en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
KroemerG, MarinoG, LevineB. Autophagy and the integrated stress response. Mol Cell, 2010, 40(2): 280-293
参考文献 2
KlionskyD J, EmrS D. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497): 1717-1721
参考文献 3
DereticV. Autophagy as an immune defense mechanism. Curr Opin Immunol, 2006, 18(4): 375-382
参考文献 4
BehrendsC, SowaME, GygiSP, et al. Network organization of the human autophagy system. Nature. 2010, 466(7302):68-76
参考文献 5
DeribeY L, PawsonT, DikicI. Post-translational modifications in signal integration. Nat Struct Mol Biol, 2010, 17(6): 666-672
参考文献 6
ChoudharyC, KumarC, GnadF, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942): 834-840
参考文献 7
FüllgrabeJ, Lynch-DayM A, HeldringN, et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature, 2013, 500(7463):468-471
参考文献 8
BernierM, LuoY, NwokeloK C, et al. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics. Nat Commun, 2015, 6:10152
参考文献 9
HuangN, LiuZ, ZhuJ, et al. Sirtuin 6 plays an oncogenic role and induces cell autophagy in esophageal cancer cells. Tumour Biol, 2017, 39(6):1010428317708532
参考文献 10
ParkG, TanJ, GarciaG, et al. Regulation of histone acetylation by autophagy in Parkinson disease. J Biol Chem, 2016, 291(7):3531-3540
参考文献 11
LiX, QianX, LuZ. Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy, 2017, 13(10):1790-1791
参考文献 12
MatsuzakiH, DaitokuH, HattaM, et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA, 2005, 102(32):11278-11283
参考文献 13
ZhaoY, YangJ, LiaoW, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol, 2010, 12(7):665-675
参考文献 14
ZhangX, ChengQ, YinH, et al. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression. Int J Oncol, 2017, 51(1):18-24
参考文献 15
DeU, SonJ Y, SachanR, et al. A new synthetic histone deacetylase inhibitor, MHY2256, induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation. Int J Mol Sci, 2018, 19(9): pii E2743
参考文献 16
ZhangJ, WangJ, ZhouZ, et al. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy, 2018, 14(6):1043-1059
参考文献 17
MarinoG, PietrocolaF, EisenbergT, et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell, 2014, 53(5): 710-725
参考文献 18
ZhaoS, XuW, JiangW, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010, 327(5968):1000-1004
参考文献 19
ZhangY, XuY Y, YaoC B, et al.Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone. Autophagy, 2017, 13(3):538-553
参考文献 20
QianX, LiX, CaiQ, et al. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Mol Cell, 2017, 65(5): 917-931
参考文献 21
HuH, ZhuW, QinJ, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology, 2017, 65(2):515-528
参考文献 22
LvL, LiD, ZhaoD, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell, 2011, 42(6):719-730
参考文献 23
ZhaoD, ZouS W, LiuY, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4):464-476
参考文献 24
HebertA S, Dittenhafer-ReedK E, YuW, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell, 2013, 49(1):186-199
参考文献 25
XieY, KangR, SunX, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy, 2015, 11(1): 28-45
参考文献 26
LiuM, LiangK, ZhenJ, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun, 2017, 8(1):413
参考文献 27
LinS Y, LiT Y, LiuQ, et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science, 2012, 336(6080): 477-481
参考文献 28
NieT, YangS, MaH, et al. Regulation of ER stress-induced autophagy by GSK3β-TIP60-ULK1 pathway. Cell Death Dis, 2016, 7(12): e2563
参考文献 29
ChenY, ZhaoW, YangJ S, et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol Cell Proteomics, 2012, 11(10): 1048-1062
参考文献 30
RigboltK T, ZareiM, SprengerA, et al. Characterization of early autophagy signaling by quantitative phosphoproteomics. Autophagy, 2014, 10(2):356-371
参考文献 31
HarderL M, BunkenborgJ, AndersenJ S. Inducing autophagy: a comparative phosphoproteomic study of the cellular response to ammonia and rapamycin. Autophagy, 2014, 10(2): 339-355
参考文献 32
MorselliE, MariñoG, BennetzenM V, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol, 2011, 192(4): 615-629
参考文献 33
ZhouZ. Characterization of the acetylome associated with rapamycin-induced autophagy[D]. Hangzhou: Zhejiang University, 2016
参考文献 34
WeinertBT, NaritaT, SatpathyS, et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell, 2018, 174(1): 231-244
参考文献 35
LeeI H, FinkelT. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem, 2009, 284(10): 6322-6328
参考文献 36
MadeoF, EisenbergT, PietrocolaF, et al. Spermidine in health and disease. Science, 2018, 359(6374): pii eaan2788
参考文献 37
LeeI H, CaoL, MostoslavskyR, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008, 105(9): 3374-3379
参考文献 38
杨 莉,肖 凌,陈临溪.自噬与肺部疾病研究进展.生物化学与生物物理进展,2012,39(9):861-868
YangL, XiaoL, ChenL X. Prog Biochem Biophys, 2012,39(9):861-868
参考文献 39
林芳,顾振纶,秦正红.自噬及其在细胞代谢和疾病中的作用.生物化学与生物物理,2005,32(4):298-303
LinF, GuZ L, QinZ H. Prog Biochem Biophys, 2005,32(4):298-303
参考文献 40
谢 凤,柳 威,陈临溪.自噬参与心脏疾病调控的研究进展.生物化学与生物物理进展,2012,39(3):224-233
XieF, LiuW, ChenL X. Prog Biochem Biophys, 2012,39(3):224-233
目录 contents

    摘要

    蛋白质翻译后修饰与细胞自噬的关系是近几年来的研究热点. 自噬的发生需要多类蛋白质协同完成. 在此过程中,蛋白质的乙酰化修饰对细胞自噬起着十分重要的调节作用. 本文就近年来的研究从两个角度进行了总结:一方面总结了蛋白质乙酰化修饰与自噬关系的功能性研究,主要涉及组蛋白、转录因子以及与乙酰辅酶A代谢过程中相关酶的研究进展;另一方面概括了细胞自噬过程中蛋白质乙酰化修饰组学的研究进展. 乙酰化酶/去乙酰化酶是蛋白质乙酰化修饰水平的主要调控者,阐明酶与底物的关系将是深入探讨乙酰化修饰与细胞自噬关系的关键所在. 这些研究结果必将为揭开细胞自噬机制提供理论基础.

    Abstract

    The relationship between protein post-translational modification and autophagy has become a hot topic in recent years. A series of proteins are required to participate in the process of autophagy. Protein acetylation has been demonstrated to emerge as the main regulator to autophagy. In this paper, we reviewed related findings from two perspectives. On one hand, the role of protein acetylation on autophagy has been discussed, mainly including histones, transcription factors and most of enzymes to regulate the level of AcCoA. On the other hand, we presented the advancement with the acetylome profile in the process of autophagy. Acetylase and deacetylase are the main enzymes to be responsible for protein acetylation. The relationship between these enzymes and their substrates merited to be intensively investigated in the future studies. All of data would be very valuable to explore the mechanism with autophagy.

    细胞自噬是一个溶酶体依赖的胞内降解过程. 细胞通过吞噬自身需要降解的蛋白质或细胞器,将其包裹进入囊泡并与溶酶体融合形成自噬溶酶体,最后通过溶酶体中的水解酶将内含物降[1].常见的细胞自噬含有3种类型:微自噬、巨自噬以及分子伴侣介导的自[2]. 自噬在机体的生理和病理过程中作用关[3].

    细胞自噬的发生需要多种蛋白质参与,如自噬泡的起始蛋白、延伸蛋白、运输蛋白以及自噬泡融合蛋白等. 这些蛋白质间的相互作用调控自噬的发生. 在此过程中,蛋白质的磷酸化、乙酰化、泛素化、琥珀酰化等蛋白质翻译后修饰行为对自噬的进程起着十分重要的调节作[5]. 研究自噬过程中相关蛋白质的共价修饰行为,对于探索自噬机理具有十分重要的意义.

    蛋白质乙酰化修饰主要是由乙酰化酶与去乙酰化酶调控的. 它是细胞内一种重要的可逆性蛋白质翻译后修饰过程,参与细胞自噬过程. 早期的研究多聚焦于核内组蛋白和转录因子的乙酰化修饰与细胞自噬的关系,之后发现在细胞质和线粒体中也存在诸多蛋白质的乙酰化修[6]. 蛋白质乙酰化修饰与细胞自噬的关系是近几年来的研究热点,本文将细胞自噬发生过程中相关蛋白质乙酰化修饰的进展做一简述.

  • 1 乙酰化修饰与自噬关系的功能性研究

    近年来,研究者们对蛋白质乙酰化修饰与自噬关系的功能研究主要集中于:组蛋白、转录因子、与乙酰辅酶A代谢过程中的酶及自噬过程中的ATG蛋白等(图1,表1).

    图1
                            自噬中蛋白质乙酰化修饰特征

    图1 自噬中蛋白质乙酰化修饰特征

    Fig. 1 Characterization of protein acetylation in autophagy

    表1 蛋白质乙酰化修饰与自噬的关系

    Table1 Relationship between protein acetylation modification and autophagy

    类型蛋白质位点相关酶功能文献

    组蛋白

    H4K16hMOF/KAT8/MYST1该位点乙酰化水平下调可以促进ATG基因的转录水平[7]

    H3

    K56

    SIRT6

    与组蛋白H1的联合作用改变核小体与染色体之间的结合程度,调节ULK1/Beclin1的表达

    [8,9]

    H2AK5HDAC1, HDAC2在神经元里,该位点的乙酰化促进自噬[10]
    H2BK15HDAC1, HDAC2在神经元里,该位点的乙酰化促进自噬[10]
    H4K5HDAC1, HDAC2在神经元里,该位点的乙酰化促进自噬[10]
    H3AcCoA围绕在TFEB启动子区域里的H3高度乙酰化,促进溶酶体的生物发生[11]
    H3K9SIRT6H3K9的去乙酰化可以抑制Notch信号途径,促进Beclin1/ATG12的表达[26]

    转录因子

    FoXO1242, 245, 262p300促进转录因子转位到核内,启动ATG基因表达[12]
    FoXO1SIRT2促进FoXO1与ATG7蛋白的直接结合[13]
    p53SIRT1该位点的乙酰化可以Beclin1/Atg5/Atg7蛋白的表达,诱导细胞自噬性死亡[14,15]

    TFEB

    91,103,116,403Class I, II, IV HDACsSAHA可以引起肿瘤细胞中TFEB上多个位点乙酰化上调,促进TFEB对自噬蛋白表达的调控

    [16]

    代谢酶

    HSD17B4

    669

    CREBBP/SIRT3

    该位点的乙酰化可以促进分子伴侣介导的细胞自噬途径对HSD17B4蛋白的降解

    [19]

    PGK1

    388

    ARD1

    该位点的乙酰化可促进Beclin1的磷酸化以及VPS34/ATG14L/VPS15复合物的形成,诱导自噬

    [20]

    PGK1323p300/SIRT7该位点的乙酰化可促进糖分解,促进肿瘤的发生[21]

    PKM2

    305

    p300/CBP associated factor (PCAF)

    该位点的去乙酰化可降低酶的活性,促进分子伴侣介导的细胞自噬

    [22]

    LDH-A5SIRT2该位点的去乙酰化可增强酶的活性,促进分子伴侣介导的细胞自噬[23]
  • 1.1 组蛋白的乙酰化修饰与细胞自噬

    组蛋白的乙酰化修饰可以影响组蛋白与染色体之间的结合程度,从而调控相关基因表达. 目前在细胞自噬过程中对组蛋白的研究可以概括成两部分. 一部分是集中于组蛋白位点的乙酰化程度与自噬的关系,其中H4K16、H3K56为标志性研究位点. Füllgrabe[7]分别对鼠源性细胞和人源性细胞进行饥饿和雷帕霉素处理,结果发现在乙酰化酶hMOF/KAT8/MYST1的调控下,H4K16乙酰化水平下调与细胞自噬相耦合,之后运用染色体-免疫共沉淀技术发现H4K16位点的乙酰化水平变化可导致ATG基因转录水平的变化. 拮抗H4K16位点乙酰化水平可以诱发细胞死亡. 该报道首次揭示了组蛋白的乙酰化修饰在细胞自噬过程的作用. Bernier[8]发现H3K56乙酰化与组蛋白H1的联合作用也可以改变核小体与染色体之间的结合程度,调节自[8,9]. 此外,其他组蛋白乙酰化位点如H2AK5、H2BK15、H3K9、H4K5、H4K12都在不同来源细胞系里有所涉[10]. 另一部分是组蛋白总体乙酰化水平的变化与自噬的关系,其中H3蛋白是研究热点. Li[11]发现,在能量应激的条件下,组蛋白H3乙酰化水平明显增加,从而导致溶酶体蛋白相关蛋白质转录水平的变化,启动自噬.

  • 1.2 转录因子的乙酰化修饰与细胞自噬

    与细胞自噬相关的转录因子研究多集中于FoXO蛋白家族上,如FoXO1等. 这些FoXO蛋白质大多在乙酰化修饰后通过转录依赖性过程参与细胞自噬过程. 例如,Matsuzaki[12]报道,细胞在胰岛素的介导下,FoXO1转录因子可以受p300的调控,分别在242、245和262位点上发生乙酰化修饰并转位至胞浆,同时再在核定位信号的受体蛋白的作用下再次转位到核内,从而调控自噬相关基因的表达. 此外,FoXO1还可通过转录非依赖性过程来调节细胞自噬,即:在血清饥饿的条件下,SIRT2可以去乙酰化FoXO1,促进FoXO1与ATG7蛋白的直接结合,从而启动细胞自噬过[13].

    近年来,p53和TFEB等转录因子的乙酰化修饰也被证实与细胞自噬密切相[14]. De[15]使用去乙酰化酶SIRT抑制剂(MHY2256)可增加p53乙酰化水平,从而诱导细胞自噬性死亡. Zhang[16]报道,去乙酰化酶抑制剂SAHA可以引起肿瘤细胞中TFEB上4个位点乙酰化上调,激活其转录活性来调节溶酶体蛋白的表达.

  • 1.3 乙酰辅酶A代谢过程中酶的乙酰化修饰与细胞自噬

    乙酰辅酶A是细胞内乙酰基团的主要提供者,因此乙酰辅酶A水平与蛋白质乙酰化修饰水平密切相关. 这也是自噬过程中探讨蛋白质乙酰化修饰离不开乙酰辅酶A的原因所在.

    Marino[17]通过对肌肉组、心肌组织以及U2Os、MEFs等细胞株进行饥饿诱导. 结果发现,胞内乙酰辅酶A水平与细胞自噬的发生直接相关,且其变化水平是由胞浆ATP-柠檬酸裂解酶(ACLY)来调控的. Li[11]发现,在能量应激的条件下,胞浆乙酰辅酶A合成酶2(ACSS2)磷酸化水平增加,从而转位到核内,促发核内乙酰辅酶A水平的变化,诱导自噬. 由上可见,胞浆或胞核内乙酰辅酶A水平的变化均是细胞自噬的触发因子.

    在细胞内,乙酰化酶A的来源:a. 糖的氧化分解;b. 脂肪酸的β氧化;c. 蛋白质氨基酸的分解代谢.乙酰辅酶A的代谢去路:a. 在线粒体内经三羧酸循环氧化分解产能;b. 肝细胞线粒体中生成酮体;c. 在胞质中合成脂肪酸;d. 在胞质和内质网中合成胆固醇. Zhao[18]通过对人体肝脏组织进行乙酰化组学的研究,结果发现在糖代谢、三羧酸循环通路、氨基酸代谢和脂肪酸代谢过程中大部分酶存在乙酰化富集的现象,且这些酶的乙酰化修饰位点可以调节酶的活性,属于功能性位点. 这一结果暗示,与乙酰辅酶A相关的代谢通路中酶的乙酰化修饰与自噬存在关联.

    为此,与上述物质代谢通路中相关酶的乙酰化修饰与细胞自噬的关系引起了学者的重视. Zhang[19]报道,参与脂肪酸和酯类代谢过程中的主要胞浆蛋白HSD17B4蛋白669位点的乙酰化可以诱导分子伴侣介导的细胞自噬,首次阐明物质代谢过程的酶与细胞自噬的关系. 之后,Qian[20]证明糖代谢中重要酶——磷酸甘油酸激酶1(PGK1),在乙酰化酶ARD1调控下,其388位点发生乙酰化修饰,从而引起促进Beclin1的磷酸化以及VPS34/ATG14L/VPS15复合物的形成导致细胞自噬的发生. 与该报道相类似的是,PGK1第323位点、丙酮酸激酶M2型(PKM2)蛋白305位点化以及乳酸脱氢酶(LDH-A)第5位点也可以调节分子伴侣介导自噬过[21,22,23]. 虽然上述报道尚未阐明代谢酶乙酰化修饰与乙酰辅酶A的关系,但与细胞自噬的关系已初见眉目.

    另有报道,SIRT3是调控线粒体中氨基酸代谢、柠檬酸循环、三羧酸循环等物质代谢过程中重要的酶. 与野生型相比,SIRT3基因的敲除可以引发上述代谢中绝大多数酶的乙酰化水平的改变. 但SIRT3-代谢酶乙酰化-细胞自噬的关系仍有待进一步研[24].

    除上所述,细胞自噬过程中ATG蛋白的乙酰化程度变化与自噬的关系也是探讨自噬机制的一个热点,相关进展在很多综述里已有提[25].

    值得注意的是,在细胞自噬过程中,蛋白质的乙酰化修饰与磷酸化、泛素化修饰往往相互影响,相互制约. 其中蛋白质乙酰化修饰与磷酸化的互作研究较多. 例如,在生长因子缺乏的情况下,GSK3β激酶活性激活并磷酸化下游的乙酰化酶Tip60(KAT5),随后激活的乙酰化酶直接乙酰化ULK1的K162和K606两个位点. ULK1的乙酰化同时增加了ULK1的激酶活性并促进自噬的发[27]. 同样,在内质网应激的情况下,GSK3β-TIP60-ULK1通路也可激活诱导细胞自噬发[28]. 此外,蛋白质乙酰化与磷酸化在自噬过程中具有协同效应,即蛋白质乙酰化和磷酸化有偶联现象的发[29]. 蛋白质乙酰化与其他翻译后修饰的互作进一步增加了细胞自噬发生机理的复杂性.

  • 2 蛋白质乙酰化组学在细胞自噬中的特征

    Label-free、SILAC、iTRAQ等定量蛋白质组学技术的发展极大地促进了蛋白质修饰化组学的研究. 迄今为止,已有多篇文献报道细胞自噬过程中蛋白质磷酸化组学的特征,但对自噬相关的乙酰化组学的研究还相对较[30,31].

    Morselli[32]采用白藜芦醇和亚精胺两种药物处理HCT116细胞诱发自噬,并借助质谱技术对细胞裂解液进行了乙酰化组学的检测. 结果表明,乙酰化修饰在细胞核、胞浆和线粒体中均有存在.虽然两种药物诱导自噬发生的起始机理不同,但最终引起的乙酰化修饰的蛋白质在细胞核、细胞质、细胞核和线粒体分布比例大致相似,且两种药物诱发的相关乙酰化蛋白基序也相似. 这一结果暗示,乙酰化底物及基序可能在一定程度上具有保守性.

    我们课题组周卓[33]以雷帕霉素处理HeLa细胞诱导细胞自噬,建立自噬模型,并通过SILAC结合质谱技术对细胞裂解液进行了乙酰化组学检测,结果发现蛋白质乙酰化在细胞质、细胞核及线粒体中均有分布,再次表明蛋白质的乙酰化修饰的确是细胞自噬过程中一种重要的蛋白质翻译后修饰方式. 相关生物信息学分析显示乙酰化修饰富集在组蛋白、剪接体、核糖体及与AcCoA代谢相关的三大物质代谢通路中.

    2018年,Weinert[34]以鼠源性胚胎成纤维细胞MEFs为对象,通过对CBP/p300基因敲除、酶抑制剂介入等方法进行乙酰化组学研究,筛选出大量CBP/p300乙酰化的底物. 进一步分析发现这些底物在细胞核、细胞浆、线粒体上均有存在,但细胞核内的底物最为富集,如组蛋白、转录因子、与染色体结构调节相关的蛋白质、与发育相关的蛋白复合体Notch、Wnt等. 细胞核内的底物位点是常以“位点簇”的形式存在,其乙酰化水平存在明显的时间依赖性. 由于p300是参与细胞自噬关键的乙酰化酶,其底物的乙酰化修饰变化极大地丰富了乙酰化蛋白的数据库,为深入探讨细胞自噬与蛋白质乙酰化修饰的关系做了很好的铺垫.

  • 3 乙酰化酶和去乙酰化酶与细胞自噬的关系

    蛋白质乙酰化修饰是由乙酰化酶和去乙酰化酶共同调控的结果. 其中,乙酰化酶CREBBP/p300/hMOF与自噬的关系密切相关. p300的底物广泛,组蛋白、转录因子、胞浆内自噬固有蛋白等都是它的作用靶标. 目前研究中常用小分子化合物,如亚精胺、C646等抑制剂,研究p300在自噬过程中的作[35,36]. 而SIRT家族,如SIRT1/SIRT2/SIRT3等去乙酰化酶,在自噬过程中作用明显,其中SIRT1调控ATG蛋白和转录因子的乙酰化程度,而SIRT3是负责线粒体中参与物质代谢相关酶的乙酰化修[24,37]. 此外,Liu[26]发现,SIRT6也可介导足细胞里组蛋白H3K9去乙酰化,调节自噬进程.

    值得注意的是,乙酰化酶和去乙酰化酶在细胞内常以蛋白质复合体的形式存在,且复合体自身会发生多蛋白、多位点的乙酰化修[6]. 我们的研究也表明,ING5复合体、HBO1复合体、ING4复合体、p300-CBP-p270复合体在自噬过程中存在广泛的乙酰化修饰变[33]. 这些酶的自我乙酰化修饰是否会影响酶的活性? 这在一定程度上增加了乙酰化修饰研究的复杂性. 进一步挖掘与自噬相关的乙酰化酶/去乙酰化酶以及阐明酶与底物的关系将是深入探讨乙酰化修饰与细胞自噬关系的关键所在.

    此外,自噬与疾病的发生密切相关. 在临床上,自噬相关蛋白ATG5、ATG4、Beclin1、LC3等在肺[38]、肿[39]、心脏[40]等疾病发生、发展及预后起着十分重要的作用,但这些蛋白质的乙酰化修饰与疾病的关系仍有待进一步的研究.

    综上所述,蛋白质乙酰化修饰在细胞自噬过程中起着十分重要的作用. 深入探讨乙酰化酶/去乙酰化酶及其底物的乙酰化修饰必将为揭开细胞自噬的全貌提供理论基础,同时也为临床上筛选相关疾病标记物提供靶标.

  • 参考文献

    • 1

      Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell, 2010, 40(2): 280-293

    • 2

      Klionsky D J, Emr S D. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497): 1717-1721

    • 3

      Deretic V. Autophagy as an immune defense mechanism. Curr Opin Immunol, 2006, 18(4): 375-382

    • 4

      Behrends C, Sowa ME, Gygi SP, et al. Network organization of the human autophagy system. Nature. 2010, 466(7302):68-76

    • 5

      Deribe Y L, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol, 2010, 17(6): 666-672

    • 6

      Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942): 834-840

    • 7

      Füllgrabe J, Lynch-Day M A, Heldring N, et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature, 2013, 500(7463):468-471

    • 8

      Bernier M, Luo Y, Nwokelo K C, et al. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics. Nat Commun, 2015, 6:10152

    • 9

      Huang N, Liu Z, Zhu J, et al. Sirtuin 6 plays an oncogenic role and induces cell autophagy in esophageal cancer cells. Tumour Biol, 2017, 39(6):1010428317708532

    • 10

      Park G, Tan J, Garcia G, et al. Regulation of histone acetylation by autophagy in Parkinson disease. J Biol Chem, 2016, 291(7):3531-3540

    • 11

      Li X, Qian X, Lu Z. Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy, 2017, 13(10):1790-1791

    • 12

      Matsuzaki H, Daitoku H, Hatta M, et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA, 2005, 102(32):11278-11283

    • 13

      Zhao Y, Yang J, Liao W, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol, 2010, 12(7):665-675

    • 14

      Zhang X, Cheng Q, Yin H, et al. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression. Int J Oncol, 2017, 51(1):18-24

    • 15

      De U, Son J Y, Sachan R, et al. A new synthetic histone deacetylase inhibitor, MHY2256, induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation. Int J Mol Sci, 2018, 19(9): pii E2743

    • 16

      Zhang J, Wang J, Zhou Z, et al. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy, 2018, 14(6):1043-1059

    • 17

      Marino G, Pietrocola F, Eisenberg T, et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell, 2014, 53(5): 710-725

    • 18

      Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010, 327(5968):1000-1004

    • 19

      Zhang Y, Xu Y Y, Yao C B, et al.Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone. Autophagy, 2017, 13(3):538-553

    • 20

      Qian X, Li X, Cai Q, et al. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Mol Cell, 2017, 65(5): 917-931

    • 21

      Hu H, Zhu W, Qin J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology, 2017, 65(2):515-528

    • 22

      Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell, 2011, 42(6):719-730

    • 23

      Zhao D, Zou S W, Liu Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4):464-476

    • 24

      Hebert A S, Dittenhafer-Reed K E, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell, 2013, 49(1):186-199

    • 25

      Xie Y, Kang R, Sun X, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy, 2015, 11(1): 28-45

    • 26

      Liu M, Liang K, Zhen J, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun, 2017, 8(1):413

    • 27

      Lin S Y, Li T Y, Liu Q, et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science, 2012, 336(6080): 477-481

    • 28

      Nie T, Yang S, Ma H, et al. Regulation of ER stress-induced autophagy by GSK3β-TIP60-ULK1 pathway. Cell Death Dis, 2016, 7(12): e2563

    • 29

      Chen Y, Zhao W, Yang J S, et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol Cell Proteomics, 2012, 11(10): 1048-1062

    • 30

      Rigbolt K T, Zarei M, Sprenger A, et al. Characterization of early autophagy signaling by quantitative phosphoproteomics. Autophagy, 2014, 10(2):356-371

    • 31

      Harder L M, Bunkenborg J, Andersen J S. Inducing autophagy: a comparative phosphoproteomic study of the cellular response to ammonia and rapamycin. Autophagy, 2014, 10(2): 339-355

    • 32

      Morselli E, Mariño G, Bennetzen M V, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol, 2011, 192(4): 615-629

    • 33

      Zhou Z. Characterization of the acetylome associated with rapamycin-induced autophagy[D]. Hangzhou: Zhejiang University, 2016

    • 34

      Weinert BT, Narita T, Satpathy S, et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell, 2018, 174(1): 231-244

    • 35

      Lee I H, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem, 2009, 284(10): 6322-6328

    • 36

      Madeo F, Eisenberg T, Pietrocola F, et al. Spermidine in health and disease. Science, 2018, 359(6374): pii eaan2788

    • 37

      Lee I H, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008, 105(9): 3374-3379

    • 38

      杨 莉,肖 凌,陈临溪.自噬与肺部疾病研究进展.生物化学与生物物理进展,2012,39(9):861-868

      Yang L, Xiao L, Chen L X. Prog Biochem Biophys, 2012,39(9):861-868

    • 39

      林芳,顾振纶,秦正红.自噬及其在细胞代谢和疾病中的作用.生物化学与生物物理,2005,32(4):298-303

      Lin F, Gu Z L, Qin Z H. Prog Biochem Biophys, 2005,32(4):298-303

    • 40

      谢 凤,柳 威,陈临溪.自噬参与心脏疾病调控的研究进展.生物化学与生物物理进展,2012,39(3):224-233

      Xie F, Liu W, Chen L X. Prog Biochem Biophys, 2012,39(3):224-233

陈宇

机 构:浙江大学医学院细胞生物学研究所,杭州 310058

Affiliation:Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China

万群

机 构:浙江大学医学院附属第一医院,杭州 310058

Affiliation:The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China

金露琪

机 构:浙江大学医学院细胞生物学研究所,杭州 310058

Affiliation:Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China

闫春兰

机 构:浙江大学医学院神经科学研究所,杭州 310058

Affiliation:Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China

丁世萍

机 构:浙江大学医学院细胞生物学研究所,杭州 310058

Affiliation:Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China

html/pibben/20180291/alternativeImage/711b0868-e47d-43cc-b731-b04ae3a3d8cd-F001.jpg
类型蛋白质位点相关酶功能文献

组蛋白

H4K16hMOF/KAT8/MYST1该位点乙酰化水平下调可以促进ATG基因的转录水平[7]

H3

K56

SIRT6

与组蛋白H1的联合作用改变核小体与染色体之间的结合程度,调节ULK1/Beclin1的表达

[8,9]

H2AK5HDAC1, HDAC2在神经元里,该位点的乙酰化促进自噬[10]
H2BK15HDAC1, HDAC2在神经元里,该位点的乙酰化促进自噬[10]
H4K5HDAC1, HDAC2在神经元里,该位点的乙酰化促进自噬[10]
H3AcCoA围绕在TFEB启动子区域里的H3高度乙酰化,促进溶酶体的生物发生[11]
H3K9SIRT6H3K9的去乙酰化可以抑制Notch信号途径,促进Beclin1/ATG12的表达[26]

转录因子

FoXO1242, 245, 262p300促进转录因子转位到核内,启动ATG基因表达[12]
FoXO1SIRT2促进FoXO1与ATG7蛋白的直接结合[13]
p53SIRT1该位点的乙酰化可以Beclin1/Atg5/Atg7蛋白的表达,诱导细胞自噬性死亡[14,15]

TFEB

91,103,116,403Class I, II, IV HDACsSAHA可以引起肿瘤细胞中TFEB上多个位点乙酰化上调,促进TFEB对自噬蛋白表达的调控

[16]

代谢酶

HSD17B4

669

CREBBP/SIRT3

该位点的乙酰化可以促进分子伴侣介导的细胞自噬途径对HSD17B4蛋白的降解

[19]

PGK1

388

ARD1

该位点的乙酰化可促进Beclin1的磷酸化以及VPS34/ATG14L/VPS15复合物的形成,诱导自噬

[20]

PGK1323p300/SIRT7该位点的乙酰化可促进糖分解,促进肿瘤的发生[21]

PKM2

305

p300/CBP associated factor (PCAF)

该位点的去乙酰化可降低酶的活性,促进分子伴侣介导的细胞自噬

[22]

LDH-A5SIRT2该位点的去乙酰化可增强酶的活性,促进分子伴侣介导的细胞自噬[23]

图1 自噬中蛋白质乙酰化修饰特征

Fig. 1 Characterization of protein acetylation in autophagy

表1 蛋白质乙酰化修饰与自噬的关系

Table1 Relationship between protein acetylation modification and autophagy

image /

无注解

无注解

  • 参考文献

    • 1

      Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell, 2010, 40(2): 280-293

    • 2

      Klionsky D J, Emr S D. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497): 1717-1721

    • 3

      Deretic V. Autophagy as an immune defense mechanism. Curr Opin Immunol, 2006, 18(4): 375-382

    • 4

      Behrends C, Sowa ME, Gygi SP, et al. Network organization of the human autophagy system. Nature. 2010, 466(7302):68-76

    • 5

      Deribe Y L, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol, 2010, 17(6): 666-672

    • 6

      Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942): 834-840

    • 7

      Füllgrabe J, Lynch-Day M A, Heldring N, et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature, 2013, 500(7463):468-471

    • 8

      Bernier M, Luo Y, Nwokelo K C, et al. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics. Nat Commun, 2015, 6:10152

    • 9

      Huang N, Liu Z, Zhu J, et al. Sirtuin 6 plays an oncogenic role and induces cell autophagy in esophageal cancer cells. Tumour Biol, 2017, 39(6):1010428317708532

    • 10

      Park G, Tan J, Garcia G, et al. Regulation of histone acetylation by autophagy in Parkinson disease. J Biol Chem, 2016, 291(7):3531-3540

    • 11

      Li X, Qian X, Lu Z. Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy, 2017, 13(10):1790-1791

    • 12

      Matsuzaki H, Daitoku H, Hatta M, et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA, 2005, 102(32):11278-11283

    • 13

      Zhao Y, Yang J, Liao W, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol, 2010, 12(7):665-675

    • 14

      Zhang X, Cheng Q, Yin H, et al. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression. Int J Oncol, 2017, 51(1):18-24

    • 15

      De U, Son J Y, Sachan R, et al. A new synthetic histone deacetylase inhibitor, MHY2256, induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation. Int J Mol Sci, 2018, 19(9): pii E2743

    • 16

      Zhang J, Wang J, Zhou Z, et al. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy, 2018, 14(6):1043-1059

    • 17

      Marino G, Pietrocola F, Eisenberg T, et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell, 2014, 53(5): 710-725

    • 18

      Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010, 327(5968):1000-1004

    • 19

      Zhang Y, Xu Y Y, Yao C B, et al.Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone. Autophagy, 2017, 13(3):538-553

    • 20

      Qian X, Li X, Cai Q, et al. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Mol Cell, 2017, 65(5): 917-931

    • 21

      Hu H, Zhu W, Qin J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology, 2017, 65(2):515-528

    • 22

      Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell, 2011, 42(6):719-730

    • 23

      Zhao D, Zou S W, Liu Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4):464-476

    • 24

      Hebert A S, Dittenhafer-Reed K E, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell, 2013, 49(1):186-199

    • 25

      Xie Y, Kang R, Sun X, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy, 2015, 11(1): 28-45

    • 26

      Liu M, Liang K, Zhen J, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun, 2017, 8(1):413

    • 27

      Lin S Y, Li T Y, Liu Q, et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science, 2012, 336(6080): 477-481

    • 28

      Nie T, Yang S, Ma H, et al. Regulation of ER stress-induced autophagy by GSK3β-TIP60-ULK1 pathway. Cell Death Dis, 2016, 7(12): e2563

    • 29

      Chen Y, Zhao W, Yang J S, et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol Cell Proteomics, 2012, 11(10): 1048-1062

    • 30

      Rigbolt K T, Zarei M, Sprenger A, et al. Characterization of early autophagy signaling by quantitative phosphoproteomics. Autophagy, 2014, 10(2):356-371

    • 31

      Harder L M, Bunkenborg J, Andersen J S. Inducing autophagy: a comparative phosphoproteomic study of the cellular response to ammonia and rapamycin. Autophagy, 2014, 10(2): 339-355

    • 32

      Morselli E, Mariño G, Bennetzen M V, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol, 2011, 192(4): 615-629

    • 33

      Zhou Z. Characterization of the acetylome associated with rapamycin-induced autophagy[D]. Hangzhou: Zhejiang University, 2016

    • 34

      Weinert BT, Narita T, Satpathy S, et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell, 2018, 174(1): 231-244

    • 35

      Lee I H, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem, 2009, 284(10): 6322-6328

    • 36

      Madeo F, Eisenberg T, Pietrocola F, et al. Spermidine in health and disease. Science, 2018, 359(6374): pii eaan2788

    • 37

      Lee I H, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008, 105(9): 3374-3379

    • 38

      杨 莉,肖 凌,陈临溪.自噬与肺部疾病研究进展.生物化学与生物物理进展,2012,39(9):861-868

      Yang L, Xiao L, Chen L X. Prog Biochem Biophys, 2012,39(9):861-868

    • 39

      林芳,顾振纶,秦正红.自噬及其在细胞代谢和疾病中的作用.生物化学与生物物理,2005,32(4):298-303

      Lin F, Gu Z L, Qin Z H. Prog Biochem Biophys, 2005,32(4):298-303

    • 40

      谢 凤,柳 威,陈临溪.自噬参与心脏疾病调控的研究进展.生物化学与生物物理进展,2012,39(3):224-233

      Xie F, Liu W, Chen L X. Prog Biochem Biophys, 2012,39(3):224-233