en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
ChartrandT L, BarghJ A. The chameleon effect: the perception-behavior link and social interaction. Journal of Personality and Social Psychology, 1999, 76(6): 893-910
参考文献 2
HessU, FischerA. Emotional mimicry as social regulation. Personality and Social Psychology Review, 2013, 17(2): 142-157
参考文献 3
HessU, FischerA. Emotional mimicry: why and when we mimic emotions. Social and Personality Psychology Compass, 2014, 8(2): 45-57
参考文献 4
FischerA, HessU. Mimicking emotions. Current Opinion in Psychology, 2017, 17: 151-155(DOI: 10.1016/j.copsyc.2017.07.008)
参考文献 5
张奇勇,卢家楣. 情绪感染的概念与发生机制. 心理科学进展, 2013, 21(9): 1596-1604
Zhang Q Y, Lu J M. Advances in Psychological Science, 2013, 21(9): 1596-1604
参考文献 6
左世江,王芳,石霞飞等. 简单情绪感染及其研究困境. 心理科学进展, 2014, 22(5): 791-801
ZuoS J, WangF, ShiX F, et al. Advances in Psychological Science, 2014, 22(5): 791-801
参考文献 7
KraaijenvangerE J, HofmanD, BosP A. A neuroendocrine account of facial mimicry and its dynamic modulation. Neuroscience & Biobehavioral Reviews, 2017, 77: 98-106(DOI: 10.1016/j.neubiorev.2017.03.006)
参考文献 8
ProchazkovaE, KretM E. Connecting minds and sharing emotions through mimicry: a neurocognitive model of emotional contagion. Neuroscience & Biobehavioral Reviews, 2017, 80: 99-114(DOI: 10.1016/j.neubiorev.2017.05.013)
参考文献 9
LeeT W, DolanR J, CritchleyH D. Controlling emotional expression: behavioral and neural correlates of nonimitative emotional responses. Cerebral Cortex, 2008, 18(1): 104-113
参考文献 10
LeeT W, JosephsO, DolanR J, et al. Imitating expressions: emotion-specific neural substrates in facial mimicry. Social Cognitive & Affective Neuroscience, 2006, 1(2): 122-135
参考文献 11
LeslieK R, Johnson-FreyS H, GraftonS T. Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage, 2004, 21(2): 601-607
参考文献 12
Vand G C, MinderaaR B, KeysersC. Facial expressions: what the mirror neuron system can and cannot tell us. Social Neuroscience, 2007, 2(3-4): 179-222
参考文献 13
RizzolattiG, CraigheroL. The mirror-neuron system. Annual Review of Neuroscience, 2009, 27(5): 169-192
参考文献 14
MolenberghsP, CunningtonR, MattingleyJ B. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Review, 2012, 36(1): 341-349
参考文献 15
PinedaJ A. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? Behavioral & Brain Functions, 2008, 4(1): 47-62
参考文献 16
ChongT, CunningtonR, WilliamsM A. fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 2008, 18(20): 1576-1580
参考文献 17
NewmannorlundR D, OndobakaS, VanH S, et al. Virtual lesions of the IFG abolish response facilitation for biological and non-biological cues. Frontiers in Behavioral Neuroscience, 2010, 4(4) doi: 10.3389/neuro.08.005.2010
参考文献 18
HogeveenJ, ChartrandT L, ObhiS S. Social mimicry enhances Mu-suppression during action observation. Cerebral Cortex, 2015, 25(8): 2076-2082
参考文献 19
CarrL, IacoboniM, DubeauM C, et al. Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc.. Natl. Acad. Sci. USA, 2003, 100(9): 5497-5502
参考文献 20
LikowskiK U, MühlbergerA, GerdesA B M, et al. Facial mimicry and the mirror neuron system: simultaneous acquisition of facial electromyography and functional magnetic resonance imaging. Frontiers in Human Neuroscience, 2012, 6(2) doi: 10.3389/fnhum.2012.00214
参考文献 21
RymarczykK, ŁŻurawski, JankowiaksiudaK, et al. Neural correlates of facial mimicry: simultaneous measurements of EMG and BOLD responses during perception of dynamic compared to static facial expressions. Frontiers in Psychology, 2018, 9(52) doi: 10.3389/fpsyg.2018.00052
参考文献 22
GazzolaV, AzizzadehL, KeysersC. Empathy and the somatotopic auditory mirror system in humans. Current Biology, 2006, 16(18): 1824-1829
参考文献 23
JabbiM, KeysersC. Inferior frontal gyrus activity triggers anterior insula response to emotional facial expressions. Emotion, 2008, 8(6): 775-780
参考文献 24
DaprettoM, DaviesM S, PfeiferJ H, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 2006, 9(1): 28-30
参考文献 25
HickokG. Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Jouranl of Cognitive Neuroscience, 2009, 21(7): 1229-1243
参考文献 26
CatmurC, WalshV, HeyesC. Sensorimotor learning configures the human mirror system. Current Biology, 2007, 17(17): 1527-1531
参考文献 27
GrèzesJ, DezecacheG. How do shared-representations and emotional processes cooperate in response to social threat signals? Neuropsychologia, 2014, 55(1): 105-114
参考文献 28
SatoW, KochiyamaT, UonoS, et al. Temporal profile of amygdala γ oscillations in response to faces. Jouranl of Cognitive Neuroscience. 2012, 24(6): 1420-1433
参考文献 29
VuilleumierP, PourtoisG. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia, 2007, 45(1): 174-194
参考文献 30
WildB, ErbM, BartelsM. Are emotions contagious? Evoked emotions while viewing emotionally expressive faces: quality, quantity, time course and gender differences. Psychiatry Research, 2003, 102(2): 109-124
参考文献 31
AugustineJR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 1996, 22(3): 229-244
参考文献 32
PhanK L, WagerT, TaylorS F, et al. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 2002, 16(2): 331-348
参考文献 33
BrittonJ C, TaylorS F, SudheimerK D, et al. Facial expressions and complex IAPS pictures: common and differential networks. Neuroimage, 2006, 31(2): 906-919
参考文献 34
GoldbergG. Supplementary motor area structure and function: review and hypotheses. Behavioral & Brain Sciences, 1985, 8(4): 567-588
参考文献 35
DreselC, CastropF, HaslingerB, et al. The functional neuroanatomy of coordinated orofacial movements: sparse sampling fMRI of whistling. Neuroimage, 2005, 28(3): 588-597
参考文献 36
HanakawaT, ParikhS, BrunoM K, et al. Finger and face representations in the ipsilateral precentral motor areas in humans. Journal of Neurophysiology, 2005, 93(5): 2950-2958
参考文献 37
TramacereA, FerrariP F. Faces in the mirror, from the neuroscience of mimicry to the emergence of mentalizing. Journal of Anthropological Sciences, 2016, 94: 113-126(DOI: 10.4436/JASS.94037)
参考文献 38
KorbS, MalsertJ, RochasV, et al. Gender differences in the neural network of facial mimicry of smiles--An rTMS study. Cortex, 2015, 70: 101-114(DOI: 10.1016/j.cortex.2015.06.025)
参考文献 39
GolbyA J, GabrieliJ D E, ChiaoJ Y, et al. Differential responses in the fusiform region to same-race and other-race faces. Nature Neuroscience, 2001, 4(8): 845-850
参考文献 40
BourgeoisP, HessU. The impact of social context on mimicry. Biological Psychology, 2008, 77(3): 343-352
参考文献 41
Vand S J, HawkS T, FischerA H, et al. Moving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES). Emotion, 2011, 11(4): 907-920
参考文献 42
KubotaJ T, BanajiM R, PhelpsE A. The neuroscience of race. Nature Neuroscience, 2012, 15(7): 940-948
参考文献 43
BalconiM, BortolottiA, GonzagaL. Emotional face recognition, EMG response, and medial prefrontal activity in empathic behaviour. Neuroscience Research, 2011, 71(3): 251-259
参考文献 44
BalconiM, CanavesioY. High-frequency rTMS improves facial mimicry and detection responses in an empathic emotional task. Clinical Neurophysiology, 2013, 124(10): e115-e116
参考文献 45
KampeK K, FrithC D, FrithU. "Hey John": signals conveying communicative intention toward the self-activate brain regions associated with "mentalizing," regardless of modality. Journal of Neuroscience, 2003, 23(12): 5258-5263
参考文献 46
KuzmanovicB, GeorgescuA L, EickhoffS B, et al. Duration matters: dissociating neural correlates of detection and evaluation of social gaze. Neuroimage, 2009, 46(4): 1154-1163
参考文献 47
WangY, HamiltonA F D C. Social top-down response modulation (STORM): A model of the control of mimicry in social interaction. Frontiers in Human Neuroscience, 2012, 6doi: 10.3389/fnhum.2012.00153
参考文献 48
SoussignanR, ChadwickM, PhilipL, et al. Self-relevance appraisal of gaze direction and dynamic facial expressions: effects on facial electromyographic and autonomic reactions. Emotion, 2013, 13(2): 330-337
参考文献 49
SimsT B, NeufeldJ, JohnstoneT, et al. Autistic traits modulate frontostriatal connectivity during processing of rewarding faces. Social Cognitive & Affective Neuroscience, 2014, 9(12): 2010-2016
参考文献 50
HsuC T, SimsT, ChakrabartiB. How mimicry influences the neural correlates of reward: an fMRI study. Neuropsychologia, 2017, 30(8): 1426-1433
参考文献 51
HaberS N, KnutsonB. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 2010, 35(1): 4-26
参考文献 52
SimsT B, Van ReekumC M, JohnstoneT, et al. How reward modulates mimicry: EMG evidence of greater facial mimicry of more rewarding happy faces. Psychophysiology, 2012, 49(7): 998-1004
参考文献 53
HeereyE A, CrossleyH M. Predictive and reactive mechanisms in smile reciprocity. Psychological Science, 2013, 24(8): 1446-1455
参考文献 54
AhsF, PissiotaA, MichelgardA, et al. Disentangling the web of fear: amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Research Neuroimaging, 2009, 172(2): 103-108
参考文献 55
GrezesJ, WickerB, BerthozS, et al. A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia, 2009, 47(8-9): 1816-1825
参考文献 56
QinS, YoungC B, SupekarK, et al. Immature integration and segregation of emotion-related brain circuitry in young children. Proc Natl Acad Sci USA, 2012, 109(20): 7941-7946
参考文献 57
RoyA K, ShehzadZ, MarguliesD S, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage, 2009, 45(2): 614-626
参考文献 58
VoonV, BrezingC, GalleaC, et al. Emotional stimuli and motor conversion disorder. Brain A Journal of Neurology, 2010, 133(5): 1526-1536
参考文献 59
Vand S J, TamiettoM, SorgerB, et al. Cortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proc Natl Acad Sci USA, 2011, 108(39):16188-16193
参考文献 60
PichonS, DeG B, GrezesJ. Threat prompts defensive brain responses independently of attentional control. Cerebral Cortex, 2012, 22(2): 274-285
参考文献 61
GrèzesJ, AdenisM S, PougaL, et al. Self-relevance modulates brain responses to angry body expressions. Cortex, 2013, 49(8): 2210-2220
参考文献 62
GottsS J, KylesimmonsW, MilburyL A, et al. Fractionation of social brain circuits in autism spectrum disorders. Brain, 2012, 135(9): 2711-2725
参考文献 63
KorbS, MalsertJ, StrathearnL, et al. Sniff and mimic - intranasal oxytocin increases facial mimicry in a sample of men. Hormones & Behavior, 2016, 84: 64-74
参考文献 64
NiedenthalP M, MermillodM, MaringerM, et al. The future of SIMS: who embodies which smile and when? Behavioral & Brain Sciences, 2010, 33(6): 464-480
参考文献 65
HermansE J, BosP A, OssewaardeL, et al. Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women. Neuroimage, 2010, 52(1): 277-283
参考文献 66
BosP A, HermansE J, RamseyN F, et al. The neural mechanisms by which testosterone acts on interpersonal trust. Neuroimage, 2012, 61(3): 730-737
参考文献 67
vanWingenG, MatternCVerkesR. Testosterone reduces amygdala-orbitofrontal cortex coupling. Psychoneuroendocrinology, 2010, 35(1): 105-113
参考文献 68
RillingJ K, DemarcoA C, HackettP D, et al. Effects of intranasal oxytocin and vasopressin on cooperative behavior and associated brain activity in men. Psychoneuroendocrinology, 2012, 37(4): 447-461
参考文献 69
ZinkC F, SteinJ L, KempfL, et al. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. Journal of Neuroscience, 2010, 30(20): 7017-7022
参考文献 70
WangY, RamseyR, HamiltonA. The control of mimicry by eye contact is mediated by medial prefrontal cortex. Journal of Neuroscience, 2011, 31(33): 12001-12010
参考文献 71
IacoboniM. Imitation, empathy, and mirror neurons. Annual Review of Psychology, 2009, 60(1): 653-670
参考文献 72
TamiettoM, de GelderB. Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 2010, 11(10): 697-709
参考文献 73
PhillipsR G, LedouxJ E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 1992, 106(2): 274-285
参考文献 74
DecetyJ. Dissecting the neural mechanisms mediating empathy. Emotion Review, 2011, 3(1): 92-108
参考文献 75
BethlehemR A, VanH J, AuyeungB, et al. Oxytocin, brain physiology, and functional connectivity: a review of intranasal oxytocin fMRI studies. Psychoneuroendocrinology, 2013, 38(7): 962-974
参考文献 76
DasP, KempA H, LiddellB J, et al. Pathways for fear perception: modulation of amygdala activity by thalamo-cortical systems. Neuroimage, 2005, 26(1): 141-148
参考文献 77
LiddellB J, WilliamsL M, RathjenJ, et al. A temporal dissociation of subliminal versus supraliminal fear perception: an event-related potential study. Journal of Cognitive Neuroscience, 2004, 16(3): 479-486
参考文献 78
WilliamsL M, LiddellB J, KempA H, et al. Amygdala-prefrontal dissociation of subliminal and supraliminal fear. Human Brain Mapping, 2006, 27(8): 652-661
参考文献 79
WilliamsL M, BrownK J, DasP, et al. The dynamics of cortico-amygdala and autonomic activity over the experimental time course of fear perception. Cognitive Brain Research, 2004, 21(1): 114-123
参考文献 80
WeyersP, MühlbergerA, KundA, et al. Modulation of facial reactions to avatar emotional faces by nonconscious competition priming. Psychophysiology, 2010, 46(2): 328-335
参考文献 81
DecetyJ, JacksonP L, SommervilleJ A, et al. The neural bases of cooperation and competition: an fMRI investigation. Neuroimage, 2004, 23(2): 744-751
参考文献 82
HofmanD, BosP A, SchutterD J L G, et al. Fairness modulates non-conscious facial mimicry in women. Proceedings Biological Sciences, 2012, 279(1742): 3535-3539
参考文献 83
SatoW, KochiyamaT, UonoS, et al. Direction of amygdala-neocortex interaction during dynamic facial expression processing. Cerebral Cortex, 2016, 27(3): 1878-1890
参考文献 84
WickerB, KeysersC, PlaillyJ, et al. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron, 2003, 40(3): 655-664
参考文献 85
梁夏, 王金辉, 贺永. 人脑连接组研究:脑结构网络和脑功能网络. 科学通报, 2010, 55(16): 1565-1583
LiangX, WangJ H, HeY. Chinese Science Bulletin (ChineseVer), 2010, 55(16): 1565-1583
参考文献 86
HassonU, GhazanfarA A, GalantucciB, et al. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 2012, 16(2): 114-121
参考文献 87
HirataM, IkedaT, KikuchiM, et al. Hyperscanning MEG for understanding mother-child cerebral interactions. Frontiers in Human Neuroscience, 2014, 8(2) doi: 10.3389/fnhum.2014.00118
参考文献 88
AndersS, HeinzleJ, WeiskopfN, et al. Flow of affective information between communicating brains. Neuroimage, 2011, 54(1): 439-446
参考文献 89
GoldsteinP, Weissman-Fogel, DumasG, et al. Brain-to-brain coupling during handholding is associated with pain reduction. Proc. Natl Acad Sci USA, 2018, 115(11): E2528-E2537
参考文献 90
CuiX, BryantD M, ReissA L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage, 2012, 59(3): 2430-2437
参考文献 91
HolperL, ScholkmannF, WolfM. Between-brain connectivity during imitation measured by fNIRS. Neuroimage, 2012, 63(1): 212-222
参考文献 92
ScholkmannF, HolperL, WolfU, et al. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Frontiers in Human Neuroscience, 2013, 7doi: 10.3389/fnhum.2013.00813
目录 contents

    摘要

    情绪模仿是指观察者对表达者传递出的非言语情绪信号进行模仿,进而表现出一致的表情与行为. 以往关于情绪模仿的神经机制着重强调镜像神经系统的作用,然而随着研究成果越来越丰富,研究者们发现仅仅是镜像神经系统不足以解释情绪模仿的发生过程. 梳理以往实证研究可以发现,情绪模仿是包括镜像神经系统、情绪系统、运动系统以及与社会认知相关脑区在内的脑网络共同作用的结果,该网络同时受到内分泌系统的调节. 本文首先基于过往研究对情绪模仿的神经生理基础进行总结,然后介绍新近的神经网络概念模型,试图解释情绪信息从表达者传递至观察者完成模仿的神经路径,为情绪模仿的神经生理机制提供较为完整的框架,并在此基础上指出未来可能的研究方向.

    Abstract

    Emotional mimicry is defined as the tendency to imitate emotional expression of another people, which is more restricted by the social relational context than behavior imitation. Based on the perception-behavior link, the Motor Match Hypothesis proposed that Mirror Neuron System (MNS) is the core mechanism of emotional mimicry. However, more and more researchers argued that emotional mimicry is not a simple kind of behavioral imitation, proposing the Emotion Mimicry in Context View, emphasizing on the importance of social context, such as the relationship between actor and observer. What important is the activation of the MNS alone is not sufficient to explain the social dimension of facial mimicry. In addition to neural activation in brain regions attributed to the MNS, the multiple neuroimaging studies provided evidence for the activation of limbic system, motor system and brain regions involved in social evaluation and cognitive control processes. Meanwhile, emotional mimicry accepts the modulation by endocrine such as testosterone and oxytocin. Build upon previous studies, present research summarized the neural network involving in emotional mimicry and endocrine factors modulating the neural activity, introducing recent neuroendocrine models to show the neural pathway of emotional mimicry. Finally, studies in the future should provide support for neuroendocrine models and expand to the field of hyperscanning.

    当我们看到朋友开怀大笑时,也会不自觉地跟着扬起嘴角,像这样的“情绪模仿”在生活中随处可见,即我们会对他人传递出的非语言情绪信息进行模仿,产生一致的表情与行为. 情绪模仿不仅能帮助人们理解个体内部的情绪发生机制,也为群体层面的情绪传播提供解释. 因而,情绪模仿在认知神经科学与社会心理学领域得到越来越多的关注,研究者们尝试探究其背后的认知神经机制,以便进一步了解情绪发生的个体和群体特征. 本研究期望通过对以往研究进行梳理,总结情绪模仿的神经生理机制,为其发生过程提供较为完整的解释框架.

  • 1 情绪模仿的相关理论

    情绪模仿的主流理论包括动作匹配假说(motor match hypothesis)与背景观理论(emotion mimicry in context view). 动作匹配假说认为情绪模仿是一种特殊的动作模仿,与模仿其他动作的原理一致,是一种基于知觉-行为联结自动产生的动作匹配反应. 这种模仿通常是自下而上、不能被观察者意识到[1]. 镜像神经系统是情绪模仿最为重要的神经基础,在观察到他人与情绪相关的面部表情、身体姿势时,镜像神经系统得以激活为自身的动作准备提供条件. Hess与Fischer[2,3]在回顾动作匹配假说相关研究后提出情绪模仿的背景观理论,认为动作模仿一般都是模仿无意义行为(例如踏脚、扣手指等),而情绪模仿不仅对情绪的外在表现进行模仿,更需要对情绪表达者传递出的情绪信息和情绪意图进行推测与解读,这种情绪模仿通常是自上而下的、有意识的加[4]. 当表达者传递的信息具有亲和意图时,例如想要表达积极的情绪信息或利于促进亲密关系的信息时,观察者更容易模仿表达者的情绪. 因而,该理论认为情绪传递时的社会信息对情绪模仿非常重要,观察者需要进行高阶认知加工来理解情绪意义进而完成情绪模仿,仅仅是镜像神经系统无法独立完成这个复杂的认知过程.

    对比两派理论可以发现,二者均认同情绪模仿是观察者对表达者传递出的非言语情绪信号进行模仿、产生一致行为的过程,但二者对其背后的认知神经机制有着不同的理解. 动作匹配假说强调动作复刻,突出镜像神经系统的作用;背景观认为社会信息赋予情绪模仿发生条件与意义、影响情绪模仿的加工方式,涉及更高阶的认知加工,加工社会信息相关的脑区可能参与其[3]. 以往综述过于强调镜像神经系统是情绪模仿的神经基[5,6],但随着相关研究的累积,研究者发现仅仅是镜像神经系统不足以解释情绪模仿的发生过程,其背后有着更为复杂的脑网络协同作用,因而有必要对参与情绪模仿的脑区及相关的神经生理机制进行梳理与总结. 此外,情绪模仿的信息传递具有方向性,近年来也有研究者试图说明情绪信息从表达者到观察者完成模仿的神经路径,提出了较为完整的神经网络概念模[7,8]. 本研究通过综述以往研究,梳理出情绪模仿的神经生理基础,并介绍新近的神经网络概念模型,为情绪模仿的神经生理机制提供较为全面的框架.

  • 2 参与情绪模仿的主要脑区

    总结采用认知神经技术手段进行的研究,可以看到研究者们使用功能性核磁共振(fMRI)、重复经颅磁刺激(rTMS)等多种技术手段探究情绪模仿的神经基础. 由于采用fMRI进行的研究较难获得情绪模仿的面部肌肉活动指标,研究者们通常采用刺激-反应相容性任务(stimulus-response compatibility,SRC),即让被试做出与刺激相同(例如,对着笑脸微笑)和相反(例如,对着笑脸皱眉)的动[9],或设置额外对照组(例如,主动模仿、动手指等任[10,11,12])来间接观察情绪模仿的神经活动. 此外,也有一些研究采用rTMS直接改变目标脑区的激活状况来判断该脑区在情绪模仿中的作用. 这些研究有效地揭示了情绪模仿的神经基础,通过对此类研究进行梳理,对参与情绪模仿的主要脑区进行总结,能够相对完整地刻画情绪模仿的脑网络.

  • 2.1 经典的镜像神经系统

    一直以来,镜像神经系统备受关注,由此拓展的镜像神经理论认为该系统在观察到他人动作时能自动激活,将视觉信息转化为知[13],帮助个体理解并做出一致的动作. 经典的镜像神经系统包括顶下小叶(inferior parietal lobule,IPL)与额下回(inferior frontal gyrus,IFG)[13,14,15],前者负责对目标行为进行编[16],后者负责拟定行为计[17]. 此外,尽管颞上沟(superior temporal sulcus,STS)不含镜像神经[15],但该脑区在观察动作时与镜像神经系统的激活有较强相[12],也因此被纳入经典的镜像神经系统,负责与动作相关的视觉输[18].

    研究者采用情绪模仿的经典行为范式(让被试被动观察情绪面孔)来观测大脑激活状态时,发现在情绪模仿过程中,IPL、IFG、STS均存在显著激[12,19,20,21]. 镜像神经系统的激活与表征情绪的面部肌肉活动相关,例如,Likowski[20]发现右侧IFG与表征愤怒的皱眉肌活动、右侧STS与表征快乐的颧大肌活动显著相关,这表明当个体观察情绪面孔进行无意识模仿时,镜像神经系统自动激活,将面部情绪信息转化为神经活动模式,对目标行为进行编码并确定行为计划,为个体自身做出相应的动作提供准[12,22,23]. 不仅如此,无意识情绪模仿与主动模仿情绪面孔在镜像神经系统上可能存在不同的激活模式. 研究者将对照组(让被试主动模仿情绪面孔)与被动观察做对比时,发现双侧IFG鸟盖[11,19]、左侧STS[19]在主动模仿时激活程度更强,被动观察时仅右侧IFG鸟盖部激[11],因而认为右侧镜像神经系统可能对情绪理[11]、无意识情绪模仿更为重[10]. 但Lee[10]却仅在主动模仿时发现了右侧IFG的激活,在无意识情绪模仿时没有发现镜像神经系统的激活. 对于这个不一样的结果,他们也从进化的角度给出了解释,即人类的镜像神经系统可能对意图敏感以便有意义行为的适应性发展. 此外,来自自闭症的研究也表明镜像神经系统是情绪模仿的重要神经基础. 研究发现,相比正常儿童,自闭症儿童在进行情绪模仿时IFG鸟盖部没有得到有效激活,表明自闭症儿童虽具有模仿的意向,但异常的镜像系统功能却无法帮助他们理解他人的情绪状态,从而不能完成模仿[24].

    梳理上述研究可知,经典镜像神经系统是非常重要的神经基础,该系统的正常激活是情绪模仿得以发生的基本条件. 然而,Hickok[25]通过梳理相关研究发现,镜像神经理论似乎对镜像神经元的作用过度解读. 在观察他人动作时,镜像神经系统的激活并不意味着对动作意义解码,也不意味着对该动作进行模仿,可能就像巴甫洛夫假说(Pavlovian associations)一样,这仅仅反映了感觉-运动系统的联结,且可以通过训练进行改[26]. 同时,背景观的研究成果表明情绪模仿并非简单的知觉-动作匹配,对情绪信息的加工与理解必不可少,会受到社会因素的调节. 所以仅依靠镜像神经系统并不足以解释情绪模仿的发生,还应当考虑其他脑区的共同作用,例如情绪系统、运动系统、涉及高阶认知功能的脑区[7].

  • 2.2 与模仿相关的情绪系统

    一些研究采用fMRI和生理多导仪同时记录大脑活动与面部肌肉活动,为情绪系统的参与提供了证据,结果表明情绪模仿可能具有情绪特异性神经通路,进而说明情绪模仿不是单纯的动作复刻过程. 例如,在模仿愤怒时,双侧额下回与豆状核有更强的激[10],表征愤怒的皱眉肌活动与IFG、SMA、STS、脑岛、海马等脑区显著相[20],在模仿快乐时双侧梭状回、右测后颞上沟、枕中回、脑岛与杏仁核有较强激[10,21],表征快乐的颧大肌活动与IFG、SMA、后扣带皮层、颞中回等脑区显著相[20,21],即情绪模仿可能存在情绪内容差异,模仿不同的情绪涉及不同的神经通路. 此外,一些研究发现杏仁核、脑岛、海马在情绪模仿中显著激活,涉及到情绪内容的加[21],有助于进一步解释情绪模仿的认知机制.

    大量研究发现,与情绪加工相关的边缘系统,尤其是杏仁核(amygdala),在情绪模仿中起重要作[7,8,27],能够对表达者面部携带的情绪信息进行快速加工,也能调节新皮层的活[28,29]. 研究者发现无论是被动观看诱发的无意识情绪模仿,还是主动做出的模仿均能激活杏仁[12,19,21,24],但主动模仿条件下杏仁核激活更强,这可能表明运动系统对边缘系统的调节作[19]. Wild[30]采用SCR任务探究情绪模仿时发现,被试在进行冲突任务克制无意识情绪模仿时杏仁核有更强的激活,反映了杏仁核参与情绪模仿过程中的情绪体验. 并且,van der Gaag[12]发现被试对不同的情绪面孔(快乐、厌恶、恐惧、中性)进行模仿时杏仁核均有激活,不存在恐惧情绪特异性.

    脑岛(insula)在许多情绪模仿研究中也被证实具有较强的激[9,10,12,19,20,21,24],该脑区是连接边缘系统与后顶叶(posterior parietal)、额下皮层(inferior frontal)、上颞叶皮层(superior temporal cortex)的桥[31],这种结构使得表征动作的信息能够传至边缘系统进行情绪内容的加[19,24]. Lee[9]采用SCR任务范式探究情绪模仿时,发现右侧前脑岛在克服无意识情绪模仿有较强的激活,这可能与前脑岛执行、体验情绪的功能相[32]. Rymarczyk[21]采用生理多导仪和fMRI进行研究时发现脑岛的激活与表征情绪模仿的肌肉活动有关,并结合以往研究认为脑岛及相邻的额盖部(inferior frontal operculum,IFO)接受到来自IFG的动作信息后对情绪状态进行加工,这对情绪模仿非常重要.

    此外,研究者们也发现在情绪模仿过程中海马(hippocampus)也显著激[12,20],表明个体可能利用与情绪相关的记忆来理解表达者传递出的情绪意[33].

  • 2.3 与模仿相关的运动系统

    除了对情绪内容进行加工,运动系统的参与能够帮助个体完成情绪模仿过程中面部、身体动作的编码与执行,是情绪模仿外在表现的“生产线”. 参与情绪模仿的运动皮层主要包括运动前区(premotor cortex)、初级运动皮层(primary motor cortex,M1)与辅助运动皮层(supplementary motor cortex,SMA). 运动前区受到顶叶与小脑的支配,与处理多种感觉通道表征的运动信息相[34],M1与面部运动的自主产生相[35,36],SMA接受前额叶和基底神经节的大量纤维投射,处理来自边缘系统传递的有关当前运动状态与内部目标的信[34].

    以往研究采用fMRI记录被试在被动观察或主动模仿情绪面孔时的脑区活动,发现运动相关脑区在两种模仿中均能激[10,11,19,24],尤其是被动观察任务中脑区激活的结果使研究者们将运动系统也纳入“拓展的镜像神经系统[13,37],进一步为无意识情绪模仿提供了证据. 但也有研究者发现主动模仿与无意识模仿具有不同的运动系统激活模式,当被试主动模仿情绪面孔时,M1、SMA有更强的激[10,11,19],这确实与主动模仿产生更强的面部活动相关. 此外,Korb[38]采用rTMS刺激被试的M1区域,发现抑制M1的活动仅对女性被试的面部模仿造成损害,表明情绪模仿的神经通路可能具有性别差异.

  • 2.4 与模仿相关的社会认知脑区

    情绪模仿作为一种具有交流功能的、高度灵活的社会交互活动,受到多种社会情境因素的影响(例如,内外群体、眼神朝向、奖赏等),其神经基础还应当包含与社会认知相关的脑[7]. 研究者们也证实了梭状回(fusiform gyrus,FFA)、内侧前额叶(medial prefrontal cortex,mPFC)与腹侧纹状体(ventral striatum,VS)等脑区广泛地参与到情绪模仿的神经活动中,调节模仿行为.

    采用与被试同种族的情绪面孔作为刺激材料时,研究者发现FFA在被动观看或主动模仿情绪面孔时均有显著激[10,11,12,19,24],该区域是面孔加工的重要部分,能够区别面孔与其他客体,也能区别不同类别的面[39]. 来自行为研究的证据表明,情绪模仿受群体身份的影响,个体更倾向于对内群体成员进行模仿[40,41],可能与FFA的激活相关. 相关的证据来自Golby[39]探究内外群体面孔识别的相关研究,研究者发现,FFA与内群体优势相关,较低FFA激活导致对外群体面孔的编码失败,使被试对外群体面孔的再认正确率低于内群[42].

    Balconi[43,44]提出mPFC参与情绪认知加工,可能会影响情绪模仿. 研究者采用rTMS暂时抑制mPFC的活动发现,被试对愤怒与恐惧面孔的模仿受到损害,采用rTMS暂时增强mPFC的活动发现,被试在模仿快乐时颧大肌活动增强,在模仿愤怒、恐惧和厌恶时皱眉肌活动增强. 此外,mPFC是社会认知的核心部分,主要参与识别和评估眼神朝[45,46],运动模仿领域认为该脑区调节社会情境下的动作模仿. 相比较目标动作与斜视面孔一起呈现的条件,mPFC在目标动作与直视面孔一起呈现的条件下有更强的激[47]. 情绪模仿的行为实验也得出眼神朝向影响情绪模仿的结果,个体更倾向于模仿斜视的愤怒、直视的快[48],因而可以推测mPFC也许是眼神朝向调节情绪模仿的重要脑区.

    此外,研究者们发现VS与情绪模仿有着密切的关[49,50],该脑区接收来自眶额皮层与前扣带回的信息输入和中脑内侧多巴胺能传入,并将信息返回腹侧被盖区和黑质,黑质又通过丘脑背内侧核投射到前额皮[51],是负责奖赏加工的重要部分. 情绪模仿的行为研究发现面孔的奖赏价值能够调节自发性的情绪模仿[52],例如相比假笑,人们更倾向模仿真诚的微笑,其中原因便是因为真诚的微笑具有奖赏[53]. Sims[52]在设置奖赏条件下探究情绪模仿,发现被试模仿奖赏性面孔时VS显著激活.

  • 3 脑区间的连接及内分泌调节机制

    综上所述,在情绪模仿的过程中,经典镜像神经系统确实必不可少,但情绪系统、运动系统以及社会认知加工的脑区也均存在显著激活,这说明情绪模仿并非依靠单一脑区,而是通过多个脑区构成的脑网络共同作用,这些研究结果与背景观理论一致,进一步说明了情绪模仿比动作模仿更具有社会性,也因此有着更为复杂的神经机制. 研究者们进一步发现不同系统的脑区间存在解剖结构、功能上的紧密连接,还会受到来自内分泌系统的调控,这为信息的传递提供可能.

    来自解剖学及功能连接的证据支持了信息在不同系统间的传递. 连接镜像神经系统与情绪系统的核心结构之一是前脑岛(anterior insula)[19],其扇形区域与边缘系统(尤其是杏仁核)相连,同时也与后顶叶区、额下皮层、上颞叶皮层相联系,该结构使得动作信息传递至加工情绪内容的边缘系统成为可[31]. 尽管目前仍不清楚人类的杏仁核和运动皮层在解剖结构上是否直接相[27],但大量研究已经证实二者之间存在功能连[54,55,56,57,58]. 来自fMRI的相关研究表明外侧前运动区(lateral premotor cortex,PM)与这两个系统的激活存在较高的相[59,60,61],该区域与动作准备、环境驱动的动作有[27]. 自闭症的相关研究也支持了两个系统间的功能连接对加工情绪信息十分重要. 具体而言,较弱的边缘系统-运动系统通路可能导致个体对社会信号识别困[62],自闭症患者对表情的非典型加工可能就是由于杏仁核和外侧前运动区功能连接较弱导致[55]. 此外,镜像神经系统与社会认知加工的脑区也存在功能连接,为社会情境调节模仿行为提供了证据. Sims[49]发现,与自闭症患者相比,正常被试在观看高奖赏的快乐面孔时VS(与奖赏相关的脑区)与IFG(与模仿相关的脑区)间的功能连接更强,Hsu[50]也进一步支持了两个系统间的双向关系.

    来自内分泌系统的证据表明与社会认知加工相关的脑区与涉及荷尔蒙、神经递质活动的脑区存在大量的重叠,这种重叠意味着对社会信息进行加工的同时会影响内分泌系统,从而调节情绪模仿. 例如,催产素(oxytocin)与眼周区域的视觉加工有关,眼周区域能够提供为情绪模仿提供有效的情绪信息,眼神接触能够促进模仿[63,64]. 睾丸素(testosterone)与加压素(vasopressin)的相关研究似乎能够为情绪模仿的性别差异提供解释. Hermans[65]证实,相比安慰剂组,睾丸素条件下的女性被试对愤怒与快乐面孔的模仿下降,可能是因为对于女性被试,睾丸素降低了杏仁核与眶额皮层、额下回与前运动皮层的连接强[66,67];加压素能够加强男性脑岛与扣带回、以及杏仁核与这些区域之间的连接强[68,69],从而促进模仿.

    综上所述,情绪模仿需要涵盖经典镜像神经系统、情绪系统、运动系统及社会认知相关脑区在内的脑网络共同作用,不同系统间紧密连接,为传递与加工信息提供神经通路,同时也会受到内分泌系统的调节,共同完成情绪模仿. 但上述研究在刻画脑网络时通常描述的是一种脑区协同工作的无向网络,虽然能够提取出有哪些脑区参与情绪模仿,却不能详细刻画当情绪信息通过表达者的面部表情、身体姿势等传递出来进入观察者的大脑后,是怎样被加工的,又是否因受到社会因素的影响而具有不同的加工路径. 近年来,已有一些技术手段能够帮助研究者们计算脑区间调控与被调控的关系,描述有向连接的脑网络,说明信息在脑区间的传递方向. 例如Wang[70]探究眼神朝向对动作模仿的影响时,采用动态因果模型(dynamic causal modelling,DCM)分析脑区间的有向连接,结果表明,mPFC的活动影响IFG和STS,且眼神朝向与目标动作类型的交互作用在该有向连接上显著,进而说明mPFC能调节对镜像神经系统的感觉信息输入. 并且,镜像神经系统内部也存在有向连接,当被试模仿手部运动时,从STS到IFG的连接增强,表明与任务相关的视觉-运动的映射正在进行. 尽管此类有向连接的研究能够为情绪模仿的脑间信息传递提供更精细的说明,但目前为止在情绪模仿领域仍没有相应的实证支持能够提供完整路径. 近年来,Prochazkova[8]与Kraaijenvanger[7]在以往研究的基础上提出情绪模仿的神经网络概念模型,指出可能的信息传递方向,为未来展开相关研究提供可能.

  • 4 情绪模仿的神经网络概念模型

    Prochazkova[8]强调信息在经典镜像神经系统间的有向传递,但不同于动作匹配假说,研究者认为动作模仿仅能让观察者获得情绪效价的信息,只有再通过对自主神经信号的模仿获取情绪唤醒度的信息,才能使观察者完成最终的情绪模仿. Kraaijenvanger[7]认为社会交互中的情绪模仿是高度灵活与动态的,这种特性受特定社会情境下知觉和运动相关脑区的选择性联结影响,因而基于此提出的神经网络概念模型刻画了信息在多个脑区间的传递方向,包括经典镜像神经系统、运动系统、情绪系统及与社会认知加工的脑区. 研究者们均肯定了经典镜像神经系统的重要作用,但同时也认为仅仅是镜像神经系统无法充分解释其机制,于是在此基础上考虑来自其他神经生理系统的实证研究,刻画信息的传递路径.

    Prochazkova[8]认为情绪模仿既包括动作模仿(motor mimicry),由运动肌肉控制,如面部表情、身体姿势、眼睛注视的模仿,又包括自主模仿(autonomic mimicry),受自主神经系统(ANS)的调控,包括荷尔蒙水平、心率、瞳孔变化、面色的一致. 基于此建构的神经网络概念模型也包括两个过程,动作模仿获得情绪效价与自主模仿获取情绪唤醒度,共同构成观察者对情绪内容的理解,从而完成情绪模仿. 以压力情境下的情绪模仿为例,表达者同时传递出视觉信号(表情)与生理信号(心跳和呼吸节律加快、瞳孔放大). 一方面,如图1a所示,观察者接收到视觉信号后,首先激活STS进行早期的视觉加[71],通过IPL中的镜像神经元对运动进行准确的追踪,并将信息传递至IFG对目标行为进行编[22],编码完毕后,具有目标导向的动作计划被送回到IPL然后到达STS,帮助观察者做出一致的行[19];另一方面,如图1b所示,观察者接受生理信号的刺激后,通过脑干-上丘-枕核视觉通路传递到杏仁[72],杏仁核激活去蓝斑甲肾上腺素能系统,进一步激活HPA轴产生与表达者相类似的外周神经活动. 与蓝斑相连的腹内侧下丘脑将信号传递至与运动相关脑区以促进适应性行为的产[73],同时杏仁核也向前额区域(包括眶额皮层、前扣带回)传递信息,与STS的连接也使得情绪信息得以被快速的加[74],至此情绪模仿完成.

    图1
                            情绪模仿的神经网络概念模型

    图1 情绪模仿的神经网络概念模型

    Fig. 1 Neurological mechanisms of emotional mimicry

    注:(a)动作模仿过[8];(b)自主模仿过[8].

    Kraaijenvanger[7]提出的信息传递路径如图2所示. 当观察者获取视觉信号后,首先在STS进行早期视觉加工,传递至IPL完成情绪信息的知觉并翻译,随后,信息进入边缘系统,包括杏仁核、脑岛、纹状体和前扣带回这些与加工情绪性和社会性内容相关的脑区进行加工,同时调节内分泌系统,完成对社会信息及情绪信息意义的解读,进而传递至前额叶区域(包括OFC、mPFC、IFG),并进一步到达面部运动相关的脑区(SMA、M1)完成动作的准备. 至此,运动反馈的神经信息一方面能够直接被传递到位于脑桥的面部神经核团(锥形结构,负责自主面部运动)完成面部运动,另一方面被传输到纹状体、基底神经节(锥体外系统,负责自发的面部表情,被认为是负责调节皮层的神经活动并且产生最终的运动反应的关键区域),最后转至面部神经核团,产生最终的面部反应,完成情绪模仿. 在对社会性信息与情绪性信息进行加工的过程中,荷尔蒙和神经多肽类物质通过诱发状态性的神经活动与交流,作用在杏仁核、脑岛、纹状体以及这些区域的连接中(例如,催产素的释放提升杏仁核与前扣带回的连[75]),最终影响对社会信息加工的结果,从而影响模仿.

    图2
                            社会情境下情绪模仿的神经网络概念模型[7]

    图2 社会情境下情绪模仿的神经网络概念模[7]

    Fig. 2 Social evaluation model of mimicry[7]

    注:运动皮层区域包括:pre-SMA前辅助运动皮层、M1初级运动皮层;前额皮层区域包括:IFG额上回、mPFC腹内侧前额皮层、d1PFC背外侧前额皮层、v1PFC腹外侧前额皮层、OFC眶额皮层.

  • 5 总结与展望

    对以往研究进行梳理可以发现,随着情绪模仿神经机制的研究逐渐增多,研究视野逐渐得到拓展. 其背后的神经基础不再局限于经典镜像神经系统,而是包括经典镜像神经系统(IFG、IPL、STS)、情绪系统(杏仁核、脑岛、海马)、运动系统(运动前区、M1、SMA)以及社会认知脑区(例如,FFA、mPFC、VS等)在内的脑网络,互相连接,共同作用,为信息在观察者的不同脑区间传递提供神经基础. 由于情绪模仿的过程中会受到社会因素的调节,内分泌系统与之息息相关,与脑网络一起构成了情绪模仿的神经生理基础. 并且,近年来研究者提出的神经网络概念模型又为无向网络添加了方向性,更为详细地刻画了信息在不同脑区间传递的方向,为情绪模仿的神经生理机制提供了更为完整的解释框架.

    神经生理机制的相关研究从理论层面上丰富了情绪模仿的内涵. 从神经基础去理解情绪模仿的内涵可以发现,虽然肯定经典镜像神经系统的作用,但也强调其他脑区的影响,其复杂的神经生理网络说明情绪模仿并非只是简单的知觉-动作匹配的动作模仿过程,而是一种对情绪与社会信号进行整合加工的认知过程,具有高度的社会性. 此外,Prochazkova[8]与Kraaijenvanger[7]提出的神经网络概念模型表明有无社会因素调节的情绪模仿可能具有不同的神经通路,这也许提示了与情绪的双通道加工有关,情绪模仿也存在双路径的加工机制. 例如,与情绪的快速通路具有相似[76,77,78]. Prochazkova[8]在描述自主模仿时提及信号经脑干-上丘-枕核视觉通路进行传递,能够帮助个体对情绪信息迅速做出反应;而Kraaijenvanger[7]提出高阶认知皮层的作用,更强调自上而下的加工方式,似乎与情绪慢速通路的功能一[79],使得个体能够详细评价刺激情境的意义,以最佳的方式做出反应.

    在实证层面上,综上所述也为情绪模仿的多路径、多模态研究提供了未来的研究方向. 首先,神经网络概念模型中涉及的相关脑区在情绪模仿过程中是否激活、又是如何影响其他脑区的活动仍不确定,需要未来研究直接在社会情境中采用认知神经科学的手段对情绪模仿的神经生理机制进行探讨. 具体而言,Kraaijenvanger[7]在模型中提及情绪模仿受到多种社会因素的调节,不同因素涉及不同的脑区. 例如,人们更倾向于模仿合作者而非竞争[80],眶额皮层的激活可能与合作相[81]. 合作也与过程中的公平感知有密切联系,人们更倾向于在公平的条件下对情绪面孔进行模仿,这可能与前扣带回和mPFC有[82]. 以往采用神经科学技术直接在合作/竞争等社会情境中探究情绪模仿的研究十分稀少,观察者在合作情境中的模仿情绪能否激活眶额皮层、前扣带回和mPFC,以及这些脑区对运动系统或情绪系统又是如何调节的,都没有足够的实证研究给予支持,能提供直接证据的实证研究对神经网络概念模型的后期修正非常重要. 因此,在未来的研究中,研究者可以通过设置严密而具有生态效度的社会情境,例如合作/竞争情境、情绪分享情境等,采用fMRI或近红外(functional near-infrared imaging,fNIRS)等技术手段,观测并记录观察者的脑部活动,探究在情绪模仿过程中与社会情境紧密相关的脑区激活状况,并采用效应连接的分析方法计算社会认知加工的脑区对其他脑区的因果效应.

    其次,当提及脑间信息传递的方向性时,仍需对Prochazkova[8]与Kraaijenvanger[7]构建的神经网络概念模型持谨慎态度,其模型很大程度上依赖于功能连接(无向)的研究结果,未来需要更多有效连接的实证研究进行修正. 一方面,神经网络概念模型中提及的信息传递方向不一定准确. 例如,相关研究表明杏仁核与新皮层(包括V5、IFG、STS等区域)的有效连接方向是从杏仁核到新皮[55,83],在Prochazkova[8]描述的概念神经网络中,情绪信息首先在颞上沟进行登记,然后传递到杏仁核,所以其方向性需要在实证研究中得到更多支持. 另一方面,尽管镜像神经系统被证实在情绪模仿中起到重要作[12,19,20,21],但其激活对情绪模仿的意义仍不甚明[25],有效连接的研究能够帮助研究者进一步解开这个谜团. 尤其是后来部分研究者将情绪模仿涉及到的运动系统与情绪系统均纳入“拓展的镜像神经系统[12,21],认为不同区域的镜像神经元具有不同的功能. 例如,前运动区中的镜像神经元可能与面部运动的目标性相[19],脑岛中的镜像神经元可能与加工情绪内容有[84]. 这种观点对神经网络概念模型的建构提出了挑战,在时间维度上位于不同脑区的镜像神经系统激活可能有先后顺序,继而影响到有效连接的方向问题. 至今,研究者已提出多种有效的方法来度量有效连接,主要包括动态因果模型、结构方程建模(structural equation modeling,SEM)和格兰杰因果关系分析(granger causality)[85],未来研究可尝试采用此类方法进行有效连接的分析,进而提供更多的数据支持.

    最后,与近来关注多脑活动的研究思路一致,未来的研究可采用多人同步交互记录技术(hyperscanning)同时记录表达者与观察者的脑区活动,探究信息在双脑间的传递路径. 情绪模仿是在社会生活中依托于两个人的社会互动产生的,其定义也明确包含了表达者与观察者两个角色,因而从互动的角度来看情绪模仿是不可或缺的,也能获取其中动态变化的信息. 目前,在脑活动水平层面上,同时测量多名被试的大脑活动已经成为可能,可以应用在社会互动情境中,分析多个被试在同时进行认知任务时大脑各个区域神经活动的脑间同步[86]. 近年来,多脑研究已经积累了一些成果,例如:Hirata[87]提出可以同时采用两台MEG实时记录母婴面部情绪交互时的大脑活动;Anders[88]基于类似的原理采用fMRI探究双脑间的情感信息交流,发现表达者的脑部神经活动能够有效地预测观察者的脑部神经活动;Goldstein[89]采用EEG进行研究,发现人们在看到伴侣遭遇疼痛并握紧对方的手时,两人在alpha–mu波段(8~ 12 Hz)的脑间活动耦合增强. 但大多数研究关注动作模仿的脑间信号同步[90,91],只有少数应用于情绪领域. 因而,多人同步交互记录应用于情绪模仿能够同时获得表达者与观察者脑部活动的数据,刻画情绪模仿的动态变化,是未来研究的重要方向. 除EEG、fMRI与MEG外,近红外因具有较好的时间分辨率与空间分辨率、较低成本、便于操作等优点,能够在更为自然的环境中进行研[92],这无疑成为探究情绪模仿的一大利器. 未来研究可在一些生态性较强的社会情境下,采用近红外同时记录情绪表达者与观察者的脑部活动,分析表达者运动相关脑区与观察者的镜像神经系统是否存在活动的同步性,从而丰富情绪模仿的相关理论,也为信息从表达者传递到观察者的动态路径提供实证支持.

  • 参考文献

    • 1

      Chartrand T L, Bargh J A. The chameleon effect: the perception-behavior link and social interaction. Journal of Personality and Social Psychology, 1999, 76(6): 893-910

    • 2

      Hess U, Fischer A. Emotional mimicry as social regulation. Personality and Social Psychology Review, 2013, 17(2): 142-157

    • 3

      Hess U, Fischer A. Emotional mimicry: why and when we mimic emotions. Social and Personality Psychology Compass, 2014, 8(2): 45-57

    • 4

      Fischer A, Hess U. Mimicking emotions. Current Opinion in Psychology, 2017, 17: 151-155(DOI: 10.1016/j.copsyc.2017.07.008

    • 5

      张奇勇,卢家楣. 情绪感染的概念与发生机制. 心理科学进展, 2013, 21(9): 1596-1604

      Zhang Q Y, Lu J M. Advances in Psychological Science, 2013, 21(9): 1596-1604

    • 6

      左世江,王芳,石霞飞等. 简单情绪感染及其研究困境. 心理科学进展, 2014, 22(5): 791-801

      Zuo S J, Wang F, Shi X F, et al. Advances in Psychological Science, 2014, 22(5): 791-801

    • 7

      Kraaijenvanger E J, Hofman D, Bos P A. A neuroendocrine account of facial mimicry and its dynamic modulation. Neuroscience & Biobehavioral Reviews, 2017, 77: 98-106(DOI: 10.1016/j.neubiorev.2017.03.006)

    • 8

      Prochazkova E, Kret M E. Connecting minds and sharing emotions through mimicry: a neurocognitive model of emotional contagion. Neuroscience & Biobehavioral Reviews, 2017, 80: 99-114(DOI: 10.1016/j.neubiorev.2017.05.013)

    • 9

      Lee T W, Dolan R J, Critchley H D. Controlling emotional expression: behavioral and neural correlates of nonimitative emotional responses. Cerebral Cortex, 2008, 18(1): 104-113

    • 10

      Lee T W, Josephs O, Dolan R J, et al. Imitating expressions: emotion-specific neural substrates in facial mimicry. Social Cognitive & Affective Neuroscience, 2006, 1(2): 122-135

    • 11

      Leslie K R, Johnson-Frey S H, Grafton S T. Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage, 2004, 21(2): 601-607

    • 12

      Van d G C, Minderaa R B, Keysers C. Facial expressions: what the mirror neuron system can and cannot tell us. Social Neuroscience, 2007, 2(3-4): 179-222

    • 13

      Rizzolatti G, Craighero L. The mirror-neuron system. Annual Review of Neuroscience, 2009, 27(5): 169-192

    • 14

      Molenberghs P, Cunnington R, Mattingley J B. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Review, 2012, 36(1): 341-349

    • 15

      Pineda J A. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? Behavioral & Brain Functions, 2008, 4(1): 47-62

    • 16

      Chong T, Cunnington R, Williams M A. fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 2008, 18(20): 1576-1580

    • 17

      Newmannorlund R D, Ondobaka S, Van H S, et al. Virtual lesions of the IFG abolish response facilitation for biological and non-biological cues. Frontiers in Behavioral Neuroscience, 2010, 4(4) doi: 10.3389/neuro.08.005.2010

    • 18

      Hogeveen J, Chartrand T L, Obhi S S. Social mimicry enhances Mu-suppression during action observation. Cerebral Cortex, 2015, 25(8): 2076-2082

    • 19

      Carr L, Iacoboni M, Dubeau M C, et al. Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc.. Natl. Acad. Sci. USA, 2003, 100(9): 5497-5502

    • 20

      Likowski K U, Mühlberger A, Gerdes A B M, et al. Facial mimicry and the mirror neuron system: simultaneous acquisition of facial electromyography and functional magnetic resonance imaging. Frontiers in Human Neuroscience, 2012, 6(2) doi: 10.3389/fnhum.2012.00214

    • 21

      Rymarczyk K, Żurawski Ł, Jankowiaksiuda K, et al. Neural correlates of facial mimicry: simultaneous measurements of EMG and BOLD responses during perception of dynamic compared to static facial expressions. Frontiers in Psychology, 2018, 9(52) doi: 10.3389/fpsyg.2018.00052

    • 22

      Gazzola V, Azizzadeh L, Keysers C. Empathy and the somatotopic auditory mirror system in humans. Current Biology, 2006, 16(18): 1824-1829

    • 23

      Jabbi M, Keysers C. Inferior frontal gyrus activity triggers anterior insula response to emotional facial expressions. Emotion, 2008, 8(6): 775-780

    • 24

      Dapretto M, Davies M S, Pfeifer J H, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 2006, 9(1): 28-30

    • 25

      Hickok G. Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Jouranl of Cognitive Neuroscience, 2009, 21(7): 1229-1243

    • 26

      Catmur C, Walsh V, Heyes C. Sensorimotor learning configures the human mirror system. Current Biology, 2007, 17(17): 1527-1531

    • 27

      Grèzes J, Dezecache G. How do shared-representations and emotional processes cooperate in response to social threat signals? Neuropsychologia, 2014, 55(1): 105-114

    • 28

      Sato W, Kochiyama T, Uono S, et al. Temporal profile of amygdala γ oscillations in response to faces. Jouranl of Cognitive Neuroscience. 2012, 24(6): 1420-1433

    • 29

      Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia, 2007, 45(1): 174-194

    • 30

      Wild B, Erb M, Bartels M. Are emotions contagious? Evoked emotions while viewing emotionally expressive faces: quality, quantity, time course and gender differences. Psychiatry Research, 2003, 102(2): 109-124

    • 31

      Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 1996, 22(3): 229-244

    • 32

      Phan K L, Wager T, Taylor S F, et al. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 2002, 16(2): 331-348

    • 33

      Britton J C, Taylor S F, Sudheimer K D, et al. Facial expressions and complex IAPS pictures: common and differential networks. Neuroimage, 2006, 31(2): 906-919

    • 34

      Goldberg G. Supplementary motor area structure and function: review and hypotheses. Behavioral & Brain Sciences, 1985, 8(4): 567-588

    • 35

      Dresel C, Castrop F, Haslinger B, et al. The functional neuroanatomy of coordinated orofacial movements: sparse sampling fMRI of whistling. Neuroimage, 2005, 28(3): 588-597

    • 36

      Hanakawa T, Parikh S, Bruno M K, et al. Finger and face representations in the ipsilateral precentral motor areas in humans. Journal of Neurophysiology, 2005, 93(5): 2950-2958

    • 37

      Tramacere A, Ferrari P F. Faces in the mirror, from the neuroscience of mimicry to the emergence of mentalizing. Journal of Anthropological Sciences, 2016, 94: 113-126(DOI: 10.4436/JASS.94037)

    • 38

      Korb S, Malsert J, Rochas V, et al. Gender differences in the neural network of facial mimicry of smiles--An rTMS study. Cortex, 2015, 70: 101-114(DOI: 10.1016/j.cortex.2015.06.025)

    • 39

      Golby A J, Gabrieli J D E, Chiao J Y, et al. Differential responses in the fusiform region to same-race and other-race faces. Nature Neuroscience, 2001, 4(8): 845-850

    • 40

      Bourgeois P, Hess U. The impact of social context on mimicry. Biological Psychology, 2008, 77(3): 343-352

    • 41

      Van d S J, Hawk S T, Fischer A H, et al. Moving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES). Emotion, 2011, 11(4): 907-920

    • 42

      Kubota J T, Banaji M R, Phelps E A. The neuroscience of race. Nature Neuroscience, 2012, 15(7): 940-948

    • 43

      Balconi M, Bortolotti A, Gonzaga L. Emotional face recognition, EMG response, and medial prefrontal activity in empathic behaviour. Neuroscience Research, 2011, 71(3): 251-259

    • 44

      Balconi M, Canavesio Y. High-frequency rTMS improves facial mimicry and detection responses in an empathic emotional task. Clinical Neurophysiology, 2013, 124(10): e115-e116

    • 45

      Kampe K K, Frith C D, Frith U. "Hey John": signals conveying communicative intention toward the self-activate brain regions associated with "mentalizing," regardless of modality. Journal of Neuroscience, 2003, 23(12): 5258-5263

    • 46

      Kuzmanovic B, Georgescu A L, Eickhoff S B, et al. Duration matters: dissociating neural correlates of detection and evaluation of social gaze. Neuroimage, 2009, 46(4): 1154-1163

    • 47

      Wang Y, Hamilton A F D C. Social top-down response modulation (STORM): A model of the control of mimicry in social interaction. Frontiers in Human Neuroscience, 2012, 6doi: 10.3389/fnhum.2012.00153

    • 48

      Soussignan R, Chadwick M, Philip L, et al. Self-relevance appraisal of gaze direction and dynamic facial expressions: effects on facial electromyographic and autonomic reactions. Emotion, 2013, 13(2): 330-337

    • 49

      Sims T B, Neufeld J, Johnstone T, et al. Autistic traits modulate frontostriatal connectivity during processing of rewarding faces. Social Cognitive & Affective Neuroscience, 2014, 9(12): 2010-2016

    • 50

      Hsu C T, Sims T, Chakrabarti B. How mimicry influences the neural correlates of reward: an fMRI study. Neuropsychologia, 2017, 30(8): 1426-1433

    • 51

      Haber S N, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 2010, 35(1): 4-26

    • 52

      Sims T B, Van Reekum C M, Johnstone T, et al. How reward modulates mimicry: EMG evidence of greater facial mimicry of more rewarding happy faces. Psychophysiology, 2012, 49(7): 998-1004

    • 53

      Heerey E A, Crossley H M. Predictive and reactive mechanisms in smile reciprocity. Psychological Science, 2013, 24(8): 1446-1455

    • 54

      Ahs F, Pissiota A, Michelgard A, et al. Disentangling the web of fear: amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Research Neuroimaging, 2009, 172(2): 103-108

    • 55

      Grezes J, Wicker B, Berthoz S, et al. A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia, 2009, 47(8-9): 1816-1825

    • 56

      Qin S, Young C B, Supekar K, et al. Immature integration and segregation of emotion-related brain circuitry in young children. Proc Natl Acad Sci USA, 2012, 109(20): 7941-7946

    • 57

      Roy A K, Shehzad Z, Margulies D S, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage, 2009, 45(2): 614-626

    • 58

      Voon V, Brezing C, Gallea C, et al. Emotional stimuli and motor conversion disorder. Brain A Journal of Neurology, 2010, 133(5): 1526-1536

    • 59

      Van d S J, Tamietto M, Sorger B, et al. Cortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proc Natl Acad Sci USA, 2011, 108(39):16188-16193

    • 60

      Pichon S, De G B, Grezes J. Threat prompts defensive brain responses independently of attentional control. Cerebral Cortex, 2012, 22(2): 274-285

    • 61

      Grèzes J, Adenis M S, Pouga L, et al. Self-relevance modulates brain responses to angry body expressions. Cortex, 2013, 49(8): 2210-2220

    • 62

      Gotts S J, Kylesimmons W, Milbury L A, et al. Fractionation of social brain circuits in autism spectrum disorders. Brain, 2012, 135(9): 2711-2725

    • 63

      Korb S, Malsert J, Strathearn L, et al. Sniff and mimic - intranasal oxytocin increases facial mimicry in a sample of men. Hormones & Behavior, 2016, 84: 64-74

    • 64

      Niedenthal P M, Mermillod M, Maringer M, et al. The future of SIMS: who embodies which smile and when? Behavioral & Brain Sciences, 2010, 33(6): 464-480

    • 65

      Hermans E J, Bos P A, Ossewaarde L, et al. Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women. Neuroimage, 2010, 52(1): 277-283

    • 66

      Bos P A, Hermans E J, Ramsey N F, et al. The neural mechanisms by which testosterone acts on interpersonal trust. Neuroimage, 2012, 61(3): 730-737

    • 67

      vanWingen G, MatternCVerkes R. Testosterone reduces amygdala-orbitofrontal cortex coupling. Psychoneuroendocrinology, 2010, 35(1): 105-113

    • 68

      Rilling J K, Demarco A C, Hackett P D, et al. Effects of intranasal oxytocin and vasopressin on cooperative behavior and associated brain activity in men. Psychoneuroendocrinology, 2012, 37(4): 447-461

    • 69

      Zink C F, Stein J L, Kempf L, et al. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. Journal of Neuroscience, 2010, 30(20): 7017-7022

    • 70

      Wang Y, Ramsey R, Hamilton A. The control of mimicry by eye contact is mediated by medial prefrontal cortex. Journal of Neuroscience, 2011, 31(33): 12001-12010

    • 71

      Iacoboni M. Imitation, empathy, and mirror neurons. Annual Review of Psychology, 2009, 60(1): 653-670

    • 72

      Tamietto M, de Gelder B. Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 2010, 11(10): 697-709

    • 73

      Phillips R G, Ledoux J E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 1992, 106(2): 274-285

    • 74

      Decety J. Dissecting the neural mechanisms mediating empathy. Emotion Review, 2011, 3(1): 92-108

    • 75

      Bethlehem R A, Van H J, Auyeung B, et al. Oxytocin, brain physiology, and functional connectivity: a review of intranasal oxytocin fMRI studies. Psychoneuroendocrinology, 2013, 38(7): 962-974

    • 76

      Das P, Kemp A H, Liddell B J, et al. Pathways for fear perception: modulation of amygdala activity by thalamo-cortical systems. Neuroimage, 2005, 26(1): 141-148

    • 77

      Liddell B J, Williams L M, Rathjen J, et al. A temporal dissociation of subliminal versus supraliminal fear perception: an event-related potential study. Journal of Cognitive Neuroscience, 2004, 16(3): 479-486

    • 78

      Williams L M, Liddell B J, Kemp A H, et al. Amygdala-prefrontal dissociation of subliminal and supraliminal fear. Human Brain Mapping, 2006, 27(8): 652-661

    • 79

      Williams L M, Brown K J, Das P, et al. The dynamics of cortico-amygdala and autonomic activity over the experimental time course of fear perception. Cognitive Brain Research, 2004, 21(1): 114-123

    • 80

      Weyers P, Mühlberger A, Kund A, et al. Modulation of facial reactions to avatar emotional faces by nonconscious competition priming. Psychophysiology, 2010, 46(2): 328-335

    • 81

      Decety J, Jackson P L, Sommerville J A, et al. The neural bases of cooperation and competition: an fMRI investigation. Neuroimage, 2004, 23(2): 744-751

    • 82

      Hofman D, Bos P A, Schutter D J L G, et al. Fairness modulates non-conscious facial mimicry in women. Proceedings Biological Sciences, 2012, 279(1742): 3535-3539

    • 83

      Sato W, Kochiyama T, Uono S, et al. Direction of amygdala-neocortex interaction during dynamic facial expression processing. Cerebral Cortex, 2016, 27(3): 1878-1890

    • 84

      Wicker B, Keysers C, Plailly J, et al. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron, 2003, 40(3): 655-664

    • 85

      梁夏, 王金辉, 贺永. 人脑连接组研究:脑结构网络和脑功能网络. 科学通报, 2010, 55(16): 1565-1583

      Liang X, Wang J H, He Y. Chinese Science Bulletin (ChineseVer), 2010, 55(16): 1565-1583

    • 86

      Hasson U, Ghazanfar A A, Galantucci B, et al. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 2012, 16(2): 114-121

    • 87

      Hirata M, Ikeda T, Kikuchi M, et al. Hyperscanning MEG for understanding mother-child cerebral interactions. Frontiers in Human Neuroscience, 2014, 8(2) doi: 10.3389/fnhum.2014.00118

    • 88

      Anders S, Heinzle J, Weiskopf N, et al. Flow of affective information between communicating brains. Neuroimage, 2011, 54(1): 439-446

    • 89

      Goldstein P, Weissman-Fogel, Dumas G, et al. Brain-to-brain coupling during handholding is associated with pain reduction. Proc. Natl Acad Sci USA, 2018, 115(11): E2528-E2537

    • 90

      Cui X, Bryant D M, Reiss A L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage, 2012, 59(3): 2430-2437

    • 91

      Holper L, Scholkmann F, Wolf M. Between-brain connectivity during imitation measured by fNIRS. Neuroimage, 2012, 63(1): 212-222

    • 92

      Scholkmann F, Holper L, Wolf U, et al. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Frontiers in Human Neuroscience, 2013, 7doi: 10.3389/fnhum.2013.00813

徐晓惠

机 构:中国人民大学心理学系,北京 100872

Affiliation:Department of Psychology, Renmin University of China, Beijing 100872, China

胡平

机 构:中国人民大学心理学系,北京 100872

Affiliation:Department of Psychology, Renmin University of China, Beijing 100872, China

角 色:通讯作者

Role:Corresponding author

邮 箱:huping@ruc.edu.cn

Profile:Tel: 86-10-92509716, E-mail: huping@ruc.edu.cn

html/pibben/20180279/alternativeImage/d50e6a6d-334f-459e-bf44-5295c57bb60c-F001.jpg
html/pibben/20180279/alternativeImage/d50e6a6d-334f-459e-bf44-5295c57bb60c-F002.jpg

图1 情绪模仿的神经网络概念模型

Fig. 1 Neurological mechanisms of emotional mimicry

图2 社会情境下情绪模仿的神经网络概念模[7]

Fig. 2 Social evaluation model of mimicry[7]

image /

(a)动作模仿过[8];(b)自主模仿过[8].

运动皮层区域包括:pre-SMA前辅助运动皮层、M1初级运动皮层;前额皮层区域包括:IFG额上回、mPFC腹内侧前额皮层、d1PFC背外侧前额皮层、v1PFC腹外侧前额皮层、OFC眶额皮层.

  • 参考文献

    • 1

      Chartrand T L, Bargh J A. The chameleon effect: the perception-behavior link and social interaction. Journal of Personality and Social Psychology, 1999, 76(6): 893-910

    • 2

      Hess U, Fischer A. Emotional mimicry as social regulation. Personality and Social Psychology Review, 2013, 17(2): 142-157

    • 3

      Hess U, Fischer A. Emotional mimicry: why and when we mimic emotions. Social and Personality Psychology Compass, 2014, 8(2): 45-57

    • 4

      Fischer A, Hess U. Mimicking emotions. Current Opinion in Psychology, 2017, 17: 151-155(DOI: 10.1016/j.copsyc.2017.07.008

    • 5

      张奇勇,卢家楣. 情绪感染的概念与发生机制. 心理科学进展, 2013, 21(9): 1596-1604

      Zhang Q Y, Lu J M. Advances in Psychological Science, 2013, 21(9): 1596-1604

    • 6

      左世江,王芳,石霞飞等. 简单情绪感染及其研究困境. 心理科学进展, 2014, 22(5): 791-801

      Zuo S J, Wang F, Shi X F, et al. Advances in Psychological Science, 2014, 22(5): 791-801

    • 7

      Kraaijenvanger E J, Hofman D, Bos P A. A neuroendocrine account of facial mimicry and its dynamic modulation. Neuroscience & Biobehavioral Reviews, 2017, 77: 98-106(DOI: 10.1016/j.neubiorev.2017.03.006)

    • 8

      Prochazkova E, Kret M E. Connecting minds and sharing emotions through mimicry: a neurocognitive model of emotional contagion. Neuroscience & Biobehavioral Reviews, 2017, 80: 99-114(DOI: 10.1016/j.neubiorev.2017.05.013)

    • 9

      Lee T W, Dolan R J, Critchley H D. Controlling emotional expression: behavioral and neural correlates of nonimitative emotional responses. Cerebral Cortex, 2008, 18(1): 104-113

    • 10

      Lee T W, Josephs O, Dolan R J, et al. Imitating expressions: emotion-specific neural substrates in facial mimicry. Social Cognitive & Affective Neuroscience, 2006, 1(2): 122-135

    • 11

      Leslie K R, Johnson-Frey S H, Grafton S T. Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage, 2004, 21(2): 601-607

    • 12

      Van d G C, Minderaa R B, Keysers C. Facial expressions: what the mirror neuron system can and cannot tell us. Social Neuroscience, 2007, 2(3-4): 179-222

    • 13

      Rizzolatti G, Craighero L. The mirror-neuron system. Annual Review of Neuroscience, 2009, 27(5): 169-192

    • 14

      Molenberghs P, Cunnington R, Mattingley J B. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Review, 2012, 36(1): 341-349

    • 15

      Pineda J A. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? Behavioral & Brain Functions, 2008, 4(1): 47-62

    • 16

      Chong T, Cunnington R, Williams M A. fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 2008, 18(20): 1576-1580

    • 17

      Newmannorlund R D, Ondobaka S, Van H S, et al. Virtual lesions of the IFG abolish response facilitation for biological and non-biological cues. Frontiers in Behavioral Neuroscience, 2010, 4(4) doi: 10.3389/neuro.08.005.2010

    • 18

      Hogeveen J, Chartrand T L, Obhi S S. Social mimicry enhances Mu-suppression during action observation. Cerebral Cortex, 2015, 25(8): 2076-2082

    • 19

      Carr L, Iacoboni M, Dubeau M C, et al. Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc.. Natl. Acad. Sci. USA, 2003, 100(9): 5497-5502

    • 20

      Likowski K U, Mühlberger A, Gerdes A B M, et al. Facial mimicry and the mirror neuron system: simultaneous acquisition of facial electromyography and functional magnetic resonance imaging. Frontiers in Human Neuroscience, 2012, 6(2) doi: 10.3389/fnhum.2012.00214

    • 21

      Rymarczyk K, Żurawski Ł, Jankowiaksiuda K, et al. Neural correlates of facial mimicry: simultaneous measurements of EMG and BOLD responses during perception of dynamic compared to static facial expressions. Frontiers in Psychology, 2018, 9(52) doi: 10.3389/fpsyg.2018.00052

    • 22

      Gazzola V, Azizzadeh L, Keysers C. Empathy and the somatotopic auditory mirror system in humans. Current Biology, 2006, 16(18): 1824-1829

    • 23

      Jabbi M, Keysers C. Inferior frontal gyrus activity triggers anterior insula response to emotional facial expressions. Emotion, 2008, 8(6): 775-780

    • 24

      Dapretto M, Davies M S, Pfeifer J H, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 2006, 9(1): 28-30

    • 25

      Hickok G. Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Jouranl of Cognitive Neuroscience, 2009, 21(7): 1229-1243

    • 26

      Catmur C, Walsh V, Heyes C. Sensorimotor learning configures the human mirror system. Current Biology, 2007, 17(17): 1527-1531

    • 27

      Grèzes J, Dezecache G. How do shared-representations and emotional processes cooperate in response to social threat signals? Neuropsychologia, 2014, 55(1): 105-114

    • 28

      Sato W, Kochiyama T, Uono S, et al. Temporal profile of amygdala γ oscillations in response to faces. Jouranl of Cognitive Neuroscience. 2012, 24(6): 1420-1433

    • 29

      Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia, 2007, 45(1): 174-194

    • 30

      Wild B, Erb M, Bartels M. Are emotions contagious? Evoked emotions while viewing emotionally expressive faces: quality, quantity, time course and gender differences. Psychiatry Research, 2003, 102(2): 109-124

    • 31

      Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 1996, 22(3): 229-244

    • 32

      Phan K L, Wager T, Taylor S F, et al. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 2002, 16(2): 331-348

    • 33

      Britton J C, Taylor S F, Sudheimer K D, et al. Facial expressions and complex IAPS pictures: common and differential networks. Neuroimage, 2006, 31(2): 906-919

    • 34

      Goldberg G. Supplementary motor area structure and function: review and hypotheses. Behavioral & Brain Sciences, 1985, 8(4): 567-588

    • 35

      Dresel C, Castrop F, Haslinger B, et al. The functional neuroanatomy of coordinated orofacial movements: sparse sampling fMRI of whistling. Neuroimage, 2005, 28(3): 588-597

    • 36

      Hanakawa T, Parikh S, Bruno M K, et al. Finger and face representations in the ipsilateral precentral motor areas in humans. Journal of Neurophysiology, 2005, 93(5): 2950-2958

    • 37

      Tramacere A, Ferrari P F. Faces in the mirror, from the neuroscience of mimicry to the emergence of mentalizing. Journal of Anthropological Sciences, 2016, 94: 113-126(DOI: 10.4436/JASS.94037)

    • 38

      Korb S, Malsert J, Rochas V, et al. Gender differences in the neural network of facial mimicry of smiles--An rTMS study. Cortex, 2015, 70: 101-114(DOI: 10.1016/j.cortex.2015.06.025)

    • 39

      Golby A J, Gabrieli J D E, Chiao J Y, et al. Differential responses in the fusiform region to same-race and other-race faces. Nature Neuroscience, 2001, 4(8): 845-850

    • 40

      Bourgeois P, Hess U. The impact of social context on mimicry. Biological Psychology, 2008, 77(3): 343-352

    • 41

      Van d S J, Hawk S T, Fischer A H, et al. Moving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES). Emotion, 2011, 11(4): 907-920

    • 42

      Kubota J T, Banaji M R, Phelps E A. The neuroscience of race. Nature Neuroscience, 2012, 15(7): 940-948

    • 43

      Balconi M, Bortolotti A, Gonzaga L. Emotional face recognition, EMG response, and medial prefrontal activity in empathic behaviour. Neuroscience Research, 2011, 71(3): 251-259

    • 44

      Balconi M, Canavesio Y. High-frequency rTMS improves facial mimicry and detection responses in an empathic emotional task. Clinical Neurophysiology, 2013, 124(10): e115-e116

    • 45

      Kampe K K, Frith C D, Frith U. "Hey John": signals conveying communicative intention toward the self-activate brain regions associated with "mentalizing," regardless of modality. Journal of Neuroscience, 2003, 23(12): 5258-5263

    • 46

      Kuzmanovic B, Georgescu A L, Eickhoff S B, et al. Duration matters: dissociating neural correlates of detection and evaluation of social gaze. Neuroimage, 2009, 46(4): 1154-1163

    • 47

      Wang Y, Hamilton A F D C. Social top-down response modulation (STORM): A model of the control of mimicry in social interaction. Frontiers in Human Neuroscience, 2012, 6doi: 10.3389/fnhum.2012.00153

    • 48

      Soussignan R, Chadwick M, Philip L, et al. Self-relevance appraisal of gaze direction and dynamic facial expressions: effects on facial electromyographic and autonomic reactions. Emotion, 2013, 13(2): 330-337

    • 49

      Sims T B, Neufeld J, Johnstone T, et al. Autistic traits modulate frontostriatal connectivity during processing of rewarding faces. Social Cognitive & Affective Neuroscience, 2014, 9(12): 2010-2016

    • 50

      Hsu C T, Sims T, Chakrabarti B. How mimicry influences the neural correlates of reward: an fMRI study. Neuropsychologia, 2017, 30(8): 1426-1433

    • 51

      Haber S N, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 2010, 35(1): 4-26

    • 52

      Sims T B, Van Reekum C M, Johnstone T, et al. How reward modulates mimicry: EMG evidence of greater facial mimicry of more rewarding happy faces. Psychophysiology, 2012, 49(7): 998-1004

    • 53

      Heerey E A, Crossley H M. Predictive and reactive mechanisms in smile reciprocity. Psychological Science, 2013, 24(8): 1446-1455

    • 54

      Ahs F, Pissiota A, Michelgard A, et al. Disentangling the web of fear: amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Research Neuroimaging, 2009, 172(2): 103-108

    • 55

      Grezes J, Wicker B, Berthoz S, et al. A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia, 2009, 47(8-9): 1816-1825

    • 56

      Qin S, Young C B, Supekar K, et al. Immature integration and segregation of emotion-related brain circuitry in young children. Proc Natl Acad Sci USA, 2012, 109(20): 7941-7946

    • 57

      Roy A K, Shehzad Z, Margulies D S, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage, 2009, 45(2): 614-626

    • 58

      Voon V, Brezing C, Gallea C, et al. Emotional stimuli and motor conversion disorder. Brain A Journal of Neurology, 2010, 133(5): 1526-1536

    • 59

      Van d S J, Tamietto M, Sorger B, et al. Cortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proc Natl Acad Sci USA, 2011, 108(39):16188-16193

    • 60

      Pichon S, De G B, Grezes J. Threat prompts defensive brain responses independently of attentional control. Cerebral Cortex, 2012, 22(2): 274-285

    • 61

      Grèzes J, Adenis M S, Pouga L, et al. Self-relevance modulates brain responses to angry body expressions. Cortex, 2013, 49(8): 2210-2220

    • 62

      Gotts S J, Kylesimmons W, Milbury L A, et al. Fractionation of social brain circuits in autism spectrum disorders. Brain, 2012, 135(9): 2711-2725

    • 63

      Korb S, Malsert J, Strathearn L, et al. Sniff and mimic - intranasal oxytocin increases facial mimicry in a sample of men. Hormones & Behavior, 2016, 84: 64-74

    • 64

      Niedenthal P M, Mermillod M, Maringer M, et al. The future of SIMS: who embodies which smile and when? Behavioral & Brain Sciences, 2010, 33(6): 464-480

    • 65

      Hermans E J, Bos P A, Ossewaarde L, et al. Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women. Neuroimage, 2010, 52(1): 277-283

    • 66

      Bos P A, Hermans E J, Ramsey N F, et al. The neural mechanisms by which testosterone acts on interpersonal trust. Neuroimage, 2012, 61(3): 730-737

    • 67

      vanWingen G, MatternCVerkes R. Testosterone reduces amygdala-orbitofrontal cortex coupling. Psychoneuroendocrinology, 2010, 35(1): 105-113

    • 68

      Rilling J K, Demarco A C, Hackett P D, et al. Effects of intranasal oxytocin and vasopressin on cooperative behavior and associated brain activity in men. Psychoneuroendocrinology, 2012, 37(4): 447-461

    • 69

      Zink C F, Stein J L, Kempf L, et al. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. Journal of Neuroscience, 2010, 30(20): 7017-7022

    • 70

      Wang Y, Ramsey R, Hamilton A. The control of mimicry by eye contact is mediated by medial prefrontal cortex. Journal of Neuroscience, 2011, 31(33): 12001-12010

    • 71

      Iacoboni M. Imitation, empathy, and mirror neurons. Annual Review of Psychology, 2009, 60(1): 653-670

    • 72

      Tamietto M, de Gelder B. Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 2010, 11(10): 697-709

    • 73

      Phillips R G, Ledoux J E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 1992, 106(2): 274-285

    • 74

      Decety J. Dissecting the neural mechanisms mediating empathy. Emotion Review, 2011, 3(1): 92-108

    • 75

      Bethlehem R A, Van H J, Auyeung B, et al. Oxytocin, brain physiology, and functional connectivity: a review of intranasal oxytocin fMRI studies. Psychoneuroendocrinology, 2013, 38(7): 962-974

    • 76

      Das P, Kemp A H, Liddell B J, et al. Pathways for fear perception: modulation of amygdala activity by thalamo-cortical systems. Neuroimage, 2005, 26(1): 141-148

    • 77

      Liddell B J, Williams L M, Rathjen J, et al. A temporal dissociation of subliminal versus supraliminal fear perception: an event-related potential study. Journal of Cognitive Neuroscience, 2004, 16(3): 479-486

    • 78

      Williams L M, Liddell B J, Kemp A H, et al. Amygdala-prefrontal dissociation of subliminal and supraliminal fear. Human Brain Mapping, 2006, 27(8): 652-661

    • 79

      Williams L M, Brown K J, Das P, et al. The dynamics of cortico-amygdala and autonomic activity over the experimental time course of fear perception. Cognitive Brain Research, 2004, 21(1): 114-123

    • 80

      Weyers P, Mühlberger A, Kund A, et al. Modulation of facial reactions to avatar emotional faces by nonconscious competition priming. Psychophysiology, 2010, 46(2): 328-335

    • 81

      Decety J, Jackson P L, Sommerville J A, et al. The neural bases of cooperation and competition: an fMRI investigation. Neuroimage, 2004, 23(2): 744-751

    • 82

      Hofman D, Bos P A, Schutter D J L G, et al. Fairness modulates non-conscious facial mimicry in women. Proceedings Biological Sciences, 2012, 279(1742): 3535-3539

    • 83

      Sato W, Kochiyama T, Uono S, et al. Direction of amygdala-neocortex interaction during dynamic facial expression processing. Cerebral Cortex, 2016, 27(3): 1878-1890

    • 84

      Wicker B, Keysers C, Plailly J, et al. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron, 2003, 40(3): 655-664

    • 85

      梁夏, 王金辉, 贺永. 人脑连接组研究:脑结构网络和脑功能网络. 科学通报, 2010, 55(16): 1565-1583

      Liang X, Wang J H, He Y. Chinese Science Bulletin (ChineseVer), 2010, 55(16): 1565-1583

    • 86

      Hasson U, Ghazanfar A A, Galantucci B, et al. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 2012, 16(2): 114-121

    • 87

      Hirata M, Ikeda T, Kikuchi M, et al. Hyperscanning MEG for understanding mother-child cerebral interactions. Frontiers in Human Neuroscience, 2014, 8(2) doi: 10.3389/fnhum.2014.00118

    • 88

      Anders S, Heinzle J, Weiskopf N, et al. Flow of affective information between communicating brains. Neuroimage, 2011, 54(1): 439-446

    • 89

      Goldstein P, Weissman-Fogel, Dumas G, et al. Brain-to-brain coupling during handholding is associated with pain reduction. Proc. Natl Acad Sci USA, 2018, 115(11): E2528-E2537

    • 90

      Cui X, Bryant D M, Reiss A L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage, 2012, 59(3): 2430-2437

    • 91

      Holper L, Scholkmann F, Wolf M. Between-brain connectivity during imitation measured by fNIRS. Neuroimage, 2012, 63(1): 212-222

    • 92

      Scholkmann F, Holper L, Wolf U, et al. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Frontiers in Human Neuroscience, 2013, 7doi: 10.3389/fnhum.2013.00813