en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
LeeR C, FeinbaumR L, AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854
参考文献 2
ReinhartB J, SlackF J, BassonM, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901-906
参考文献 3
SlackF J, BassonM, LiuZ, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell, 2000, 5(4): 659-669
参考文献 4
BrenneckeJ, HipfnerD R, StarkA, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113(1): 25-36
参考文献 5
HipfnerD R, WeigmannK, CohenS M. The bantam gene regulates Drosophila growth. Genetics, 2002, 161(4): 1527-1537
参考文献 6
PasquinelliA E, ReinhartB J, SlackF, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808): 86-89
参考文献 7
LlaveC, KasschauK D, RectorM A, et al. Endogenous and silencing-associated small RNAs in plants. The Plant Cell, 2002, 14(7): 1605-1619
参考文献 8
ParkW, LiJ, SongR, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 2002, 12(17): 1484-1495
参考文献 9
ReinhartB J, WeinsteinE G, RhoadesM W, et al. MicroRNAs in plants. Genes & Development, 2002, 16(13): 1616-1626
参考文献 10
RogersK, ChenX. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell,2013, 25(7): 2383-2399
参考文献 11
NozawaM, MiuraS, NeiM. Origins and evolution of microRNA genes in plant species. Genome Biology and Evolution, 2012, 4(3): 230-239
参考文献 12
Jones-RhoadesM W, BartelD P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004, 14(6): 787-799
参考文献 13
DongZ, HanM H, FedoroffN. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A, 2008, 105(29): 9970-9975
参考文献 14
KuriharaY, TakashiY, WatanabeY. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. Rna, 2006, 12(2): 206-212
参考文献 15
RenG, XieM, DouY, et al. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A, 2012, 109(31): 12817-12821
参考文献 16
SaneiM, ChenX. Mechanisms of microRNA turnover. Current Opinion in Plant Biology, 2015, 27: 199-206
参考文献 17
HuntzingerE, IzaurraldeE. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 2011, 12(2): 99-110
参考文献 18
HaM, KimV N. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 2014, 15(8): 509-524
参考文献 19
KamthanA, ChaudhuriA, KamthanM, et al. Small RNAs in plants: recent development and application for crop improvement. Frontiers in Plant Science, 2015, 6: 208
参考文献 20
VoinnetO. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669-687
参考文献 21
SchwabR, PalatnikJ F, RiesterM, et al. Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 2005, 8(4): 517-527
参考文献 22
KidnerC A. The many roles of small RNAs in leaf development. Journal of Genetics and Genomics, 2010, 37(1): 13-21
参考文献 23
PalatnikJ F, WollmannH, SchommerC, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Developmental Cell, 2007, 13(1): 115-125
参考文献 24
KutterC, SchobH, StadlerM, et al. MicroRNA-mediated regulation of stomatal development in Arabidopsis. The Plant Cell, 2007, 19(8): 2417-2429
参考文献 25
XieQ, GuoH S, DallmanG, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002, 419(6903): 167-170
参考文献 26
ChenX. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022-2025
参考文献 27
AchardP, HerrA, BaulcombeD C, et al. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004, 131(14): 3357-3365
参考文献 28
SunkarR, LiY F, JagadeeswaranG. Functions of microRNAs in plant stress responses. Trends in Plant Science, 2012, 17(4): 196-203
参考文献 29
TakedaS, MatsuokaM. Genetic approaches to crop improvement: responding to environmental and population changes. Nature Reviews Genetics, 2008, 9(6): 444-457
参考文献 30
LombardoL, CoppolaG, ZelascoS. New technologies for insect-resistant and herbicide-tolerant plants. Trends in Biotechnology, 2016, 34(1): 49-57
参考文献 31
BonnetE, WuytsJ, RouzeP, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 2004, 101(31): 11511-11516
参考文献 32
SunkarR, GirkeT, JainP K, et al. Cloning and characterization of microRNAs from rice. The Plant Cell, 2005, 17(5): 1397-1411
参考文献 33
SongQ X, LiuY F, HuX Y, et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biology, 2011, 11: 5
参考文献 34
LiuH, QinC, ChenZ, et al. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genomics, 2014, 15: 25
参考文献 35
BalyanS, KumarM, MutumR D, et al. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Scientific Reports, 2017, 7(1): 15446-15450
参考文献 36
TangJ, ChuC. MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants, 2017, 3: 17077
参考文献 37
LiS, LeB, MaX, et al. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. eLife, 2016, 5: doi: 10.7554/eLife.22750
参考文献 38
DebernardiJ M, MecchiaM A, VercruyssenL, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. The Plant Journal : for Cell and Molecular Biology, 2014, 79(3): 413-426
参考文献 39
DuanP, NiS, WangJ, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants, 2015, 2: 15203
参考文献 40
IwamotoM, TagiriA. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. The Plant Journal : for Cell and Molecular Biology, 2016, 85(4): 466-477
参考文献 41
JuarezM T, KuiJ S, ThomasJ, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004, 428(6978): 84-88
参考文献 42
JiaoY, WangY, XueD, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42(6): 541-544
参考文献 43
XieK, WuC, XiongL. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology, 2006, 142(1): 280-293
参考文献 44
SchwabR, OssowskiS, RiesterM, et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell, 2006, 18(5): 1121-1133
参考文献 45
ZhouM, LuoH. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Molecular Biology, 2013, 83(1-2): 59-75
参考文献 47
Franco-ZorrillaJ M, ValliA, TodescoM, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 2007, 39(8): 1033-1037
参考文献 46
TangG, YanJ, GuY, et al. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods, 2012, 58(2): 118-125
参考文献 48
TangG, TangX. Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. Journal of Genetics and Genomics, 2013, 40(6): 291-296
参考文献 49
CaoD, WangJ, JuZ, et al. Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Plant Science, 2016, 247: 1-12
参考文献 50
TeotiaS, TangG. Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach. Methods in Molecular Biology, 2017, 1631: 337-348
参考文献 51
TeotiaS, ZhangD, TangG. Knockdown of rice microRNA166 by short tandem target mimic (STTM). Methods in Molecular Biology, 2017, 1654: 337-349
参考文献 52
ZhangH, ZhangJ, YanJ, et al. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A, 2017, 114(20): 5277-5282
参考文献 53
IshinoY, ShinagawaH, MakinoK, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433
参考文献 54
JansenR, EmbdenJ D, GaastraW, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575
参考文献 55
BarrangouR, FremauxC, DeveauH, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712
参考文献 56
JinekM, ChylinskiK, FonfaraI, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821
参考文献 57
LiJ F, NorvilleJ E, AachJ, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691
参考文献 58
FengZ, ZhangB, DingW, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013, 23(10): 1229-1232
参考文献 59
ZhouJ, DengK, ChengY, et al. CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Frontiers in Plant Science, 2017, 8: 1598
参考文献 60
WangH, WangH. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant, 2015, 8(5): 677-688
参考文献 61
LiuJ, ChengX, LiuP, et al. miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology, 2017, 174(3): 1931-1948
参考文献 62
JiangD, ChenW, DongJ, et al. Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. Journal of Experimental Botany, 2018, 69(7): 1533-1543
参考文献 63
ZhangJ, ZhangH, SrivastavaA K, et al. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiology, 2018, 176(3): 2082-2094
参考文献 64
HuangW, PengS, XianZ, et al. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnology Journal, 2017, 15(4): 472-488
参考文献 65
WangL, SunS, JinJ, et al. Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci USA, 2015, 112(50): 15504-15509
参考文献 66
XiaK, WangR, OuX, et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. Plos One, 2012, 7(1): e30039
参考文献 67
BianH, XieY, GuoF, et al. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). The New Phytologist, 2012, 196(1): 149-161
参考文献 68
QuL, LinL B, XueH W. Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4. Journal of Integrative Plant Biology, 2018[Epub ahead of print](DOI: 10.1111/jipb.12713)
参考文献 69
TangY, LiuH, GuoS, et al. OsmiR396d affects Gibberellin and Brassinosteroid signaling to regulate plant architecture in rice. Plant Physiology, 2018, 176(1): 946-959
参考文献 70
GuoS, XuY, LiuH, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering viaDWARF14. Nature Communications, 2013, 4: 1566
参考文献 71
ChuckG, CiganA M, SaeteurnK, et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 2007, 39(4): 544-549
参考文献 72
TripathiR K, BregitzerP, SinghJ. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley. Scientific Reports, 2018, 8(1): 7085
参考文献 73
WangY, WuF, BaiJ, et al. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnology Journal, 2014, 12(3): 312-321
参考文献 74
XianZ, HuangW, YangY, et al. miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato. Journal of Experimental Botany, 2014, 65(22): 6655-6666
参考文献 75
LeeY S, LeeD Y, ChoL H, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice, 2014, 7(1): 31
参考文献 76
LauterN, KampaniA, CarlsonS, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A, 2005, 102(26): 9412-9417
参考文献 77
NairS K, WangN, TuruspekovY, et al. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci U S A, 2010, 107(1): 490-495
参考文献 78
YoshikawaT, OzawaS, SentokuN, et al. Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta, 2013, 238(1): 229-237
参考文献 79
MartinA, AdamH, Diaz-MendozaM, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 2009, 136(17): 2873-2881
参考文献 80
ZhaoX Y, HongP, WuJ Y, et al. The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiology, 2016, 170(3): 1578-1594
参考文献 81
TsujiH, AyaK, Ueguchi-TanakaM, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. The Plant Journal : for Cell and Molecular bBiology, 2006, 47(3): 427-444
参考文献 82
WangY, SunF, CaoH, et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. Plos One, 2012, 7(11): e48445
参考文献 83
LiuN, WuS, Van HoutenJ, et al. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. Journal of Experimental Botany, 2014, 65(9): 2507-2520
参考文献 84
SunL, SunG, ShiC, et al. Transcriptome analysis reveals new microRNAs-mediated pathway involved in anther development in male sterile wheat. BMC Genomics, 2018, 19(1): 333
参考文献 85
FanY, YangJ, MathioniS M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci U S A, 2016, 113(52): 15144-15149
参考文献 86
SiL, ChenJ, HuangX, et al. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 2016, 48(4): 447-456
参考文献 87
WangS, WuK, YuanQ, et al. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950-954
参考文献 88
ChenW, KongJ, LaiT, et al. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening. Scientific Reports, 2015, 5: 7852
参考文献 89
LiS, GaoF, XieK, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal, 2016, 14(11): 2134-2146
参考文献 90
ZhangY C, YuY, WangC Y, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 2013, 31(9): 848-852
参考文献 91
ZhaoY F, PengT, SunH Z, et al. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnology Journal, 2018[Epub ahead of print](DOI: 10.1111/pbi.13009)
参考文献 92
WangY, ItayaA, ZhongX, et al. Function and evolution of a microRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. The Plant Cell, 2011, 23(9): 3185-3203
参考文献 93
XinM, WangY, YaoY, et al. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 2010, 10: 123
参考文献 94
TangZ, ZhangL, XuC, et al. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiology, 2012, 159(2): 721-738
参考文献 95
YangC, LiD, MaoD, et al. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell & Environment, 2013, 36(12): 2207-2218
参考文献 96
ChenL, LuanY, ZhaiJ. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 2015, 34(12): 2013-2025
参考文献 97
WangY G, AnM, ZhouS F, et al. Expression profile of maize microRNAs corresponding to their target genes under drought stress. Biochemical Genetics, 2014, 52(11-12): 474-493
参考文献 98
TianC, ZuoZ, QiuJ L. Identification and characterization of ABA-responsive microRNAs in rice. Journal of Genetics and Genomics, 2015, 42(7): 393-402
参考文献 99
FangY, XieK, XiongL. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 2014, 65(8): 2119-2135
参考文献 100
ZhangX, ZouZ, GongP, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters, 2011, 33(2): 403-409
参考文献 101
LuanM, XuM, LuY, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene, 2015, 555(2): 178-185
参考文献 102
ChenX Y, YangY, RanL P, et al. Novel insights into miRNA regulation of storage protein biosynthesis during wheat caryopsis development under drought stress. Frontiers in Plant Science, 2017, 8: 1707
参考文献 103
WangB, SunY F, SongN, et al. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiology and Biochemistry : PPB, 2014, 80: 90-96
参考文献 104
GuptaO P, MeenaN L, SharmaI, et al. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports, 2014, 41(7): 4623-4629
参考文献 105
FengH, ZhangQ, WangQ, et al. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Molecular Biology, 2013, 83(4-5): 433-443
参考文献 106
XiaK, OuX, TangH, et al. Rice microRNA osa-miR1848 targets the obtusifoliol 14alpha-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. The New Phytologist, 2015, 208(3): 790-802
参考文献 107
HuB, ZhuC, LiF, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiology, 2011, 156(3): 1101-1115
参考文献 108
HuB, WangW, DengK, et al. MicroRNA399 is involved in multiple nutrient starvation responses in rice. Frontiers in Plant Science, 2015, 6: 188
参考文献 109
DuQ, WangK, ZouC, et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiology, 2018, 177(4): 1743-1753
参考文献 110
LinS I, SantiC, JobetE, et al. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant & Cell Physiology, 2010, 51(12): 2119-2131
参考文献 111
ZhangT, ZhaoY L, ZhaoJ H, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2016, 2(10): 16153
参考文献 112
FengH, DuanX, ZhangQ, et al. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 2014, 15(3): 284-296
参考文献 113
WuJ, YangZ, WangY, et al. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife, 2015, 4 : doi: 10.7554/eLife.05733
参考文献 114
ZhangC, DingZ, WuK, et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Molecular Plant, 2016, 9(9): 1302-1314
参考文献 115
LiY, LuY G, ShiY, et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology, 2014, 164(2): 1077-1092
参考文献 116
XuW, MengY, WiseR P. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. The New Phytologist, 2014, 201(4): 1396-1412
参考文献 117
WangH, JiaoX, KongX, et al. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiology, 2016, 170(4): 2365-2377
参考文献 118
OuyangS, ParkG, AtamianH S, et al. microRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. Plos Pathogens, 2014, 10(10): e1004464
参考文献 119
WuJ, YangR, YangZ, et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 2017, 3: 16203
参考文献 120
WeiC, KuangH, LiF, et al. The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genomics, 2014, 15: 743
参考文献 121
CampoS, Peris-PerisC, SireC, et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. The New Phytologist, 2013, 199(1): 212-227
参考文献 122
LiuJ, ChengX, LiuD, et al. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. Plos Genetics, 2014, 10(12): e1004755
参考文献 123
NizampatnamN R, SchreierS J, DamodaranS, et al. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. The Plant Journal : for Cell and Molecular Biology, 2015, 84(1): 140-153
参考文献 124
LiJ, GuoG, GuoW, et al. miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea maysL.). BMC Plant Biology, 2012, 12: 220
参考文献 125
MaoY, WuF, YuX, et al. microRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape inchinese cabbage by differential cell division arrest in leaf regions. Plant Physiology, 2014, 164(2): 710-720
参考文献 126
YuanN, YuanS, LiZ, et al. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis. Scientific Reports, 2016, 6: 28791
参考文献 127
SunQ, LiuX, YangJ, et al. microRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Molecular Plant, 2018, 11(6): 806-814
参考文献 128
GuanX, PangM, NahG, et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications, 2014, 5: 3050
参考文献 129
JiaX, ShenJ, LiuH, et al. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta, 2015, 242(1): 283-293
参考文献 130
XiaK, OuX, GaoC, et al. OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. Plant, Cell & Environment, 2015, 38(12): 2662-2673
参考文献 131
TsikouD, YanZ, HoltD B, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science, 2018, 362(6411): 233-236 (DOI: 10.1126/science.aat6907)
参考文献 132
WangY, LiJ. Branching in rice. Current Opinion in Plant Biology, 2011, 14(1): 94-99
参考文献 133
ZhangH, ZhangJ, YanJ, et al. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A, 2017, 114(20): 5277-5282
参考文献 134
MathieuJ, YantL J, MurdterF, et al. Repression of flowering by the miR172 target SMZ. Plos Biology, 2009, 7(7): e1000148
参考文献 135
AukermanM J, SakaiH. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell, 2003, 15(11): 2730-2741
参考文献 136
AxtellM J, BowmanJ L. Evolution of plant microRNAs and their targets. Trends in Plant Science, 2008, 13(7): 343-349
参考文献 137
ChuckG S, TobiasC, SunL, et al. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci US A, 2011, 108(42): 17550-17555
参考文献 138
WuG, PoethigR S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 2006, 133(18): 3539-3547
参考文献 139
WuG, ParkM Y, ConwayS R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009, 138(4): 750-759
参考文献 140
TesterM, LangridgeP. Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967): 818-822
参考文献 141
StorchovaH. The role of non-coding RNAs in cytoplasmic male sterility in flowering plants. International Journal of Molecular Sciences, 2017, 18(11): doi: 10.3390/ijms18112429
参考文献 142
SchnableP S, WiseR P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 1998, 3(5): 175-180
参考文献 143
VendraminR, MarineJ C, LeucciE. Non-coding RNAs: the dark side of nuclear-mitochondrial communication. The EMBO Journal, 2017, 36(9): 1123-1133
参考文献 144
WuM F, TianQ, ReedJ W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006, 133(21): 4211-4218
参考文献 145
ShenY, ZhangZ, LinH, et al. Cytoplasmic male sterility-regulated novel microRNAs from maize. Functional & Integrative Genomics, 2011, 11(1): 179-191
参考文献 146
YanJ, ZhangH, ZhengY, et al. Comparative expression profiling of miRNAs between the cytoplasmic male sterile line MeixiangA and its maintainer line MeixiangB during rice anther development. Planta, 2015, 241(1): 109-123
参考文献 147
DingX, LiJ, ZhangH, et al. Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics, 2016, 17: 24
参考文献 148
KomiyaR. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. Journal of Plant Research, 2017, 130(1): 17-23
参考文献 149
JohnsonC, KasprzewskaA, TennessenK, et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research, 2009, 19(8): 1429-1440
参考文献 150
VogelJ P, GarvinD F, MocklerT C, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463(7282): 763-768
参考文献 151
ZhaiJ, ZhangH, ArikitS, et al. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci U S A, 2015, 112(10): 3146-3151
参考文献 152
龚淑敏, 丁艳菲, 朱诚. miRNA在植物种子发育过程中的作用. 遗传, 2015, 37(6): 554-560
GongS M, DingY F, ZhuC. Hereditas(Beijing),2015, 37(6): 554-560
参考文献 153
ReyesJ L, ChuaN H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal : for cell and molecular biology, 2007, 49(4): 592-606
参考文献 154
PengT, SunH, QiaoM, et al. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biology, 2014, 14: 196
参考文献 155
ZhangZ, ChenJ, LinS, et al. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. Plant Science, 2012, 185-186: 259-273
参考文献 156
HanR, JianC, LvJ, et al. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics, 2014, 15: 289
参考文献 157
KangM, ZhaoQ, ZhuD, et al. Characterization of microRNAs expression during maize seed development. BMC Genomics, 2012, 13: 360
参考文献 158
WangY, ZhangJ, CuiW, et al. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry, 2017, 65(34): 7361-7370
参考文献 159
SunG. MicroRNAs and their diverse functions in plants. Plant Molecular Biology, 2012, 80(1): 17-36
参考文献 160
BoyerJ S. Plant productivity and environment. Science, 1982, 218(4571): 443-448
参考文献 161
KruszkaK, PacakA, Swida-BarteczkaA, et al. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. Journal of Experimental Botany, 2014, 65(20): 6123-6135
参考文献 162
WangQ, LiuN, YangX, et al. Small RNA-mediated responses to low- and high-temperature stresses in cotton. Scientific Reports, 2016, 6: 35558
参考文献 163
FerdousJ, WhitfordR, NguyenM, et al. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Functional & Integrative Genomics, 2017, 17(2-3): 279-292
参考文献 164
FuR, ZhangM, ZhaoY, et al. Identification of Salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Frontiers in Plant Science, 2017, 8: 864
参考文献 165
DengP, WangL, CuiL, et al. Global Identification of microRNAs and their targets in barley under salinity stress. Plos One, 2015, 10(9): e0137990
参考文献 166
FangR, LiL, LiJ. Spatial and temporal expression modes of microRNAs in an elite rice hybrid and its parental lines. Planta, 2013, 238(2): 259-269
参考文献 167
LiA, LiuD, WuJ, et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. The Plant Cell, 2014, 26(5): 1878-1900
参考文献 168
JacobsT B, LafayetteP R, SchmitzR J, et al. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 2015, 15: 16
目录 contents

    摘要

    植物microRNA (miRNA) 是一类长度约为20~24 nt的内源非编码小RNA,它们通过在转录后水平调控靶基因的表达,在植物的生长发育、逆境响应和环境适应等过程中起着关键作用. miRNA对水稻、玉米、大豆等重要经济作物的农艺性状也起着重要的调控作用,在改良农作物性状上具有重大的应用潜能. 本文重点介绍了参与作物农艺性状(如株型、花期、种子发育及抗逆等)调控的关键miRNA及其调控途径,同时总结了miRNA参与作物性状改良的主要研究方法和手段,并讨论了miRNA在作物性状改良应用中的前景.

    Abstract

    Plant microRNAs (miRNA) are 21-24 nt endogenous small non-coding RNAs. They play key roles in plant development, adaptation to stresses and flexible environments through regulating the expression of their target genes post-transcriptionally. Besides, miRNAs are critical for regulating agronomic traits of important economic crops such as rice, maize and soybean, and have great potential in improving crop traits. This review focuses on research progresses of miRNAs involved in regulating important crop agronomic traits (including plant architecture, flowering, seeds development, stresses resistance, etc.) and their regulatory mechanisms. We also summarized the major research methods and strategies for taking advantage of miRNAs to improve crop traits and discussed the future prospects and problems for the application of miRNAs in crop traits improvement.

    刘琳. Tel:13510529306, Email: linliu@szu.edu.cn

    关键词 microRNA,农作物,调控机制,性状改良

    microRNA(miRNA)是一类在动植物中广泛分布的长度在20~24 nt左右的非编码小RNA. 最早发现的miRNA编码基因是线虫(Caenorhabditis elegans)的lin-4,它的产物是24 nt的小RNA,能够与其靶基因lin-14 mRNA的3’非编码区序列以非完全互补的形式结合并抑制蛋白质的翻译过程,从而调控线虫早期发育时期的转[1]. 随后又有报道发现,线虫中另一个miRNA基因let-7在后期发育转化中起重要作[2,3]. 除了线虫以外,在果蝇、人类等多个物种中也陆续发现了let-7的同源基[4,5,6],说明miRNA具有高度的保守性,作为小的非编码RNA广泛存在于生物发育的多个调控过程. 多个研究组在植物中也发现miRNA能够抑制基因的表达,并鉴定出参与miRNA合成途径的重要基[7,8,9].

    在植物中miRNA能够通过转录剪切或翻译抑制来负调控靶基因,从而精确控制其表达水平,这些靶基因主要包括转录因子、胁迫响应蛋白以及其他一些能够影响植物生长发育及生理机能的蛋白质编码基[10].很多植物拥有上百个miRNA基因(MIR[11],它们主要位于基因组的间隔区[9]. MIR基因由RNA聚合酶Ⅱ(RNA polymerase Ⅱ,Pol Ⅱ)转录,转录出的产物称为pri-miRNA,稳定状态的pri-miRNA拥有5’端7-甲基鸟苷帽子(7-methylguanosine)和3’端的多聚腺苷酸(polyadenylate)尾巴,同时序列中包含茎环结[12]. Pri-miRNA的加工过程需要多种蛋白质的参与,包括DCL1(DICER-LIKE1)、HYL1(HYPONASTIC LEAVES1)、SE(SERRATE)和TGH(TOUGH)等,它们结合在pri-miRNA的不同部分发挥作用 (图1) . 其中DCL1是一种RNaseⅢ内切酶,负责对pri-miRNA进行剪切加工,而HYL1和SE负责确保DCL1加工的精确性,TGH则负责增强DCL1的活[13,14,15]. Pri-miRNA先是在接近茎基部的地方被DCL1切割成pre-miRNA,随后再被切割成短的双链RNA(double-stranded RNA,dsRNA),即miRNA/miRNA*二聚体. miRNA/miRNA*二聚体两端各有2个碱基的突出,随后由HEN1甲基转移酶进行甲基化以增强它的稳定性(植物特有[10]. miRNA/miRNA*二聚体中,一般是成熟miRNA被选择性地装载进AGO1(ARGONAUTE1)蛋白,形成RNA诱导的沉默复合体(RNA inducing silencing complex, RISC),另一条链则通常进入降解途[16]. miRNA具体的生物合成途径如图1所示.

    miRNA主要通过与靶基因mRNA进行碱基互补配对,引导效应蛋白AGO1发挥切割靶基因mRNA或者抑制靶基因翻译的作用(图1[17]. 在动物中,miRNA的结合位点通常位于靶基因mRNA的3’非编码区(UTR),并且从miRNA 5’端开始第2~7个碱基配对比较严格,这段序列被称为miRNA的种子序列(seed sequence). 这种非严格配对的方式导致动物的miRNA有很多靶基因,并且调控方式主要为翻译抑[18]. 但在植物中,大部分miRNA与靶基因mRNA编码区序列之间存在较为严格的碱基互补配对,加之植物大部分miRNA的成熟序列在物种间非常保[19],因此植物的miRNA靶基因较少,同时更倾向于对靶基因mRNA进行剪切调[20].

    图1
                            miRNA的生物合成和作用方式

    图1 miRNA的生物合成和作用方式

    Fig. 1 Biogenesis and mode of action of miRNA

    miRNA几乎参与植物的生长发育和新陈代谢各方面的调控,如叶片的发育和形成(miR156[21]、miRNA165/166[22]、miR319[23])、气孔的发育(miR824[24]、侧根的形成 (miR164[25]、营养生长向生殖生长的转变调控(miR172)[26]、花的发育(miR172、miR159[27]. 此外,植物处于逆境胁迫,如病害、干旱、高温、高盐、营养缺乏等条件都能够诱导体内miRNA的异常表达,表明miRNA在农作物性状改良和抗逆形成方面可作为潜在靶标应用于遗传育[28]. 随着全球人口的快速增长以及经济、社会的发展需要,粮食的需求量不断增多. 在耕地面积有限的情况下,增加作物单产是提高粮食总产量的重要手段. 作物种植过程中很多因素会影响其产量和品质,如气候变化、病虫灾害等. 改良农作物的性状使其能更好地适应环境,增加逆境胁迫的耐受能力,提高作物的生存能力及产[29]. 作物性状改良的手段整合了植物生理学、遗传学、生物组学等多个方向的研究进展,对作物进行遗传改良和分子育种,是一种可持续并能显著提高作物产量的重要方[30]. 本文综述了miRNA在调控作物株型、花期、种子发育、籽粒大小及抗逆等农业性状方面的最新研究进展,同时介绍了目前几种研究miRNA参与植物性状调控的重要手段,分析了miRNA在改良作物性状中的应用前景,旨在整合miRNA相关知识和基因工程技术,为改良农作物性状提供理论依据和新途径.

  • 1 研究miRNA参与植物性状调控的主要途径

  • 1.1 影响作物性状关键miRNA的发现和鉴定

    自植物中首次发现miRNA以来,不断有新的miRNA被鉴定和验证. 植物miRNA的发现和鉴定最早是在模式植物拟南芥中,通过克隆DCL蛋白剪切产物以及与动物中发现的已知miRNA进行结构比对完[9]. 根据序列分析,后续在重要农作物中也预测和鉴定出一些植物中保守的miRNA[12,31]. 然而,无论是传统的克隆还是利用保守序列的预测都具有很大的局限性,不仅耗时耗力而且许多物种特异性或非序列保守的miRNA不能被有效鉴定. 随着高通量测序技术的发展和进步,许多研究者开始利用小RNA文库和高通量测序的方法,很大程度提高了miRNA鉴定的速度和通[32,33]. 例如为了鉴定玉米雌蕊发育相关的miRNA,研究者通过构建玉米不同发育时期雌蕊的小RNA文库,进行高通量测序分析鉴定到98个关键的miRNA[34]. 为了研究与干旱胁迫相关的miRNA,对植物进行干旱胁迫处理,通过建立小RNA文库及高通量测序分析,得到可能参与植物干旱胁迫耐受响应的miRNA[35]. 目前,在九大作物中大约有2 560个成熟miRNA和2 063个miRNA前体已经被鉴[36]. miRNA主要是通过抑制其靶基因的表达来发挥功能,因此miRNA靶基因的鉴定也非常重要. miRNA靶基因的鉴定主要是利用降解组联合高通量测序或者5’ RACE(5’ rapid amplification of cDNA ends)的方法验证靶基因被剪切后的转录本5’端的序列来进[34,37],但这种方法只能鉴定到被miRNA通过转录剪切模式靶向的靶基因,不能获得被miRNA通过翻译抑制模式靶向的靶基因.

    另外,有关作物中调控农艺性状的miRNA的鉴定也可以通过借鉴模式植物中已有的研究结果. 由于植物中存在着许多在进化中高度保守的miRNA,它们在不同植物中的功能可能是相似的. 如miRNA396在拟南芥中的靶基因是生长调控因子GRFGRF能与GIF互作共同组成miR396-GRF-GIF调控网络,调控拟南芥的生长发育过[38]. 参考拟南芥中的研究结果,在水稻中发现转录因子GRF4的编码基因GS2GRAIN SIZE ON CHROMOSOME 2)也能够被miRNA396剪切. 在一种籼稻变种中,GS2转录本在miRNA396靶向的位点发生了2个碱基的自然突变,从而不能被识别剪切,最终导致该品种的籽粒的长度和重量都显著增[39]. 但同一个保守的miRNA在不同的植物中也可能具有不同的功能,或者多种功能. 例如miR166在水稻中与营养离子的吸收与积累相[40],而在玉米中却调控了叶极性的发[41]. miR156除了参与植物分蘖调控外,还参与了花期、籽粒等方面性状的调[42,43]. 通过以上方法鉴定到的参与调控作物性状的miRNA及其靶基因还需要通过基因沉默或者敲除等遗传学手段进行进一步的功能验证和研究.

  • 1.2 miRNA功能研究的主要手段

  • 1.2.1 amiRNA(artificial miRNA)技术

    利用amiRNA技术,可以实现对特定miRNA在植物体内进行组成型过量表达或组织特异性表达,从而为研究其功能提供材料. amiRNA技术通过修饰天然的pre-miRNA产生,将miRNA/miRNA*序列替换成对应的感兴趣的靶基因序列,但是保留pre-miRNA的茎环结构. amiRNA中的miRNA链序列与靶基因的mRNA序列互补,而miRNA*链的作用是使其miRNA/miRNA*二聚体的结构和天然的相同,所以amiRNA和miRNA相同,通过内源的miRNA途径对靶基因进行沉[44]. 通过改造amiRNA载体骨架,将其中原有的miRNA/miRNA*序列替换为所研究的miRNA/miRNA*序列,采用组成型表达启动子或组织特异性表达启动子驱动pre-miRNA的表达,可以获得miRNA过量表达或组织特异性表达的材料,为研究该miRNA的生物学功能奠定基础. 对miRNA进行过量表达也可以通过采用高表达的启动子直接驱动miRNA的前体(pri-miRNA)进行,但由于很多miRNA尤其是一些新发现的miRNA的前体序列未知,并且miRNA前体的表达量往往很低难以被克隆和测序,所以amiRNA是一种更为快速和精确的过量表达miRNA的方式. 但是amiRNA的应用具有一定的局限性,如果所研究miRNA的本底表达水平很高,在植物中已经达到饱和水平,过表达后可能对植物没有明显影响. 另外,amiRNA技术在育种中的应用也有一定的限制,过表达某种miRNA可能会给植物带来剧烈的性状改变,从而不适合育种;同时,由于一种miRNA可能有多种功能,组成型过表达特定miRNA可能会对植物产生多重影响,改变除目的性状之外的其他性状. 采用组织特异性启动子或者诱导表达型启动子在目的组织或特异条件下对miRNA进行特异性表达可能会减小异位表达对植物整体的影响,从而减少副效应的产[45].

  • 1.2.2 串联

    短片段靶标模拟(short tandem target mimic,STTM)技术

    STTM技术的作用原理是通过模拟靶基因序列结合miRNA而造成miRNA丰度的降低和功能的抑制,从而降低miRNA对其内源靶基因的沉默作用. STTM骨架由长约100 nt的片段组成,包括两个miRNA结合位点以及连接它们的一个不完全互补的linker结构,其中linker结构起到维持STTM结构稳定性的作[46]. STTM设计中,miRNA结合区域的序列是与成熟miRNA互补的,但在该序列相对于miRNA的5’至3’第10~11个核苷酸处(即miRNA切割靶基因的位点),设计一个不能与miRNA形成互补的凸起(bulge),使得该序列既可以结合miRNA但又不被miRNA切割,使miRNA不能正常行使功[46]. 该设计使STTM既能结合miRNA,形成miRNA无功能复合体,减少了细胞中游离miRNA的数量,同时又能引起结合到STTM结构上的miRNA降解,该降解过程可能是SDN1[46]蛋白介导的,从而使miRNA靶基因的表达量升高. 利用STTM技术可以同时靶向一个miRNA家族的多个成员,克服由于基因冗余带来的沉默单个miRNA成员性状改变不明显的问[46]. 对于一些表达丰度很高的miRNA也能达到显著效果,如miR165/166[47]可以用STTM技术有效进行沉默. 此外,STTM转基因的植株中,靶向的miRNA被抑制,造成miRNA靶基因表达水平升高,引起植物产生相应表型,能有效反映出miRNA的具体功能. STTM的表达载体一般使用组成型表达启动子,在植物整体及植物全生长周期都能起到沉默miRNA的作用;STTM的表达载体也可以使用组织特异表达启动子或诱导型启动子,实现对miRNA表达的精确调控,获得理想的农艺性[46,48]. 但该方法也存在一些潜在的问题,如由于同一个miRNA家族的成员之间成熟序列非常保守,使用该方法将沉默整个家族,无法精确研究每一个miRNA家族成员的功能,并可能导致植物生长受到严重影响,不利于获得理想农艺性状. 因此,在研究miRNA的时候需要结合利用多种遗传学手段确定其具体的功能. 目前,STTM技术已成熟利用在miRNA的沉默中,并改变了模式植物和多种农作物的性状. 例如:利用STTM技术沉默番茄中的miR396,使番茄的果实重量增[49];利用STTM技术沉默拟南芥中miR159的表达,改变其响应胁迫的能[50];利用STTM技术沉默水稻中的miR156、miR159、miR166、miR398等,改变了水稻的株型及产量[51,52].

  • 1.2.3 CRISPR/Cas9基因编辑技术

    CRISPR全称为成簇的、规律间隔的短回文重复序列(clustered regularly interspaced short palindromic repeats),与其关联蛋白(CRISPR-associated proteins, Cas)共同组成了CRISPR/Cas系统. 早在1987年,日本微生物学家石野良纯在大肠杆菌中就发现了这种串联间隔重复序列,但一直不清楚其功[53]. 后来的研究发现,这种重复序列广泛存在于细菌和古细菌中,直到2002年才正式命名为CRISPR. 而CRISPR序列附近存在的多个编码序列,则被命名为CRISPR相关基因,即Cas基[54]. 后来的研究发现CRISPR系统实际是细菌的一种获得性免疫系统. 细菌被噬菌体侵染之后,可以获得噬菌体的DNA片段并将之整合进基因组中形成记忆,当细菌再次遭到噬菌体入侵时,就能形成免[55]. CRISPR/Cas系统有三种类型,CRISPR/Cas9属于Ⅱ型,Ⅰ型和Ⅲ型由于需要多种Cas蛋白参与,比较复杂故应用不广,而CRISPR/Cas9系统只需要一种Cas蛋白即Cas9的参与,操控简单,因此应用广泛. CRISPR/Cas9系统由单链的向导RNA(single guide RNA,即sgRNA)和有核酸内切酶活性的Cas9蛋白构成,sgRNA需有能与靶基因匹配的序列,Cas9蛋白则需带有核定位信号. 通过设计序列特异性的向导RNA,将Cas9蛋白招募到基因组特定位置,Cas9蛋白行使核酸内切酶功能使DNA双链断裂,而细胞在启动修复的过程中会造成碱基的突变或缺失,从而使靶基因的功能丧失,达到基因定向编辑的目[56]. 该系统目前已经广泛运用到拟南芥、水稻、玉米、番茄等多种植物的基因编辑中,并取得较好的效果,是一种有效的定向基因编辑手[57,58]. 用于基因编辑的外源DNA序列很容易在随后几代从被编辑的植物中去除,将它们转化为不含转基因成分的株系,有利于消除公众对转基因隐患的担忧. 类似于编码基因,利用CRISPR/Cas9基因编辑技术可以对特定的非编码基因miRNA进行敲除或碱基替换,敲除和替换的序列可以是miRNA的种子序列、茎环结构序列或启动子序列,替换种子序列可以影响其对于靶标的识别,替换茎环结构可以影响其生物合成,替换启动子可以影响其表达模式. 同一个miRNA不同的家族成员可能具有不同的表达模式,在植物的生长发育过程中具有不同的调控功能,利用CRISPR/Cas9系统可以特异性地针对miRNA基因家族的每个成员单独进行研究,这是STTM技术无法实现的. 但由于miRNA的序列短,某些miRNA在其序列上可能难以设计出满足条件的sgRNA,所以一般在成熟miRNA序列附近的上下游区域选取合适位置设计两个sgRNA位点,当两个位点同时被编辑时,它们之间的成熟miRNA序列将被删去,但这对CRISPR/Cas9系统的编辑效率提出了更高的要求. 目前CRISPR-Cas9技术已经被证明是一种有效的用来编辑植物miRNA的重要手[59],该技术将会极大地拓展miRNA在作物分子育种领域内的应用.

  • 2 参与调控农作物性状的主要miRNA

    miRNA是植物生长发育过程的重要调控因子,越来越多的证据表明,miRNA在调控农作物性状的过程中起着关键的作用. miRNA及其靶基因对农作物的性状有多方面的影响,在调控农作物的株型、花期、育性、产量、抗逆性状形成、品质等方面都起着关键的作用(图2). 表1中列举了近年来经过实验验证的参与调控农作物性状的主要miRNA及其靶基因.

    图2
                            miRNA及其靶基因对农作物性状有多方面的影响

    图2 miRNA及其靶基因对农作物性状有多方面的影响

    Fig. 2 Effects of miRNAs and their target genes on multiple traits of crops

    表1 经实验验证的参与调控农作物性状的主要miRNA及其靶基因

    Table 1 Major miRNAs and their target genes involved in regulation of crop traits verified by experiments

    miRNAmiRNA靶基因物种参考文献
    调控株型性状
    miR156SPLs水稻、小麦[42,60,61]
    miR164NAC2水稻[62]
    miR166HB4水稻[63]
    miR171GRAS24番茄[64]
    miR172AP2水稻[65]
    miR393TB1,AUX1水稻[66,67]
    miR394LC4水稻[68]
    miR396GRF6水稻[69]
    miR444MADS57水稻[70]
    miR529SPLs水稻[65]
    调控花期
    miR156SPLs水稻、玉米、大麦、大白菜、柳枝稷[43,71,72,73]
    miR168AGO1番茄[74]
    miR172AP2水稻、玉米、大麦、大豆、土豆[75,76,77,78,79]
    miR393TB1, AUX1水稻[66]
    miR408TOC1小麦[80]
    调控雄性育性
    miR159GAMYB水稻[81,82]
    miR167ARF6/8番茄[83]
    miR1227SMARCA3L3小麦[84]
    miR2118PMS1T水稻[85]
    miR2275CAF1小麦[84]
    调控种子/果实发育
    miR156SPLs水稻、番茄[42,86,87,88]
    miR157SPLs番茄[88]
    miR168AGO1番茄[74]
    miR396GRF4水稻[39,89]
    miR397LAC水稻[90]
    miR1432ACOT水稻[91]
    miR4376ACA10番茄[92]
    调控温度胁迫
    miR159GAMYB小麦[93]
    miR167ARF小麦[94]
    miR319PCFs水稻[95]
    miR396GRFs烟草[96]
    调控干旱胁迫
    miR159MYB55玉米[97]
    miR162TRE1水稻[98]
    miR164OMTNs水稻[99]
    miR168AGO1玉米[71]
    miR169NF-YA玉米、番茄[100,101]
    miR9654DR733425小麦[102]
    调控盐胁迫
    miR171ARFs小麦[103]
    miR393TIR1, AFB2水稻、小麦[66,103,104]
    miR408CLP1小麦[105]
    miR1848CYP51G3水稻[106]
    调控养分吸收
    miR166RDD1水稻[107]
    miR399LTN1, PHO2水稻、玉米[107,108,109]
    miR827SPX-MFSs水稻[110]
    调控免疫应答
    miR159HiC-15棉花[111]
    miR164NAC21/22小麦[112]
    miR166CLP-1棉花[111]
    miR168AGO1水稻[113]
    miR319PCFs, TCP21水稻[114]
    miR398SODs水稻、大麦[115,116]
    miR408CLP1小麦[80]
    miR444MADSs水稻[117]
    miR482NB–LRRs番茄[118]
    miR528AO水稻[119]
    miR5300NB–LRRs番茄[118]
    miR6024NB–LRRs番茄[120]
    miR7695NRAMP6水稻[121]
    miR9863MLA1大麦[122]
    调控其他方面
    miR159(拔节)GAMYB水稻[81]
    miR160(侧根生长)ARFs大豆[123]
    miR164(侧根生长)NAC1玉米[124]
    miR166(叶极性)RLD1玉米[41]
    miR319(结球特性)TCPs大白菜[125]
    miR395(硫酸盐稳态)SULTR2烟草[126]
    miR528(抗倒伏)LAC3,LAC5玉米[127]
    miR828(纤维生长)MYB2D棉花[128]
    miR858(花青素积累)MYB番茄[129]
    miR1848(蜡质合成)CYP51G3水稻[130]
    miR2111(根部结瘤)TML百脉根[131]
  • 2.1 调控作物株型的miRNA

    植物的株型与产量密切相关,植物的株型包括植物的分支模式、株高、叶片形状和排列方式(叶夹角)以及穗型等方面. 为了筛选出高产的水稻品种,人们定义了理想株型的概念:在理想的株型中,分蘖数少但几乎都是有效分蘖;穗大且籽粒多;茎粗[132]. 目前已经鉴定出了一些与植物株型相关的基因,这些基因当中,有相当一部分已被证明受到miRNA的调控.

    禾本科植物的株型大部分由其分支模式决定,其中分蘖发生在营养生长期,穗分支则在生殖生长期,它们的模式与产量密切相关. 在水稻中,miR156、miR529及miR172协同调控了其分支模[65]. 其中miR156和miR529通过靶向SPLSQUAMOSA PROMOTER BINDING PROTEIN LIKE)家族的基因,调控水稻的分蘖及穗分支,而miR172则通过靶向AP2APETALA2)家族的基因调控水稻的分蘖及穗分支. miR156和miR529能使水稻的分蘖数增多,但是也会使它的穗变小,小穗的数目减少,它们负调控花序分生组织的活性及穗分支起始. miR172与分蘖数无关,但它也会使小穗的数目变少,它负调控花向小穗的转变. 小麦的miR156与水稻miR156有着相似的作用,也起到促进分蘖及抑制小穗形成的作[33],其miR529和miR172也可能起着与水稻中相似的作用. 分蘖是受多基因控制的性状,多个miRNA参与调控这些基因,如miR393和miR444. 其中miR393通过靶向两个生长素受体基因,TIR1(TRANSPORT INHIBITOR RESPONSE 1)和AFB2(AUXIN SIGNALING F-BOX 2),正调控水稻的分蘖[66]. miR444则抑制分[70],其机制是:miR444抑制MADS57的表达,而MADS57D14(Dwarf14)的表达抑制子,在miR444过量的情况下,D14的表达量增多,从而抑制水稻的分蘖. 另外,TB1(TEOSINTE BRANCHED1)与MADS57相互作用会降低MADS57D14表达的抑制,使D14的表达量增多. 因此,TB1基因也是水稻分蘖的负调控因子.

    miR393除了调控分蘖外,还与miR394、miR396等一起调控叶夹角. 其中miR393通过靶向TIR1AFB2基因的转录本,正向调控旗叶的叶夹[67]. 而miR394通过靶向一个F-box基因LC4LEAF INCLINATION 4)负调控叶夹[68]. miR396与miR393相似,也正调控叶夹角,此外miR396还负调控株高,它在水稻中的靶基因是GRF6(GROWTH REGULATING FACTOR 6),通过赤霉素和类固醇信号途径起到调控株型的作[69]. 与分蘖和叶夹角相似,穗型和株高也受到多个miRNA的调控. 如miR164通过靶向NAC2(NAC-REGULATED SEED MORPHOLOGY 2)负调控穗的大小,过表达miR164会减少穗的长度及籽粒产量,而过表达抗miR164的靶基因模拟序列(target mimic),会增加穗长及籽粒产[62];miR398与miR172则是正调控穗的大小,沉默它们后,穗都会变短. 其中miR398沉默株系穗变得短小,籽粒变少变轻,还会产生晚花的现象,而过表达则结果相反,而miR172沉默株系则只会使穗变短,但籽粒却变得更密[133]. miR156与miR396都有调控多个性状的作用,且它们都负调控株[42]. 除了它们两个外,miR171也是株高的负调控因子,在过表达miR171的番茄株系中,植株矮化且果实产量变[64]. 另外,miR166也参与植物株型的调控. miR166通过靶向HB4(HOMEODOMAIN CONTAINING PROTEIN4)来调控水稻叶片的形状和木质部的大小,在miR166表达沉默的植株中,叶子卷曲且茎秆的木质部直径变[63]. 植物的株型是一个复合性状,包含株高、分支模式、叶夹角等多个方面,由多个基因共同调控决定,这些基因的表达同时也在转录后水平受多个miRNA共同调控. 不同的miRNA可能通过协同作用或拮抗作用调控同一个性状,同一个miRNA也可能具有多种功能,参与调控多个不同的性状. 如miR156和miR529通过SPL基因协同促进作物的分[65],而miR444则通过MADS57基因抑制分[70],与它们形成拮抗关系. 同一个性状由多个miRNA共同调控,可能使植物通过多个途径去改变这个性状,更快地适应环境变化. 同一个miRNA也可能通过不同靶基因调控多个性状,如miR393参与分蘖、叶夹角等性状的调控,其中分蘖性状是与miR156等共同调控的,而叶夹角性状则是与miR394等共同调控的. 这些miRNA与它们的靶基因一起构成复杂的调控网络,在不同的环境中精确地控制植物的株型,使其更好地适应外界环境.

  • 2.2 调控作物花期的miRNA

    在高等植物的生命周期中,开花是一个非常关键的事件. 植物从营养生长期到开花的转变受到严格的控制,这关系到它们的繁殖是否成功. 为保证在最有利的条件下开花结果,植物进化出复杂的调控网络,它整合了内源性的信号和环境信号,miRNA是其中的一个重要调控因[134]. 在调控作物花期的miRNA中,miR172的研究比较透彻,在拟南芥中其靶基因是AP2转录因[26]. miR172在营养生长时期表达量很低,随着开花的进程表达量逐渐升高. 过表达miR172能够抑制AP2的翻译,从而导致植物早[135]. 在玉[76]、大[78]、土[79]和水[75]等作物中也有类似研究. 以水稻的miR172为例,Hd3a(Heading date 3a)和RFT1(Rice Flowering Locus T 1)编码水稻的成花素合成基因,它们能够促进水稻开花. Ehd1(Early heading date 1)是Hd3aRFT1上游的正调控子,miR172是通过抑制AP2家族的两个成员IDS1 (INDETERMINATE SPIKELET 1)和SNB(SUPERNUMERARY BRACT)的表达,使Ehd1表达增多,从而导致成花素合成基因表达升高,使水稻的花期提前. miR156是个多功能的miRNA,它在植物中高度保[136],除了调控作物的分蘖外,在调控作物的花期方面也起着重要的作用. 在水稻和玉米过表达miR156的株系中,植株花期延[43,71]. 此外,在柳枝稷中过表达玉米的miR156也会使其花期延[137]. 在拟南芥和大白菜中miR156也有延长花期的作[73,138],说明它的功能在植物中与miR172一样也是保守的,而且两者可能存在着拮抗作用. 在拟南芥中,miR156在幼年期的表达量较成年期高,而miR172则刚好相反. 通过SPL基因的衔接(有些SPL基因,如AtSPL9AtSPL10能直接激活miR172从而促进植物的生长发育和开花),它们在调控生长发育的时间上有着连续的作[139]. 除了miR156和miR172外,作物中还有其他的miRNA在调控花期上起作用. 过表达miR393的水稻株系出现了早花的现象,说明它能使花期提[66]. 在番茄中,沉默miR168能够使它的开花时间延[74];在小麦中,过表达miR408的植株抽穗时间提前[80]. 开花是植物生命周期的关键事件,由多个途径共同参与调控,miRNA与其靶基因构成复杂的调控网络参与这些途径,在同一时期或不同时期发挥调控作用. 如miR172和miR156通过SPL基因的衔接,分别作为正调控因子和负调控因子在时间上连续调控花期. 随着植物的生长,miR156的表达水平逐渐下调,使其靶基因SPL表达水平升高,进一步激活miR172从而抑制AP2的表达,最终使植物顺利完成开花. 不同miRNA通过靶基因精确地调控着植物的花期,使其能够正常生长发育繁衍后代. 研究miRNA调控花期的机制对确保作物正常繁殖及缩短作物的生长周期具有重要意义.

  • 2.3 调控作物育性的miRNA

    植物的育性关系到其能否产生后代,是植物繁殖过程中的关键性状之一. 但在作物育种研究中,通常需要通过雄性不育的株系,培育杂交品种的作物,利用杂交优势提高作物的产[140]. 雄性不育分两种:细胞质雄性不育(CMS)和遗传性雄性不育(GMS). CMS产生的原因:线粒体和细胞核的相互作用,产生了无法存活的花[141],导致CMS的基因位于线粒体基因组中,但它们的表达受到Rf(restorer of fertility)基因的调[142]. GMS的机制目前还不是很清楚,但近年来的研究发现,非编码RNA在GMS复杂的调控过程中起着重要作用,它可能充当了细胞核与线粒体间信使的角[143]. 目前,有关调控作物雄性育性miRNA的报导较少,其中一个重要的是miR2118[85]. 长日照条件下,水稻的光周期敏感的雄性不育(PSMS)株系中,miR2118通过靶向PMS1T,一个长链的非编码RNA,产生一系列21 nt的phasiRNA,使这种phasiRNA特异地积累在PSMS系的水稻中,这些phasiRNA可能作用于Rf 基因,进而调控PSMS. 水稻中另一个影响雄性育性的miRNA是miR159[81]. 据研究miR159影响了水稻花药的发育,在水稻中过表达miR159会导致它的花发育畸形,雄蕊里面没有花粉. 另外,在水稻中过表达小麦的miR159,即tae-miR159也会导致水稻雄性不[82]. 最近研究发现,miR1227和miR2275可能与小麦的雄性不育相关. miR1227和miR2275分别靶向CAF1(CCR4-associated factor 1)和SMARCA3L3(SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A, member 3-like 3),这2个基因都与减数分裂有关. CAF1SMARCA3L3参与了DNA修复及转录,以维持染色体和基因组在减数分裂过程中的完整性,使减数分裂正常进[84]. 此外,番茄中过表达miR167会引起花发育的缺陷及雄性不[83],其靶基因是生长素响应因子ARF6(Auxin Response Factor 6)和ARF8(Auxin Response Factor 8),在拟南芥中ARF6ARF8的作用是促进花序茎伸长及后期雄蕊雌蕊发[144]. 除此之外,通过建库、高通量测序等方法也发现了一些在雄性不育系和它们保持系间差异表达的miRNA,它们也可能参与了作物雄性育性的调控,如玉米的miR397、miR601、miR604[145],水稻的miR528、miR1432[146],大豆的miR169、miR171、miR397、miR408[147]等. 上述调控育性的miRNA基本都与植物的花发育相关,而在花发育过程中,无论是21 nt还是24 nt的phasiRNA均在花序中大量表[148,149]. 如在玉米和非洲水稻中,21 nt的phasiRNA在花药减数分裂前期会在花粉囊中积累,而在减数分裂期,24 nt的phasiRNA则聚集在绒毡层和性目细胞中,这种phasiRNA积累的现象会持续到花粉性细胞成熟和单倍体配体分化成花粉. 其中21 nt的phasiRNA由miR2118触发产生,而24 nt的phasiRNA由miR2275触发产[150,151],这两种miRNA都参与调控了作物的育[84,85]. 其中由miR2118触发产生21 nt的phasiRNA已被证明与水稻的光周期敏感的雄性不育相[85],其他的miRNA调控育性的机制目前虽然还不是很清楚,可能也与phasiRNA有关. 植物育性是其繁殖后代的关键,其背后必然存在一个复杂的调控网络,虽然现在有关miRNA调控育性的报道不多,但miRNA在其中所起的重要作用不可忽视,有关miRNA调控作物育性的机制亟待研究.

  • 2.4 调控作物种子/果实发育的miRNA

    种子是植物生长的基础,也是农业生产中重要的生产资料,miRNA在种子发育过程中也起着重要的作用. miRNA可以通过多种途径调控种子的发育,如信号转导(ABA、生长素、油菜素甾醇等)、淀粉合成、抗氧化作用、糖转化、细胞生长[152]. 研究发现在萌发的种子中miR159能够负调控ABA信号的正向调控因子MYB33MYB101,说明miR159可能通过ABA信号途径调控种子的发[153]. 此外,miR159在水稻劣质籽粒中的表达量高于优势籽[154],而且在灌浆期对水稻进行ABA处理可以加快细胞分裂、增加细胞数量、提高灌浆率,从而增加劣势籽粒的重[155]. 这表明miR159可能通过调控种子对ABA信号的转导,而影响了种子的灌浆. miR164在发育的小麦种子中的表达量呈上升趋[156],miR167在玉米种子中的表达量很[157],且它们的靶基因均是生长素信号途径相关的基[12],说明它们可能通过生长素途径调控种子的发育. 在水稻中过表达miR397会使籽粒增大,且促进穗分枝,从而使水稻的产量升高. miR397的靶基因为LAC(LACCASE)编码类漆酶蛋白,参与油菜素甾醇信号转导,说明miRNA397很可能通过油菜素甾醇信号转导途径调控种子的发[90].

    还有一些miRNA是通过调控细胞生长的相关途径影响种子发育. 比如miR156,它是个多功能的miRNA,除了上文提到的调控水稻的分蘖外,它在调控水稻籽粒的大小、质量、形状方面也有重要的作用. miR156通过它的靶基因SPL家族基因来行使它的功能,如通过OsSPL14来调控籽粒的产[42],通过OsSPL13OsSPL16来控制籽粒的大小、质量及形状等. OsSPL13能在谷壳中正调控细胞的大小,从而使水稻的籽粒长度增加且提高了籽粒的产[87]. 而OsSPL16则是细胞增殖的正调控子,它能促进细胞分化和籽粒的灌浆,从而增加籽粒的宽度和产[86]. 与miR156相似,miR396也是籽粒产量的负调控因子,它通过miR396-OsGRF4(GROWTH‐REGULATING FACTOR 4)-OsGIF1 (GRF‐interacting factors 1)模式调控籽粒的大[39,89]. 在过表达miR396的水稻中,籽粒的大小和重量都下降了,说明miR396是籽粒长度和宽度的负调控子,且它是通过抑制细胞扩张来调控籽粒大小的. 另外,OsGRF4能与激活因子OsGIF1互作,且增加OsGIF1的表达量也会增加籽粒的大小. 此外,miR1432也是籽粒的负调控因子,在抑制miR1432的植株中,籽粒的总产量增加[91].

    在番茄中,miR156、miR157、miR168和miR4376被报道参与果实发育的调控. miR156和miR157均靶向SPL家族的基因,LeSPL-CNR,它们参与调控番茄果实的成熟. 其中miR157与果实成熟的起始相关,而miR156则与果实成熟后的软化相[88];而miR168通过靶向AGO1来调控果实的起始和发[74];miR4376则通过靶向ACA10autoinhibited Ca2+-ATPase 10),一种Ca2+-ATPase来调控果实的发[92]. 在草莓中过表达miR399能使其中葡萄糖、果糖及可溶性物质增多, 从而改善果实的品[158]. 另外,miR408、miR1867等可能通过抗氧化、糖转化、淀粉合成等途径参与种子发育的调[152,159]. 协同调控种子果实发育的miRNA应该存在着功能冗余的情况,以确保种子果实正常发育.

    种子果实的发育好坏关系着植物繁殖的成功与否,其背后必然有着一个复杂精细的调控网络,参与调控该过程的miRNA与其靶基因是其中重要的一环. 这些miRNA与靶基因中,有的可能是上下游关系,有的可能是协同或者相互拮抗的关系,具体的调控网络还有待进一步揭示. miR156、miR159、miR396、miR1432等均对籽粒大小有负调控的作用,它们可能协同负调控籽粒的大小,而miR164、miR397等则与它们的作用相反.

  • 2.5 调控作物抗逆性状形成的miRNA

    农作物每年减少的产量中有70%与生物和非生物胁迫相关,其中非生物胁迫占50%以[160]. 研究作物抗胁迫的机理,对提高作物产量有很大的帮助. miRNA是作物应对逆境胁迫的主要调控因子,它已经成为一种具有巨大潜力的遗传工具,可以利用它来理解作物在分子水平胁迫适应机理,并用于基因工程来提高作物的抗逆能力.

    在生长和发育期间,作物可能会经历洪水、干旱、极端温度、营养不平衡或盐分等逆境,越来越多的研究发现,miRNA在作物应对这些逆境的过程中发挥着重大的作用. 在水[95]、小[93]、大[161]、棉[162]、烟[96]等作物中均已有报道对温度胁迫响应的miRNA. 其中响应冷胁迫的有miR167、miR319、miR396、miR444等,它们中miR319和miR396都是通过活性氧(ROS)的水平来响应冷胁迫,且miR319和miR396的过表达植株的冷胁迫耐受力增[95,96]. 响应热胁迫的miRNA则有miR159、miR160、miR166、miR167等,其中在小麦中过表达miR159会使它的对热胁迫更敏[93].

    在水稻、小麦、番茄、玉米等作物中也已有响应干旱胁迫miRNA的报道,但具体作用机制仍不清楚. 在干旱胁迫的小麦中,miR10和miR9654的表达量上[102]. 在干旱胁迫条件下,miR159、miR398、miR408、miR528等在耐旱品种的水稻中上调,而在敏感的品种中下调. 这些miRNA的靶基因有些是编码铜蛋白的,它们可能通过下调铜蛋白的含量使体内活性氧(ROS)增多,进而使气孔关闭程度增加以提高抗旱能[35]. 此外,miR162能通过它的靶基因TRE1(TREHALASE 1)增强水稻的抗旱能[98],而miR164则可能通过它的靶基因,几个OMTNOryza miR164-targeted NAC)基因来增强水稻的抗旱能[99]. 玉米中miR159、miR168、miR169在响应干旱胁迫过程中起着重要作[97,101]. 在番茄中过表达miR169会使它的气孔开放程度变小,从而增加它的抗旱能[100]. 在大麦中过表达miR827也可以提高它的抗旱能[163].

    对于调控盐胁迫的miRNA,人们也已在多种作物中有过研究,但是具体机制仍不清楚. 如水稻的miR393、miR1848[66,106],小麦的miR171、miR393和miR408[103,104,105],玉米的miR164、miR167[164],大麦的miR168、miR171、miR444[165]. miRNA在作物遭受营养不足时也起着重要的调控作用,如miR166、miR399和miR827[40,107,108,110]. 值得一提的是,miR166与营养离子的吸收和积累有关,它的靶基因RDD1(Dof daily fluctuations 1)过表达时会提高水稻籽粒的产量. 最近研究发现,玉米中PILNCR1会抑制miR399对PHO2PHOSPHATE2)mRNA的切割. miR399/PILNCR1模块对玉米耐受低磷胁迫有着重要的调控作[109].

    除了上述几种逆境胁迫外,miRNA在调节植物免疫应答方面也有重要的作用,使得植物在病毒、细菌、真菌及虫害等生物胁迫的条件下生存下来. 如水稻的miR168、miR319、miR398[113,114,117],小麦的miR164、miR408[80,112],大麦的miR398、miR9863[116,122],番茄的miR482、miR5300、miR6024[118,120],棉花的miR159、miR166、miR482[111]在作物应对病原菌侵害的过程中起着重要的调控作用.

    综上所述,miRNA参与多种生物胁迫和非生物胁迫过程,在作物的逆境胁迫适应和抗逆性状形成中起着非常重要的作用. 不同的miRNA可能共同参与应答调控同一种胁迫,同一个miRNA也可能在多个胁迫应答中都发挥作用. 研究miRNA及其靶基因应对这些逆境胁迫的机理,对改良作物性状、提高作物的抗逆能力以及最终提高作物的产量和品质有着很大的帮助.

  • 2.6 调控作物其他性状的miRNA

    除了上述性状外,miRNA在调控作物的其他性状方面也有着重要的作用. 如水稻中miR159参与调控拔[81],miR1848参与调控蜡质的生物合成过[130],玉米miR164参与调控侧根的生[124],玉米miR166参与叶极性的决[41],玉米miR528通过调控木质素合成影响其抗倒伏性[127],棉花miR828和miR858参与调控纤维的生[128],大豆miR160参与调控侧根的生[124],大白菜中miR319通过调控叶片中的细胞分化影响其结球特[125],烟草miR395参与调控体内硫酸盐的稳[126],番茄中miR858参与调控花青素的积[129],miR2111参与调控百脉根的结[131]等等. miRNA的功能多样化,几乎参与调控了植物各个方面性状的调控,对植物的生长发育和抗逆性状形成具有重要意义. 研究miRNA的作用机制,揭示其关键靶基因和下游基因调控网络,结合基因工程的手段,通过遗传转化和分子设计育种能有效改变作物的性状,为改良作物重要性状提供基础研究材料及理论支持.

  • 3 miRNA在改良作物性状中的应用前景和展望

    目前,miRNA已成为分子生物学领域的研究热点,在植物中已经有大量的miRNA被发现和鉴定,随着研究手段的不断进步,越来越多植物miRNA的生物学功能及分子作用机制也将逐渐得以阐明,这些miRNA参与植物的生长发育、新陈代谢以及胁迫响应等多个过程,表明miRNA及其靶基因在作物性状改良方面具有不可低估的应用潜能. 一些影响作物重要农艺性状(如产量、株型、育性等)的miRNA陆续被发现,如miR156调控分蘖数、株高、花期和籽粒大[65],miR396调控叶夹角、株高和籽粒大[89],miR2118调控育性[85]. 基于miRNA的分子设计育种可通过增加农作物的胁迫耐受性、增加作物产量、提高品质等方面来发展优良的作物品种,从而提高边际土地的利用率,减少农药的使用量,促进农业生产力可持续发展. 另外,miRNA的相关理论也可应用于作物杂交育种. 研究发现,水稻、小麦等的杂交品种与它们的亲本相比,miRNA的整体表达量下[166,167]. 研究与杂种优势相关的miRNA将有助于作物育种者选择最佳的杂交后代组合,以产生商业上可用的F1代杂交品[36]. 还有一些与育性相关的miRNA,如Osa-miR2118[85],预示miRNA也可应用在培育雄性不育系作物上. 此外,CRISPR/Cas9基因编辑技术在作物miRNA及其靶基因上的应[59,168],使获得性状发生改良且不含转基因成分的遗传材料成为可能,miRNA在作物性状的分子育种改良中具有广阔的应用前景.

    Advances in miRNAs Regulating Agricultural Traits for Crops*

    JIANG Zeng-Ming1)**, HE Juan1,3)**, Mo Bei-Xin1,2), LIU Lin1,2)***, XU Xiao-Feng1)***

    1)Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;

    2)Longhua Bioindustry and Innovation Research Institure, Shenzhen University, Shenzhen 518060, China;

    3)Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,

    College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China)

  • 参 考 文 献

    • 1

      Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854

    • 2

      Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901-906

    • 3

      Slack F J, Basson M, Liu Z, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell, 2000, 5(4): 659-669

    • 4

      Brennecke J, Hipfner D R, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113(1): 25-36

    • 5

      Hipfner D R, Weigmann K, Cohen S M. The bantam gene regulates Drosophila growth. Genetics, 2002, 161(4): 1527-1537

    • 6

      Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808): 86-89

    • 7

      Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencing-associated small RNAs in plants. The Plant Cell, 2002, 14(7): 1605-1619

    • 8

      Park W, Li J, Song R, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 2002, 12(17): 1484-1495

    • 9

      Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes & Development, 2002, 16(13): 1616-1626

    • 10

      Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell,2013, 25(7): 2383-2399

    • 11

      Nozawa M, Miura S, Nei M. Origins and evolution of microRNA genes in plant species. Genome Biology and Evolution, 2012, 4(3): 230-239

    • 12

      Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004, 14(6): 787-799

    • 13

      Dong Z, Han M H, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A, 2008, 105(29): 9970-9975

    • 14

      Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. Rna, 2006, 12(2): 206-212

    • 15

      Ren G, Xie M, Dou Y, et al. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A, 2012, 109(31): 12817-12821

    • 16

      Sanei M, Chen X. Mechanisms of microRNA turnover. Current Opinion in Plant Biology, 2015, 27: 199-206

    • 17

      Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 2011, 12(2): 99-110

    • 18

      Ha M, Kim V N. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 2014, 15(8): 509-524

    • 19

      Kamthan A, Chaudhuri A, Kamthan M, et al. Small RNAs in plants: recent development and application for crop improvement. Frontiers in Plant Science, 2015, 6: 208

    • 20

      Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669-687

    • 21

      Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 2005, 8(4): 517-527

    • 22

      Kidner C A. The many roles of small RNAs in leaf development. Journal of Genetics and Genomics, 2010, 37(1): 13-21

    • 23

      Palatnik J F, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Developmental Cell, 2007, 13(1): 115-125

    • 24

      Kutter C, Schob H, Stadler M, et al. MicroRNA-mediated regulation of stomatal development in Arabidopsis. The Plant Cell, 2007, 19(8): 2417-2429

    • 25

      Xie Q, Guo H S, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002, 419(6903): 167-170

    • 26

      Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022-2025

    • 27

      Achard P, Herr A, Baulcombe D C, et al. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004, 131(14): 3357-3365

    • 28

      Sunkar R, Li Y F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends in Plant Science, 2012, 17(4): 196-203

    • 29

      Takeda S, Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes. Nature Reviews Genetics, 2008, 9(6): 444-457

    • 30

      Lombardo L, Coppola G, Zelasco S. New technologies for insect-resistant and herbicide-tolerant plants. Trends in Biotechnology, 2016, 34(1): 49-57

    • 31

      Bonnet E, Wuyts J, Rouze P, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 2004, 101(31): 11511-11516

    • 32

      Sunkar R, Girke T, Jain P K, et al. Cloning and characterization of microRNAs from rice. The Plant Cell, 2005, 17(5): 1397-1411

    • 33

      Song Q X, Liu Y F, Hu X Y, et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biology, 2011, 11: 5

    • 34

      Liu H, Qin C, Chen Z, et al. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genomics, 2014, 15: 25

    • 35

      Balyan S, Kumar M, Mutum R D, et al. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Scientific Reports, 2017, 7(1): 15446-15450

    • 36

      Tang J, Chu C. MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants, 2017, 3: 17077

    • 37

      Li S, Le B, Ma X, et al. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. eLife, 2016, 5: doi: 10.7554/eLife.22750

    • 38

      Debernardi J M, Mecchia M A, Vercruyssen L, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. The Plant Journal : for Cell and Molecular Biology, 2014, 79(3): 413-426

    • 39

      Duan P, Ni S, Wang J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants, 2015, 2: 15203

    • 40

      Iwamoto M, Tagiri A. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. The Plant Journal : for Cell and Molecular Biology, 2016, 85(4): 466-477

    • 41

      Juarez M T, Kui J S, Thomas J, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004, 428(6978): 84-88

    • 42

      Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42(6): 541-544

    • 43

      Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology, 2006, 142(1): 280-293

    • 44

      Schwab R, Ossowski S, Riester M, et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell, 2006, 18(5): 1121-1133

    • 45

      Zhou M, Luo H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Molecular Biology, 2013, 83(1-2): 59-75

    • 47

      Franco-Zorrilla J M, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 2007, 39(8): 1033-1037

    • 46

      Tang G, Yan J, Gu Y, et al. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods, 2012, 58(2): 118-125

    • 48

      Tang G, Tang X. Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. Journal of Genetics and Genomics, 2013, 40(6): 291-296

    • 49

      Cao D, Wang J, Ju Z, et al. Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Plant Science, 2016, 247: 1-12

    • 50

      Teotia S, Tang G. Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach. Methods in Molecular Biology, 2017, 1631: 337-348

    • 51

      Teotia S, Zhang D, Tang G. Knockdown of rice microRNA166 by short tandem target mimic (STTM). Methods in Molecular Biology, 2017, 1654: 337-349

    • 52

      Zhang H, Zhang J, Yan J, et al. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A, 2017, 114(20): 5277-5282

    • 53

      Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433

    • 54

      Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575

    • 55

      Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712

    • 56

      Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821

    • 57

      Li J F, Norville J E, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691

    • 58

      Feng Z, Zhang B, Ding W, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013, 23(10): 1229-1232

    • 59

      Zhou J, Deng K, Cheng Y, et al. CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Frontiers in Plant Science, 2017, 8: 1598

    • 60

      Wang H, Wang H. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant, 2015, 8(5): 677-688

    • 61

      Liu J, Cheng X, Liu P, et al. miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology, 2017, 174(3): 1931-1948

    • 62

      Jiang D, Chen W, Dong J, et al. Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. Journal of Experimental Botany, 2018, 69(7): 1533-1543

    • 63

      Zhang J, Zhang H, Srivastava A K, et al. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiology, 2018, 176(3): 2082-2094

    • 64

      Huang W, Peng S, Xian Z, et al. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnology Journal, 2017, 15(4): 472-488

    • 65

      Wang L, Sun S, Jin J, et al. Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci USA, 2015, 112(50): 15504-15509

    • 66

      Xia K, Wang R, Ou X, et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. Plos One, 2012, 7(1): e30039

    • 67

      Bian H, Xie Y, Guo F, et al. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). The New Phytologist, 2012, 196(1): 149-161

    • 68

      Qu L, Lin L B, Xue H W. Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4. Journal of Integrative Plant Biology, 2018[Epub ahead of print](DOI: 10.1111/jipb.12713)

    • 69

      Tang Y, Liu H, Guo S, et al. OsmiR396d affects Gibberellin and Brassinosteroid signaling to regulate plant architecture in rice. Plant Physiology, 2018, 176(1): 946-959

    • 70

      Guo S, Xu Y, Liu H, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering viaDWARF14. Nature Communications, 2013, 4: 1566

    • 71

      Chuck G, Cigan A M, Saeteurn K, et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 2007, 39(4): 544-549

    • 72

      Tripathi R K, Bregitzer P, Singh J. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley. Scientific Reports, 2018, 8(1): 7085

    • 73

      Wang Y, Wu F, Bai J, et al. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnology Journal, 2014, 12(3): 312-321

    • 74

      Xian Z, Huang W, Yang Y, et al. miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato. Journal of Experimental Botany, 2014, 65(22): 6655-6666

    • 75

      Lee Y S, Lee D Y, Cho L H, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice, 2014, 7(1): 31

    • 76

      Lauter N, Kampani A, Carlson S, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A, 2005, 102(26): 9412-9417

    • 77

      Nair S K, Wang N, Turuspekov Y, et al. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci U S A, 2010, 107(1): 490-495

    • 78

      Yoshikawa T, Ozawa S, Sentoku N, et al. Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta, 2013, 238(1): 229-237

    • 79

      Martin A, Adam H, Diaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 2009, 136(17): 2873-2881

    • 80

      Zhao X Y, Hong P, Wu J Y, et al. The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiology, 2016, 170(3): 1578-1594

    • 81

      Tsuji H, Aya K, Ueguchi-Tanaka M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. The Plant Journal : for Cell and Molecular bBiology, 2006, 47(3): 427-444

    • 82

      Wang Y, Sun F, Cao H, et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. Plos One, 2012, 7(11): e48445

    • 83

      Liu N, Wu S, Van Houten J, et al. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. Journal of Experimental Botany, 2014, 65(9): 2507-2520

    • 84

      Sun L, Sun G, Shi C, et al. Transcriptome analysis reveals new microRNAs-mediated pathway involved in anther development in male sterile wheat. BMC Genomics, 2018, 19(1): 333

    • 85

      Fan Y, Yang J, Mathioni S M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci U S A, 2016, 113(52): 15144-15149

    • 86

      Si L, Chen J, Huang X, et al. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 2016, 48(4): 447-456

    • 87

      Wang S, Wu K, Yuan Q, et al. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950-954

    • 88

      Chen W, Kong J, Lai T, et al. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening. Scientific Reports, 2015, 5: 7852

    • 89

      Li S, Gao F, Xie K, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal, 2016, 14(11): 2134-2146

    • 90

      Zhang Y C, Yu Y, Wang C Y, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 2013, 31(9): 848-852

    • 91

      Zhao Y F, Peng T, Sun H Z, et al. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnology Journal, 2018[Epub ahead of print](DOI: 10.1111/pbi.13009)

    • 92

      Wang Y, Itaya A, Zhong X, et al. Function and evolution of a microRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. The Plant Cell, 2011, 23(9): 3185-3203

    • 93

      Xin M, Wang Y, Yao Y, et al. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 2010, 10: 123

    • 94

      Tang Z, Zhang L, Xu C, et al. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiology, 2012, 159(2): 721-738

    • 95

      Yang C, Li D, Mao D, et al. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell & Environment, 2013, 36(12): 2207-2218

    • 96

      Chen L, Luan Y, Zhai J. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 2015, 34(12): 2013-2025

    • 97

      Wang Y G, An M, Zhou S F, et al. Expression profile of maize microRNAs corresponding to their target genes under drought stress. Biochemical Genetics, 2014, 52(11-12): 474-493

    • 98

      Tian C, Zuo Z, Qiu J L. Identification and characterization of ABA-responsive microRNAs in rice. Journal of Genetics and Genomics, 2015, 42(7): 393-402

    • 99

      Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 2014, 65(8): 2119-2135

    • 100

      Zhang X, Zou Z, Gong P, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters, 2011, 33(2): 403-409

    • 101

      Luan M, Xu M, Lu Y, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene, 2015, 555(2): 178-185

    • 102

      Chen X Y, Yang Y, Ran L P, et al. Novel insights into miRNA regulation of storage protein biosynthesis during wheat caryopsis development under drought stress. Frontiers in Plant Science, 2017, 8: 1707

    • 103

      Wang B, Sun Y F, Song N, et al. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiology and Biochemistry : PPB, 2014, 80: 90-96

    • 104

      Gupta O P, Meena N L, Sharma I, et al. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports, 2014, 41(7): 4623-4629

    • 105

      Feng H, Zhang Q, Wang Q, et al. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Molecular Biology, 2013, 83(4-5): 433-443

    • 106

      Xia K, Ou X, Tang H, et al. Rice microRNA osa-miR1848 targets the obtusifoliol 14alpha-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. The New Phytologist, 2015, 208(3): 790-802

    • 107

      Hu B, Zhu C, Li F, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiology, 2011, 156(3): 1101-1115

    • 108

      Hu B, Wang W, Deng K, et al. MicroRNA399 is involved in multiple nutrient starvation responses in rice. Frontiers in Plant Science, 2015, 6: 188

    • 109

      Du Q, Wang K, Zou C, et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiology, 2018, 177(4): 1743-1753

    • 110

      Lin S I, Santi C, Jobet E, et al. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant & Cell Physiology, 2010, 51(12): 2119-2131

    • 111

      Zhang T, Zhao Y L, Zhao J H, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2016, 2(10): 16153

    • 112

      Feng H, Duan X, Zhang Q, et al. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 2014, 15(3): 284-296

    • 113

      Wu J, Yang Z, Wang Y, et al. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife, 2015, 4 : doi: 10.7554/eLife.05733

    • 114

      Zhang C, Ding Z, Wu K, et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Molecular Plant, 2016, 9(9): 1302-1314

    • 115

      Li Y, Lu Y G, Shi Y, et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology, 2014, 164(2): 1077-1092

    • 116

      Xu W, Meng Y, Wise R P. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. The New Phytologist, 2014, 201(4): 1396-1412

    • 117

      Wang H, Jiao X, Kong X, et al. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiology, 2016, 170(4): 2365-2377

    • 118

      Ouyang S, Park G, Atamian H S, et al. microRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. Plos Pathogens, 2014, 10(10): e1004464

    • 119

      Wu J, Yang R, Yang Z, et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 2017, 3: 16203

    • 120

      Wei C, Kuang H, Li F, et al. The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genomics, 2014, 15: 743

    • 121

      Campo S, Peris-Peris C, Sire C, et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. The New Phytologist, 2013, 199(1): 212-227

    • 122

      Liu J, Cheng X, Liu D, et al. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. Plos Genetics, 2014, 10(12): e1004755

    • 123

      Nizampatnam N R, Schreier S J, Damodaran S, et al. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. The Plant Journal : for Cell and Molecular Biology, 2015, 84(1): 140-153

    • 124

      Li J, Guo G, Guo W, et al. miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea maysL.). BMC Plant Biology, 2012, 12: 220

    • 125

      Mao Y, Wu F, Yu X, et al. microRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape inchinese cabbage by differential cell division arrest in leaf regions. Plant Physiology, 2014, 164(2): 710-720

    • 126

      Yuan N, Yuan S, Li Z, et al. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis. Scientific Reports, 2016, 6: 28791

    • 127

      Sun Q, Liu X, Yang J, et al. microRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Molecular Plant, 2018, 11(6): 806-814

    • 128

      Guan X, Pang M, Nah G, et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications, 2014, 5: 3050

    • 129

      Jia X, Shen J, Liu H, et al. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta, 2015, 242(1): 283-293

    • 130

      Xia K, Ou X, Gao C, et al. OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. Plant, Cell & Environment, 2015, 38(12): 2662-2673

    • 131

      Tsikou D, Yan Z, Holt D B, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science, 2018, 362(6411): 233-236 (DOI: 10.1126/science.aat6907)

    • 132

      Wang Y, Li J. Branching in rice. Current Opinion in Plant Biology, 2011, 14(1): 94-99

    • 133

      Zhang H, Zhang J, Yan J, et al. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A, 2017, 114(20): 5277-5282

    • 134

      Mathieu J, Yant L J, Murdter F, et al. Repression of flowering by the miR172 target SMZ. Plos Biology, 2009, 7(7): e1000148

    • 135

      Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell, 2003, 15(11): 2730-2741

    • 136

      Axtell M J, Bowman J L. Evolution of plant microRNAs and their targets. Trends in Plant Science, 2008, 13(7): 343-349

    • 137

      Chuck G S, Tobias C, Sun L, et al. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci US A, 2011, 108(42): 17550-17555

    • 138

      Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 2006, 133(18): 3539-3547

    • 139

      Wu G, Park M Y, Conway S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009, 138(4): 750-759

    • 140

      Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967): 818-822

    • 141

      Storchova H. The role of non-coding RNAs in cytoplasmic male sterility in flowering plants. International Journal of Molecular Sciences, 2017, 18(11): doi: 10.3390/ijms18112429

    • 142

      Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 1998, 3(5): 175-180

    • 143

      Vendramin R, Marine J C, Leucci E. Non-coding RNAs: the dark side of nuclear-mitochondrial communication. The EMBO Journal, 2017, 36(9): 1123-1133

    • 144

      Wu M F, Tian Q, Reed J W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006, 133(21): 4211-4218

    • 145

      Shen Y, Zhang Z, Lin H, et al. Cytoplasmic male sterility-regulated novel microRNAs from maize. Functional & Integrative Genomics, 2011, 11(1): 179-191

    • 146

      Yan J, Zhang H, Zheng Y, et al. Comparative expression profiling of miRNAs between the cytoplasmic male sterile line MeixiangA and its maintainer line MeixiangB during rice anther development. Planta, 2015, 241(1): 109-123

    • 147

      Ding X, Li J, Zhang H, et al. Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics, 2016, 17: 24

    • 148

      Komiya R. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. Journal of Plant Research, 2017, 130(1): 17-23

    • 149

      Johnson C, Kasprzewska A, Tennessen K, et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research, 2009, 19(8): 1429-1440

    • 150

      Vogel J P, Garvin D F, Mockler T C, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463(7282): 763-768

    • 151

      Zhai J, Zhang H, Arikit S, et al. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci U S A, 2015, 112(10): 3146-3151

    • 152

      龚淑敏, 丁艳菲, 朱诚. miRNA在植物种子发育过程中的作用. 遗传, 2015, 37(6): 554-560

      Gong S M, Ding Y F, Zhu C. Hereditas(Beijing),2015, 37(6): 554-560

    • 153

      Reyes J L, Chua N H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal : for cell and molecular biology, 2007, 49(4): 592-606

    • 154

      Peng T, Sun H, Qiao M, et al. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biology, 2014, 14: 196

    • 155

      Zhang Z, Chen J, Lin S, et al. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. Plant Science, 2012, 185-186: 259-273

    • 156

      Han R, Jian C, Lv J, et al. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics, 2014, 15: 289

    • 157

      Kang M, Zhao Q, Zhu D, et al. Characterization of microRNAs expression during maize seed development. BMC Genomics, 2012, 13: 360

    • 158

      Wang Y, Zhang J, Cui W, et al. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry, 2017, 65(34): 7361-7370

    • 159

      Sun G. MicroRNAs and their diverse functions in plants. Plant Molecular Biology, 2012, 80(1): 17-36

    • 160

      Boyer J S. Plant productivity and environment. Science, 1982, 218(4571): 443-448

    • 161

      Kruszka K, Pacak A, Swida-Barteczka A, et al. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. Journal of Experimental Botany, 2014, 65(20): 6123-6135

    • 162

      Wang Q, Liu N, Yang X, et al. Small RNA-mediated responses to low- and high-temperature stresses in cotton. Scientific Reports, 2016, 6: 35558

    • 163

      Ferdous J, Whitford R, Nguyen M, et al. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Functional & Integrative Genomics, 2017, 17(2-3): 279-292

    • 164

      Fu R, Zhang M, Zhao Y, et al. Identification of Salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Frontiers in Plant Science, 2017, 8: 864

    • 165

      Deng P, Wang L, Cui L, et al. Global Identification of microRNAs and their targets in barley under salinity stress. Plos One, 2015, 10(9): e0137990

    • 166

      Fang R, Li L, Li J. Spatial and temporal expression modes of microRNAs in an elite rice hybrid and its parental lines. Planta, 2013, 238(2): 259-269

    • 167

      Li A, Liu D, Wu J, et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. The Plant Cell, 2014, 26(5): 1878-1900

    • 168

      Jacobs T B, Lafayette P R, Schmitz R J, et al. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 2015, 15: 16

江曾明

机 构:深圳大学生命与海洋科学学院,广东省植物表观遗传学重点实验室,深圳 518060

何娟

机 构:

1. 深圳大学生命与海洋科学学院,广东省植物表观遗传学重点实验室,深圳 518060

3. 深圳大学光电工程学院,光电子器件与系统(教育部/广东省)重点实验室,深圳 518060

莫蓓莘

机 构:

1. 深圳大学生命与海洋科学学院,广东省植物表观遗传学重点实验室,深圳 518060

2. 深圳大学龙华生物产业创新研究院,深圳 518060

刘琳

机 构:

1. 深圳大学生命与海洋科学学院,广东省植物表观遗传学重点实验室,深圳 518060

2. 深圳大学龙华生物产业创新研究院,深圳 518060

徐晓峰

机 构:深圳大学生命与海洋科学学院,广东省植物表观遗传学重点实验室,深圳 518060

角 色:通讯作者

Role:Corresponding author

电 话:13828875371

邮 箱:xxf@szu.edu.cn

作者简介:徐晓峰. Tel:13828875371, Email: xxf@szu.edu.cn

html/pibben/20180294/alternativeImage/9b18287f-7c4f-4580-ad33-8cdcad3357fe-F001.jpg
html/pibben/20180294/alternativeImage/9b18287f-7c4f-4580-ad33-8cdcad3357fe-F002.jpg
miRNAmiRNA靶基因物种参考文献
调控株型性状
miR156SPLs水稻、小麦[42,60,61]
miR164NAC2水稻[62]
miR166HB4水稻[63]
miR171GRAS24番茄[64]
miR172AP2水稻[65]
miR393TB1,AUX1水稻[66,67]
miR394LC4水稻[68]
miR396GRF6水稻[69]
miR444MADS57水稻[70]
miR529SPLs水稻[65]
调控花期
miR156SPLs水稻、玉米、大麦、大白菜、柳枝稷[43,71,72,73]
miR168AGO1番茄[74]
miR172AP2水稻、玉米、大麦、大豆、土豆[75,76,77,78,79]
miR393TB1, AUX1水稻[66]
miR408TOC1小麦[80]
调控雄性育性
miR159GAMYB水稻[81,82]
miR167ARF6/8番茄[83]
miR1227SMARCA3L3小麦[84]
miR2118PMS1T水稻[85]
miR2275CAF1小麦[84]
调控种子/果实发育
miR156SPLs水稻、番茄[42,86,87,88]
miR157SPLs番茄[88]
miR168AGO1番茄[74]
miR396GRF4水稻[39,89]
miR397LAC水稻[90]
miR1432ACOT水稻[91]
miR4376ACA10番茄[92]
调控温度胁迫
miR159GAMYB小麦[93]
miR167ARF小麦[94]
miR319PCFs水稻[95]
miR396GRFs烟草[96]
调控干旱胁迫
miR159MYB55玉米[97]
miR162TRE1水稻[98]
miR164OMTNs水稻[99]
miR168AGO1玉米[71]
miR169NF-YA玉米、番茄[100,101]
miR9654DR733425小麦[102]
调控盐胁迫
miR171ARFs小麦[103]
miR393TIR1, AFB2水稻、小麦[66,103,104]
miR408CLP1小麦[105]
miR1848CYP51G3水稻[106]
调控养分吸收
miR166RDD1水稻[107]
miR399LTN1, PHO2水稻、玉米[107,108,109]
miR827SPX-MFSs水稻[110]
调控免疫应答
miR159HiC-15棉花[111]
miR164NAC21/22小麦[112]
miR166CLP-1棉花[111]
miR168AGO1水稻[113]
miR319PCFs, TCP21水稻[114]
miR398SODs水稻、大麦[115,116]
miR408CLP1小麦[80]
miR444MADSs水稻[117]
miR482NB–LRRs番茄[118]
miR528AO水稻[119]
miR5300NB–LRRs番茄[118]
miR6024NB–LRRs番茄[120]
miR7695NRAMP6水稻[121]
miR9863MLA1大麦[122]
调控其他方面
miR159(拔节)GAMYB水稻[81]
miR160(侧根生长)ARFs大豆[123]
miR164(侧根生长)NAC1玉米[124]
miR166(叶极性)RLD1玉米[41]
miR319(结球特性)TCPs大白菜[125]
miR395(硫酸盐稳态)SULTR2烟草[126]
miR528(抗倒伏)LAC3,LAC5玉米[127]
miR828(纤维生长)MYB2D棉花[128]
miR858(花青素积累)MYB番茄[129]
miR1848(蜡质合成)CYP51G3水稻[130]
miR2111(根部结瘤)TML百脉根[131]

图1 miRNA的生物合成和作用方式

Fig. 1 Biogenesis and mode of action of miRNA

图2 miRNA及其靶基因对农作物性状有多方面的影响

Fig. 2 Effects of miRNAs and their target genes on multiple traits of crops

表1 经实验验证的参与调控农作物性状的主要miRNA及其靶基因

Table 1 Major miRNAs and their target genes involved in regulation of crop traits verified by experiments

image /

无注解

无注解

无注解

  • 参 考 文 献

    • 1

      Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854

    • 2

      Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901-906

    • 3

      Slack F J, Basson M, Liu Z, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell, 2000, 5(4): 659-669

    • 4

      Brennecke J, Hipfner D R, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113(1): 25-36

    • 5

      Hipfner D R, Weigmann K, Cohen S M. The bantam gene regulates Drosophila growth. Genetics, 2002, 161(4): 1527-1537

    • 6

      Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808): 86-89

    • 7

      Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencing-associated small RNAs in plants. The Plant Cell, 2002, 14(7): 1605-1619

    • 8

      Park W, Li J, Song R, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 2002, 12(17): 1484-1495

    • 9

      Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes & Development, 2002, 16(13): 1616-1626

    • 10

      Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell,2013, 25(7): 2383-2399

    • 11

      Nozawa M, Miura S, Nei M. Origins and evolution of microRNA genes in plant species. Genome Biology and Evolution, 2012, 4(3): 230-239

    • 12

      Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004, 14(6): 787-799

    • 13

      Dong Z, Han M H, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A, 2008, 105(29): 9970-9975

    • 14

      Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. Rna, 2006, 12(2): 206-212

    • 15

      Ren G, Xie M, Dou Y, et al. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A, 2012, 109(31): 12817-12821

    • 16

      Sanei M, Chen X. Mechanisms of microRNA turnover. Current Opinion in Plant Biology, 2015, 27: 199-206

    • 17

      Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 2011, 12(2): 99-110

    • 18

      Ha M, Kim V N. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 2014, 15(8): 509-524

    • 19

      Kamthan A, Chaudhuri A, Kamthan M, et al. Small RNAs in plants: recent development and application for crop improvement. Frontiers in Plant Science, 2015, 6: 208

    • 20

      Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669-687

    • 21

      Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 2005, 8(4): 517-527

    • 22

      Kidner C A. The many roles of small RNAs in leaf development. Journal of Genetics and Genomics, 2010, 37(1): 13-21

    • 23

      Palatnik J F, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Developmental Cell, 2007, 13(1): 115-125

    • 24

      Kutter C, Schob H, Stadler M, et al. MicroRNA-mediated regulation of stomatal development in Arabidopsis. The Plant Cell, 2007, 19(8): 2417-2429

    • 25

      Xie Q, Guo H S, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002, 419(6903): 167-170

    • 26

      Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022-2025

    • 27

      Achard P, Herr A, Baulcombe D C, et al. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004, 131(14): 3357-3365

    • 28

      Sunkar R, Li Y F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends in Plant Science, 2012, 17(4): 196-203

    • 29

      Takeda S, Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes. Nature Reviews Genetics, 2008, 9(6): 444-457

    • 30

      Lombardo L, Coppola G, Zelasco S. New technologies for insect-resistant and herbicide-tolerant plants. Trends in Biotechnology, 2016, 34(1): 49-57

    • 31

      Bonnet E, Wuyts J, Rouze P, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 2004, 101(31): 11511-11516

    • 32

      Sunkar R, Girke T, Jain P K, et al. Cloning and characterization of microRNAs from rice. The Plant Cell, 2005, 17(5): 1397-1411

    • 33

      Song Q X, Liu Y F, Hu X Y, et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biology, 2011, 11: 5

    • 34

      Liu H, Qin C, Chen Z, et al. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genomics, 2014, 15: 25

    • 35

      Balyan S, Kumar M, Mutum R D, et al. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Scientific Reports, 2017, 7(1): 15446-15450

    • 36

      Tang J, Chu C. MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants, 2017, 3: 17077

    • 37

      Li S, Le B, Ma X, et al. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. eLife, 2016, 5: doi: 10.7554/eLife.22750

    • 38

      Debernardi J M, Mecchia M A, Vercruyssen L, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. The Plant Journal : for Cell and Molecular Biology, 2014, 79(3): 413-426

    • 39

      Duan P, Ni S, Wang J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants, 2015, 2: 15203

    • 40

      Iwamoto M, Tagiri A. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. The Plant Journal : for Cell and Molecular Biology, 2016, 85(4): 466-477

    • 41

      Juarez M T, Kui J S, Thomas J, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004, 428(6978): 84-88

    • 42

      Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42(6): 541-544

    • 43

      Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology, 2006, 142(1): 280-293

    • 44

      Schwab R, Ossowski S, Riester M, et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell, 2006, 18(5): 1121-1133

    • 45

      Zhou M, Luo H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Molecular Biology, 2013, 83(1-2): 59-75

    • 47

      Franco-Zorrilla J M, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 2007, 39(8): 1033-1037

    • 46

      Tang G, Yan J, Gu Y, et al. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods, 2012, 58(2): 118-125

    • 48

      Tang G, Tang X. Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. Journal of Genetics and Genomics, 2013, 40(6): 291-296

    • 49

      Cao D, Wang J, Ju Z, et al. Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Plant Science, 2016, 247: 1-12

    • 50

      Teotia S, Tang G. Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach. Methods in Molecular Biology, 2017, 1631: 337-348

    • 51

      Teotia S, Zhang D, Tang G. Knockdown of rice microRNA166 by short tandem target mimic (STTM). Methods in Molecular Biology, 2017, 1654: 337-349

    • 52

      Zhang H, Zhang J, Yan J, et al. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A, 2017, 114(20): 5277-5282

    • 53

      Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433

    • 54

      Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575

    • 55

      Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712

    • 56

      Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821

    • 57

      Li J F, Norville J E, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691

    • 58

      Feng Z, Zhang B, Ding W, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013, 23(10): 1229-1232

    • 59

      Zhou J, Deng K, Cheng Y, et al. CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Frontiers in Plant Science, 2017, 8: 1598

    • 60

      Wang H, Wang H. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant, 2015, 8(5): 677-688

    • 61

      Liu J, Cheng X, Liu P, et al. miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology, 2017, 174(3): 1931-1948

    • 62

      Jiang D, Chen W, Dong J, et al. Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. Journal of Experimental Botany, 2018, 69(7): 1533-1543

    • 63

      Zhang J, Zhang H, Srivastava A K, et al. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiology, 2018, 176(3): 2082-2094

    • 64

      Huang W, Peng S, Xian Z, et al. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnology Journal, 2017, 15(4): 472-488

    • 65

      Wang L, Sun S, Jin J, et al. Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci USA, 2015, 112(50): 15504-15509

    • 66

      Xia K, Wang R, Ou X, et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. Plos One, 2012, 7(1): e30039

    • 67

      Bian H, Xie Y, Guo F, et al. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). The New Phytologist, 2012, 196(1): 149-161

    • 68

      Qu L, Lin L B, Xue H W. Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4. Journal of Integrative Plant Biology, 2018[Epub ahead of print](DOI: 10.1111/jipb.12713)

    • 69

      Tang Y, Liu H, Guo S, et al. OsmiR396d affects Gibberellin and Brassinosteroid signaling to regulate plant architecture in rice. Plant Physiology, 2018, 176(1): 946-959

    • 70

      Guo S, Xu Y, Liu H, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering viaDWARF14. Nature Communications, 2013, 4: 1566

    • 71

      Chuck G, Cigan A M, Saeteurn K, et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 2007, 39(4): 544-549

    • 72

      Tripathi R K, Bregitzer P, Singh J. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley. Scientific Reports, 2018, 8(1): 7085

    • 73

      Wang Y, Wu F, Bai J, et al. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnology Journal, 2014, 12(3): 312-321

    • 74

      Xian Z, Huang W, Yang Y, et al. miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato. Journal of Experimental Botany, 2014, 65(22): 6655-6666

    • 75

      Lee Y S, Lee D Y, Cho L H, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice, 2014, 7(1): 31

    • 76

      Lauter N, Kampani A, Carlson S, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A, 2005, 102(26): 9412-9417

    • 77

      Nair S K, Wang N, Turuspekov Y, et al. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci U S A, 2010, 107(1): 490-495

    • 78

      Yoshikawa T, Ozawa S, Sentoku N, et al. Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta, 2013, 238(1): 229-237

    • 79

      Martin A, Adam H, Diaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 2009, 136(17): 2873-2881

    • 80

      Zhao X Y, Hong P, Wu J Y, et al. The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiology, 2016, 170(3): 1578-1594

    • 81

      Tsuji H, Aya K, Ueguchi-Tanaka M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. The Plant Journal : for Cell and Molecular bBiology, 2006, 47(3): 427-444

    • 82

      Wang Y, Sun F, Cao H, et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. Plos One, 2012, 7(11): e48445

    • 83

      Liu N, Wu S, Van Houten J, et al. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. Journal of Experimental Botany, 2014, 65(9): 2507-2520

    • 84

      Sun L, Sun G, Shi C, et al. Transcriptome analysis reveals new microRNAs-mediated pathway involved in anther development in male sterile wheat. BMC Genomics, 2018, 19(1): 333

    • 85

      Fan Y, Yang J, Mathioni S M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci U S A, 2016, 113(52): 15144-15149

    • 86

      Si L, Chen J, Huang X, et al. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 2016, 48(4): 447-456

    • 87

      Wang S, Wu K, Yuan Q, et al. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950-954

    • 88

      Chen W, Kong J, Lai T, et al. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening. Scientific Reports, 2015, 5: 7852

    • 89

      Li S, Gao F, Xie K, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal, 2016, 14(11): 2134-2146

    • 90

      Zhang Y C, Yu Y, Wang C Y, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 2013, 31(9): 848-852

    • 91

      Zhao Y F, Peng T, Sun H Z, et al. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnology Journal, 2018[Epub ahead of print](DOI: 10.1111/pbi.13009)

    • 92

      Wang Y, Itaya A, Zhong X, et al. Function and evolution of a microRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. The Plant Cell, 2011, 23(9): 3185-3203

    • 93

      Xin M, Wang Y, Yao Y, et al. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 2010, 10: 123

    • 94

      Tang Z, Zhang L, Xu C, et al. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiology, 2012, 159(2): 721-738

    • 95

      Yang C, Li D, Mao D, et al. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell & Environment, 2013, 36(12): 2207-2218

    • 96

      Chen L, Luan Y, Zhai J. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 2015, 34(12): 2013-2025

    • 97

      Wang Y G, An M, Zhou S F, et al. Expression profile of maize microRNAs corresponding to their target genes under drought stress. Biochemical Genetics, 2014, 52(11-12): 474-493

    • 98

      Tian C, Zuo Z, Qiu J L. Identification and characterization of ABA-responsive microRNAs in rice. Journal of Genetics and Genomics, 2015, 42(7): 393-402

    • 99

      Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 2014, 65(8): 2119-2135

    • 100

      Zhang X, Zou Z, Gong P, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters, 2011, 33(2): 403-409

    • 101

      Luan M, Xu M, Lu Y, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene, 2015, 555(2): 178-185

    • 102

      Chen X Y, Yang Y, Ran L P, et al. Novel insights into miRNA regulation of storage protein biosynthesis during wheat caryopsis development under drought stress. Frontiers in Plant Science, 2017, 8: 1707

    • 103

      Wang B, Sun Y F, Song N, et al. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiology and Biochemistry : PPB, 2014, 80: 90-96

    • 104

      Gupta O P, Meena N L, Sharma I, et al. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports, 2014, 41(7): 4623-4629

    • 105

      Feng H, Zhang Q, Wang Q, et al. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Molecular Biology, 2013, 83(4-5): 433-443

    • 106

      Xia K, Ou X, Tang H, et al. Rice microRNA osa-miR1848 targets the obtusifoliol 14alpha-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. The New Phytologist, 2015, 208(3): 790-802

    • 107

      Hu B, Zhu C, Li F, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiology, 2011, 156(3): 1101-1115

    • 108

      Hu B, Wang W, Deng K, et al. MicroRNA399 is involved in multiple nutrient starvation responses in rice. Frontiers in Plant Science, 2015, 6: 188

    • 109

      Du Q, Wang K, Zou C, et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiology, 2018, 177(4): 1743-1753

    • 110

      Lin S I, Santi C, Jobet E, et al. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant & Cell Physiology, 2010, 51(12): 2119-2131

    • 111

      Zhang T, Zhao Y L, Zhao J H, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2016, 2(10): 16153

    • 112

      Feng H, Duan X, Zhang Q, et al. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 2014, 15(3): 284-296

    • 113

      Wu J, Yang Z, Wang Y, et al. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife, 2015, 4 : doi: 10.7554/eLife.05733

    • 114

      Zhang C, Ding Z, Wu K, et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Molecular Plant, 2016, 9(9): 1302-1314

    • 115

      Li Y, Lu Y G, Shi Y, et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology, 2014, 164(2): 1077-1092

    • 116

      Xu W, Meng Y, Wise R P. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. The New Phytologist, 2014, 201(4): 1396-1412

    • 117

      Wang H, Jiao X, Kong X, et al. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiology, 2016, 170(4): 2365-2377

    • 118

      Ouyang S, Park G, Atamian H S, et al. microRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. Plos Pathogens, 2014, 10(10): e1004464

    • 119

      Wu J, Yang R, Yang Z, et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 2017, 3: 16203

    • 120

      Wei C, Kuang H, Li F, et al. The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genomics, 2014, 15: 743

    • 121

      Campo S, Peris-Peris C, Sire C, et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. The New Phytologist, 2013, 199(1): 212-227

    • 122

      Liu J, Cheng X, Liu D, et al. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. Plos Genetics, 2014, 10(12): e1004755

    • 123

      Nizampatnam N R, Schreier S J, Damodaran S, et al. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. The Plant Journal : for Cell and Molecular Biology, 2015, 84(1): 140-153

    • 124

      Li J, Guo G, Guo W, et al. miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea maysL.). BMC Plant Biology, 2012, 12: 220

    • 125

      Mao Y, Wu F, Yu X, et al. microRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape inchinese cabbage by differential cell division arrest in leaf regions. Plant Physiology, 2014, 164(2): 710-720

    • 126

      Yuan N, Yuan S, Li Z, et al. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis. Scientific Reports, 2016, 6: 28791

    • 127

      Sun Q, Liu X, Yang J, et al. microRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Molecular Plant, 2018, 11(6): 806-814

    • 128

      Guan X, Pang M, Nah G, et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications, 2014, 5: 3050

    • 129

      Jia X, Shen J, Liu H, et al. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta, 2015, 242(1): 283-293

    • 130

      Xia K, Ou X, Gao C, et al. OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. Plant, Cell & Environment, 2015, 38(12): 2662-2673

    • 131

      Tsikou D, Yan Z, Holt D B, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science, 2018, 362(6411): 233-236 (DOI: 10.1126/science.aat6907)

    • 132

      Wang Y, Li J. Branching in rice. Current Opinion in Plant Biology, 2011, 14(1): 94-99

    • 133

      Zhang H, Zhang J, Yan J, et al. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A, 2017, 114(20): 5277-5282

    • 134

      Mathieu J, Yant L J, Murdter F, et al. Repression of flowering by the miR172 target SMZ. Plos Biology, 2009, 7(7): e1000148

    • 135

      Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell, 2003, 15(11): 2730-2741

    • 136

      Axtell M J, Bowman J L. Evolution of plant microRNAs and their targets. Trends in Plant Science, 2008, 13(7): 343-349

    • 137

      Chuck G S, Tobias C, Sun L, et al. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci US A, 2011, 108(42): 17550-17555

    • 138

      Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 2006, 133(18): 3539-3547

    • 139

      Wu G, Park M Y, Conway S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009, 138(4): 750-759

    • 140

      Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967): 818-822

    • 141

      Storchova H. The role of non-coding RNAs in cytoplasmic male sterility in flowering plants. International Journal of Molecular Sciences, 2017, 18(11): doi: 10.3390/ijms18112429

    • 142

      Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 1998, 3(5): 175-180

    • 143

      Vendramin R, Marine J C, Leucci E. Non-coding RNAs: the dark side of nuclear-mitochondrial communication. The EMBO Journal, 2017, 36(9): 1123-1133

    • 144

      Wu M F, Tian Q, Reed J W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006, 133(21): 4211-4218

    • 145

      Shen Y, Zhang Z, Lin H, et al. Cytoplasmic male sterility-regulated novel microRNAs from maize. Functional & Integrative Genomics, 2011, 11(1): 179-191

    • 146

      Yan J, Zhang H, Zheng Y, et al. Comparative expression profiling of miRNAs between the cytoplasmic male sterile line MeixiangA and its maintainer line MeixiangB during rice anther development. Planta, 2015, 241(1): 109-123

    • 147

      Ding X, Li J, Zhang H, et al. Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics, 2016, 17: 24

    • 148

      Komiya R. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. Journal of Plant Research, 2017, 130(1): 17-23

    • 149

      Johnson C, Kasprzewska A, Tennessen K, et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research, 2009, 19(8): 1429-1440

    • 150

      Vogel J P, Garvin D F, Mockler T C, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463(7282): 763-768

    • 151

      Zhai J, Zhang H, Arikit S, et al. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci U S A, 2015, 112(10): 3146-3151

    • 152

      龚淑敏, 丁艳菲, 朱诚. miRNA在植物种子发育过程中的作用. 遗传, 2015, 37(6): 554-560

      Gong S M, Ding Y F, Zhu C. Hereditas(Beijing),2015, 37(6): 554-560

    • 153

      Reyes J L, Chua N H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal : for cell and molecular biology, 2007, 49(4): 592-606

    • 154

      Peng T, Sun H, Qiao M, et al. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biology, 2014, 14: 196

    • 155

      Zhang Z, Chen J, Lin S, et al. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. Plant Science, 2012, 185-186: 259-273

    • 156

      Han R, Jian C, Lv J, et al. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics, 2014, 15: 289

    • 157

      Kang M, Zhao Q, Zhu D, et al. Characterization of microRNAs expression during maize seed development. BMC Genomics, 2012, 13: 360

    • 158

      Wang Y, Zhang J, Cui W, et al. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry, 2017, 65(34): 7361-7370

    • 159

      Sun G. MicroRNAs and their diverse functions in plants. Plant Molecular Biology, 2012, 80(1): 17-36

    • 160

      Boyer J S. Plant productivity and environment. Science, 1982, 218(4571): 443-448

    • 161

      Kruszka K, Pacak A, Swida-Barteczka A, et al. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. Journal of Experimental Botany, 2014, 65(20): 6123-6135

    • 162

      Wang Q, Liu N, Yang X, et al. Small RNA-mediated responses to low- and high-temperature stresses in cotton. Scientific Reports, 2016, 6: 35558

    • 163

      Ferdous J, Whitford R, Nguyen M, et al. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Functional & Integrative Genomics, 2017, 17(2-3): 279-292

    • 164

      Fu R, Zhang M, Zhao Y, et al. Identification of Salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Frontiers in Plant Science, 2017, 8: 864

    • 165

      Deng P, Wang L, Cui L, et al. Global Identification of microRNAs and their targets in barley under salinity stress. Plos One, 2015, 10(9): e0137990

    • 166

      Fang R, Li L, Li J. Spatial and temporal expression modes of microRNAs in an elite rice hybrid and its parental lines. Planta, 2013, 238(2): 259-269

    • 167

      Li A, Liu D, Wu J, et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. The Plant Cell, 2014, 26(5): 1878-1900

    • 168

      Jacobs T B, Lafayette P R, Schmitz R J, et al. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 2015, 15: 16