠嗅觉受体基因表达. 中国生物化学与分子生物学报,2017,33 (11):1143-1151

      Zhou Y F, Wang W N, Yuan H N, et al. Chinese Journal of Biochemistry and Molecular Biology,2017,33 (11):1143-1151

    • 11

      Wang Z, Storm D R. Extraction of DNA from mouse tails. Biotechniques, 2006, 41(4):410-412

    • 12

      Weber M, Davies J J, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 2005, 37(8):853-862

    • 13

      Meng H, Cao Y, Qin J, et al. DNA methylation, its mediators and genome integrity. International Journal of Biological Sciences, 2015, 11(5):604-617

    • 14

      Schultz M D, He Y, Whitaker J W, et al. Corrigendum: human body epigenome maps reveal noncanonical DNA methylation variation. Nature, 2016, 530(7589):242

    • 15

      Prokhortchouk E, Defossez P A. The cell biology of DNA methylation in mammals. Biochim Biophys Acta, 2008, 1783(11):2167-2173

    • 16

      Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet, 2006, 38(12):1378-1385

    • 17

      Illingworth R, Kerr A, Desousa D, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol, 2008, 6(1):e22

    • 18

      Han F, Dong Y, Liu W, et al. Epigenetic regulation of sox30 is associated with testis development in mice. PLoS One, 2014, 9(5):e97203

    • 19

      Rollins R A, Haghighi F, Edwards J R, et al. Large-scale structure of genomic methylation patterns. Genome Res, 2006, 16(2):157-163

    • 20

      Hackett J A, Reddington J P, Nestor C E, et al. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development, 2012, 139(19): 3623-3632

    • 21

      Roh T Y, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev, 2005, 19(5):542-552

    • 22

      Weber M, Hellmann I, Stadler M B, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007, 39(4):457-466

    • 23

      Lovkvist C, Sneppen K, Haerter J O. Exploring the link between nucleosome occupancy and DNA methylation. Front Genet, 2017, 8:232

    • 24

      Zhao S, Tian H, Ma L, et al. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium. PLoS One, 2013, 8(7):e69862

    • 25

      Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 1991, 65(1):175-187

    • 26

      Krautwurst D, Yau K W, Reed R R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell, 1998, 95(7):917-926

    • 27

      Gilad Y, Przeworski M, Lancet D. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology, 2004, 2(1):E5

    • 28

      Laska M, Genzel D, Wieser A. The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predi ctors of olfactory discrimination performance with enantiomers. Chemical Senses, 2005, 30(2):171-175

    • 29

      Niimura Y, Nei M. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. Journal of Human Genetics, 2006, 51(6):505-517

    • 30

      Mombaerts P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol, 2004, 14(1):31-36

    • 31

      Bozza T, Feinstein P, Zheng C, et al. Odorant receptor expression defines functional units in the mouse olfactory system. Journal of Neuroscience, 2002, 22(8):3033-3043

    • 32

      Rodriguez-Gil D J, Bartel D L, Jaspers A W, et al. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons. Proc Natl Acad Sci USA, 2015, 112(18): 5821-5826

    • 33

      Secundo L, Snitz K, Sobel N. The perceptual logic of smell. Current Opinion in Neurobiology, 2014, 25(4):107-115

    • 34

      Zou D J, Chesler A, Firestein S. How the olfactory bulb got its glomeruli: a just so story?. Nature Reviews Neuroscience, 2009, 10(8): 611-618

    • 35

      Wang Z, Balet Sindreu C, Li V, et al. Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J Neurosci, 2006, 26(28):7375-7379

周艳芬

机 构:河北大学生命科学学院,保定 071002

Affiliation:College of Life Sciences, Hebei University, Baoding 071002, China

王亚文

机 构:河北大学预防医学与卫生事业管理系,保定 071000

Affiliation:Department of Preventive Medicine and Health Management, Hebei University, Baoding 071000, China

王晓婷

机 构:河北大学医学院,保定 071000

Affiliation:College of Medicine, Hebei University, Baoding 071000, China

舒俐

机 构:河北大学生命科学学院,保定 071002

Affiliation:College of Life Sciences, Hebei University, Baoding 071002, China

李淑娟

机 构:河北大学生命科学学院,保定 071002

Affiliation:College of Life Sciences, Hebei University, Baoding 071002, China

王振山

机 构:河北大学生命科学学院,保定 071002

Affiliation:College of Life Sciences, Hebei University, Baoding 071002, China

GeneAccessionPrimer sequencesProduct size/bp
Cngb1NM_145601M-F: TTTTTATTAAGGTATAAAGTGGCGT188
M-R: TATAAAATTAAAACACAAAATCGCC
U-F: TTTTTATTAAGGTATAAAGTGGTGT188
U-R: TATAAAATTAAAACACAAAATCACC
Pde4aNM_183408M-F: AGGAAGAATTACGTGTATAATTCGT192
M-R: AACTACTCCCGCTACTACTATCGAA
U-F: GAGGAAGAATTATGTGTATAATTTGT193
U-R: AACTACTCCCACTACTACTATCAAA
Hcn4NM_001081192M-F: GGTTTAGGAAAATTTTGGGAGTC103
M-R: CGATCGTAAAACTACGAAACGA
U-F: GGTTTAGGAAAATTTTGGGAGTT105
U-R: ACCAATCATAAAACTACAAAACAAC
Olfm1NM_001038612M-F: GTTTTGATTTGGGTTTTTGC192
M-R: AAAAAAAATATACCAACCTACCGTC
U-F: GTTTTGATTTGGGTTTTTGTGA190
U-R: AAAAAATATACCAACCTACCATC
Olfr1394NM_146276M-F: TTTTTAGGCGGGAAGTTTATTTC115
M-R: TATACCTATCGTAAACCATAACGAC
U-F: TTAGGTGGGAAGTTTATTTTGT112
U-R: TATACCTATCATAAACCATAACAAC
Olfr231NM_001005520M-F: TTTTTGGAGATTTGGTATATTACGA255
M-R: ACCACAAAAACAAAAACCGAC
U-F: TTTTTGGAGATTTGGTATATTATGA257
U-R: AAACCACAAAAACAAAAACCAAC
Olfr378NM_147024M-F: GGAATAATAATATGAATTAATTAATATTCG103
M-R: AACCTCTCTTTCCACTAATAACCG
U-F: TGGAATAATAATATGAATTAATTAATATTT103
U-R: ACCTCTCTTTCCACTAATAACCAAC
Olfr1153NM_146640M-F: ATTAGTAATTTTTTGATGTATGCGG130
M-R: AAAAACACAAATAAAATATCAACGTT
U-F: TTAGTAATTTTTTGATGTATGTGG129
U-R: AAAAACACAAATAAAATATCAACATT
Olfr651NM_146813M-F: TTAGGTGTTTTAGGAAAATATACGT150
M-R: AAAAAATAACAAAAAAATAATCGTA
U-F: TTAGGTGTTTTAGGAAAATATATGT152
U-R: AAAAAAAATAACAAAAAAATAATCATA
Olfr691NM_147061M-F: TTGATAATGGTGATTATTATAGAACGG254
M-R: AAAACACAAATAACTATAAAACGAT
U-F: TTGATAATGGTGATTATTATAGAATGG254
U-R: AAAACACAAATAACTATAAAACAAT
GeneAccessionPrimer sequencesProduct size /bp
Hcn4NM_001081192F: ACCCGCAGAGGATCAAGATGA102
R: TGCGAGTCTCCACTATAAGGAA
Cngb1NM_145601F: CAGAGGAGGAACACTACTGCG229
R: AAGTAATCCATGAGGAGCCAGA
Pde4aNM_183408F: CATCAATGTCCCACGATTTG166
R: TAAGTCCCGCTCCTGGAATA
Olfm1NM_001038612F: CTGCTGAAGATCGGGGTCG101
R: GAAAGCCGGGTGGTATTGAG
Olfr231NM_001005520F: TTTCCAGCCTAGTCAGTGAGAA153
R: GGTAACGGAGAGGATAGCAGA
Olfr378NM_147024F: TCCCCCTTCATTACATGAGCA183
R: AAGCCACTTTAAGCAGAGTAGAC
Olfr1153NM_146640F: AGCAACCCCTTGATGTATGCG369
R: TGCAACAACAGTTAGATGGGAG
Olfr691NM_147061F: GGTTGGAGGCTTATCATACCTGG214
R: TGGGCATGGAGCCAAAAGATG
Olfr1394NM_146276F: GTTCGGCCACTCACCTTATGA210
R: GAGAGAAAGTTGGTTGCCATCT
Olfr651NM_146813F: CTAAGCTGTTACAACCCAGCA115
R: TGCCTACAATAGCCACAACATAG
β-actinNM_007393.3F: GACGTTGACATCCGTAAAGACC115
R: TGCTAGGAGCCAGGGCAGTA
html/pibben/20180261/alternativeImage/700654dc-3737-4eb4-bbe7-e72193e83d08-F001.jpg
DefinitionSelection countsCountPercent/%P-ValueThe false discovery rate
Pathways in cancer47323150.000990.038 099 71
HTLV-I infection37277130.013210.110 476 9
MAPK signaling pathway36253140.005430.110 476 9
Endocytosis32221140.006560.110 476 9
Epstein-Barr virus infection29213140.020780.110 476 9
Protein processing in endoplasmic reticulum27168160.002900.110 476 9
Purine metabolism27174160.004760.110 476 9
Transcriptional misregulation in cancer25178140.021530.110 476 9
Ubiquitin mediated proteolysis23139170.003970.110 476 9
Hippo signaling pathway23154150.013690.110 476 9
Pyrimidine metabolism22103210.000140.115 667 8
Cell cycle22126170.002430.115 667 8
Tight junction22136160.006300.115 667 8
Glutamatergic synapse20114180.003540.117 497 3
Hepatitis B20145140.043640.117 497 3
Oocyte meiosis18111160.012430.117 497 3
Estrogen signaling pathway1798170.007720.125 711 7
Cholinergic synapse17113150.029270.172 378
Insulin secretion1687180.005410.172 378
Salivary secretion1577190.003990.172 378
GABAergic synapse1589170.015360.172378
Circadian entrainment1598150.034110.172378
Protein digestion and absorption1488160.029730.177 323 2
GnRH signaling pathway1489160.032410.177 323 2
Morphine addiction1492150.041510.207 896 9
Bile secretion1372180.013440.220 875 6
Cytosolic DNA-sensing pathway1263190.011390.220 875 6
Nucleotide excision repair1045220.006790.236 687
Fanconi anemia pathway1052190.018760.251 648 8
Endocrine and other factor-regulated calcium reabsorption1055180.027050.251 648 8
RNA polymerase829280.003740.257 367 4
DNA replication836220.014850.257 367 4
Nicotine addiction840200.027250.272 081 6
Proximal tubule bicarbonate reclamation720350.001460.277 892 8
Mismatch repair723300.003620.328 520 6
D-Glutamine and D-glutamate metabolism23670.023930.335 807 4
Gene NameChromosomePromoter Classification
Cngb1chr5LCP
Hcn4chr9HCP
Pde4achr9HCP
Olfm1chr2HCP
Olfr1394chr11LCP
Olfr231chr1LCP
Olfr378chr11LCP
Olfr1153chr2LCP
Olfr651chr7LCP
Olfr691chr7LCP
html/pibben/20180261/alternativeImage/700654dc-3737-4eb4-bbe7-e72193e83d08-F002.jpg
html/pibben/20180261/alternativeImage/700654dc-3737-4eb4-bbe7-e72193e83d08-F003.jpg

Table 1 Primer sequences of methylated and unmethylated genes

Table 2 Primer sequences used for qRT-PCR

Fig. 1 Gene Ontology analysis of the differentially methylated promoters

Table 3 Pathway analysis of the differentially methylated promoters

Table 4 Selected genes used for MSP

Fig. 2 MSP of differentially methylated genes

Fig. 3 The relative expression level of differentially methylated genes by qRT-PCR

image /

无注解

无注解

Gene Ontology analysis of the differential methylated promoters,which was classed to molecular function, cell composition,and biological process. (a)Shows molecular function,which covers 1 296 differentially methylated promoters. (b)Shows cell composition,which covers 1 313 differentially methylated promoters. (c)Shows biological process,which covers 1 299 differentially methylated promoters.

"Selection Counts" stands for the count of the differential enrichment genes' entities directly associated with the listed pathway ID. "Count" stands for the count of the chosen background population genes' entities associated with the listed pathway ID. "Percent" means the % of "Selection counts" to "Count".

无注解

The genomic DNA which was extracted from MOE of AC3 knock-out (AC3-/-)(n=3) and wild type (AC3+/+) mice (n=3),was modified by sulfite and subsequently used to conduct MSP (methylation-specific PCR). Differentially methylated level of Cngb1,Hcn4,Pde4a,Olfm1, Olfr1394,Olfr1153,Olfr231,Olfr378,Olfr651,and Olfr691 were determined by MSP (M:methylated. U:unmethylated).

Total RNA was extracted from MOE of AC3 knock-out (AC3-/-)(n=3) and wild type(AC3+/+) mice(n=3) by the TRIzol method, and subsequently was reversed into cDNA. The relative mRNA expression level of Cngb1,Hcn4,Pde4a,Olfm1,Olfr1394,Olfr1153,Olfr231,Olfr378,Olfr651 and Olfr691,was determined by qRT-PCR,respectively. β-Actin was used as an internal control. Data was represented by mean ± SD (n=3). *** P<0.001,**P<0.01,*P<0.05.

  • 参 考 文 献

    • 1

      Brunet L J, Gold G H, Ngai J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron , 1996, 17(4):681-693

    • 2

      Johnson J L, Leroux M R. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol, 2010, 20(8):435-444

    • 3

      Defer N, Bestbelpomme M, Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. American Journal of Physiology Renal Physiology, 2000, 279(3):F400

    • 4

      Wang Z, Zhou Y, Luo Y, et al. Gene Expression profiles of main olfactory epithelium in adenylyl cyclase 3 knockout mice. Int J Mol Sci, 2015, 16(12):28320-28333

    • 5

      Bird A. Perceptions of epigenetics. Nature, 2007, 447(7143):396-398

    • 6

      Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol, 2014, 6(5):a019133

    • 7

      Suzuki M M, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9(6):465-476

    • 8

      Zhang Z, Yang D, Zhang M, et al.Deletion of type 3 adenylyl cyclase perturbs the postnatal maturation of olfactory sensory neurons and olfactory cilium ultrastructure in mice. Front Cell Neurosci, 2017, 11:1

    • 9

      周艳芬, 韩绍芳, 舒俐,等. 腺苷酸环化酶3缺失对小鼠主要嗅觉表皮组织内相关因子及信号通路的影响. 中国生物化学与分子生物学学报,2016,32(7):816-822

      Zhou Y F, Han S F, Shu L, et al. Chinese Journal of Biochemistry and Molecular Biology,2016,32(7):816-822

    • 10

      周艳芬,王伟娜,袁焕娜等.腺苷酸环化酶3缺失下调小鼠嗅觉受体基因表达. 中国生物化学与分子生物学报,2017,33 (11):1143-1151

      Zhou Y F, Wang W N, Yuan H N, et al. Chinese Journal of Biochemistry and Molecular Biology,2017,33 (11):1143-1151

    • 11

      Wang Z, Storm D R. Extraction of DNA from mouse tails. Biotechniques, 2006, 41(4):410-412

    • 12

      Weber M, Davies J J, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 2005, 37(8):853-862

    • 13

      Meng H, Cao Y, Qin J, et al. DNA methylation, its mediators and genome integrity. International Journal of Biological Sciences, 2015, 11(5):604-617

    • 14

      Schultz M D, He Y, Whitaker J W, et al. Corrigendum: human body epigenome maps reveal noncanonical DNA methylation variation. Nature, 2016, 530(7589):242

    • 15

      Prokhortchouk E, Defossez P A. The cell biology of DNA methylation in mammals. Biochim Biophys Acta, 2008, 1783(11):2167-2173

    • 16

      Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet, 2006, 38(12):1378-1385

    • 17

      Illingworth R, Kerr A, Desousa D, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol, 2008, 6(1):e22

    • 18

      Han F, Dong Y, Liu W, et al. Epigenetic regulation of sox30 is associated with testis development in mice. PLoS One, 2014, 9(5):e97203

    • 19

      Rollins R A, Haghighi F, Edwards J R, et al. Large-scale structure of genomic methylation patterns. Genome Res, 2006, 16(2):157-163

    • 20

      Hackett J A, Reddington J P, Nestor C E, et al. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development, 2012, 139(19): 3623-3632

    • 21

      Roh T Y, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev, 2005, 19(5):542-552

    • 22

      Weber M, Hellmann I, Stadler M B, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007, 39(4):457-466

    • 23

      Lovkvist C, Sneppen K, Haerter J O. Exploring the link between nucleosome occupancy and DNA methylation. Front Genet, 2017, 8:232

    • 24

      Zhao S, Tian H, Ma L, et al. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium. PLoS One, 2013, 8(7):e69862

    • 25

      Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 1991, 65(1):175-187

    • 26

      Krautwurst D, Yau K W, Reed R R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell, 1998, 95(7):917-926

    • 27

      Gilad Y, Przeworski M, Lancet D. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology, 2004, 2(1):E5

    • 28

      Laska M, Genzel D, Wieser A. The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predi ctors of olfactory discrimination performance with enantiomers. Chemical Senses, 2005, 30(2):171-175

    • 29

      Niimura Y, Nei M. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. Journal of Human Genetics, 2006, 51(6):505-517

    • 30

      Mombaerts P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol, 2004, 14(1):31-36

    • 31

      Bozza T, Feinstein P, Zheng C, et al. Odorant receptor expression defines functional units in the mouse olfactory system. Journal of Neuroscience, 2002, 22(8):3033-3043

    • 32

      Rodriguez-Gil D J, Bartel D L, Jaspers A W, et al. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons. Proc Natl Acad Sci USA, 2015, 112(18): 5821-5826

    • 33

      Secundo L, Snitz K, Sobel N. The perceptual logic of smell. Current Opinion in Neurobiology, 2014, 25(4):107-115

    • 34

      Zou D J, Chesler A, Firestein S. How the olfactory bulb got its glomeruli: a just so story?. Nature Reviews Neuroscience, 2009, 10(8): 611-618

    • 35

      Wang Z, Balet Sindreu C, Li V, et al. Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J Neurosci, 2006, 26(28):7375-7379