en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BinnewiesM, RobertsE W, KerstenK, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med, 2018, 24(5): 541-550
参考文献 2
MorrisonB J, SteelJ C, MorrisJ C. Reduction of MHC-I expression limits T-lymphocyte-mediated killing of cancer-initiating cells. BMC Cancer, 2018, 18(1): 469
参考文献 3
OhS J, ChoH, KimS, et al. Targeting cyclin D-CDK4/6 sensitizes immune-refractory cancer by blocking the SCP3-NANOG axis. Cancer Res, 2018, 78(10): 2638-2653
参考文献 4
LiuY, LiangX, YinX, et al. Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-gamma-induced immunologic dormancy of tumor-repopulating cells. Nat Commun, 2017, 8:15207
参考文献 5
SchurchC M, RietherC, OchsenbeinA F. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell, 2014, 14(4): 460-472
参考文献 6
LiuY, LiangX, DongW, et al. Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation. Cancer Cell, 2018, 33(3): 480-494.e7
参考文献 7
AvrilT, VauleonE, HamlatA, et al. Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol, 2012, 22(2): 159-174
参考文献 8
TallericoR, TodaroM, DiFranco S, et al. Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol, 2013, 190(5): 2381-2390
参考文献 9
KimG R, HaG H, BaeJ H, et al. Metastatic colon cancer cell populations contain more cancer stem-like cells with a higher susceptibility to natural killer cell-mediated lysis compared with primary colon cancer cells. Oncol Lett, 2015, 9(4): 1641-1646
参考文献 10
AmesE, CanterR J, GrossenbacherS K, et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol, 2015, 195(8): 4010-4019
参考文献 11
WangB, WangQ, WangZ, et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res, 2014, 74(20): 5746-5757
参考文献 12
JoshiP, KooshkiM, AldrichW, et al. Expression of natural killer cell regulatory microRNA by uveal melanoma cancer stem cells. Clin Exp Metastasis, 2016, 33(8): 829-838
参考文献 13
Ferreira-TeixeiraM, Paiva-OliveiraD, ParadaB, et al. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med, 2016, 14(1): 163
参考文献 14
PieriniA, AlvarezM, NegrinR S. NK cell and CD4+FoxP3+ regulatory T cell based therapies for hematopoietic stem cell engraftment. Stem Cells Int, 2016, 2016:9025835
参考文献 15
ZhaoD, PanC, SunJ, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene, 2015, 34(24): 3107-3119
参考文献 16
TirinoV, CamerlingoR, BifulcoK, et al. TGF-beta1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death Dis, 2013, 4:e620
参考文献 17
WangY, JiangM, LiZ, et al. Hypoxia and TGF-beta1 lead to endostatin resistance by cooperatively increasing cancer stem cells in A549 transplantation tumors. Cell Biosci, 2015, 5:72
参考文献 18
VooK S, WangY H, SantoriF R, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci USA, 2009, 106(12): 4793-4798
参考文献 19
YangS, WangB, GuanC, et al. Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol, 2011, 89(1): 85-91
参考文献 20
NoyR, PollardJ W. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014, 41(1): 49-61
参考文献 21
HouY C, ChaoY J, TungH L, et al. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer, 2014, 120(17): 2766-2777
参考文献 22
HeK F, ZhangL, HuangC F, et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. Biomed Res Int, 2014, 2014:838632
参考文献 23
ChenY, TanW, WangC. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther, 2018, 11:3817-3826
参考文献 24
ZengJ, LiuZ, SunS, et al. Tumor-associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells. Oncol Lett, 2018, 15(6): 8681-8686
参考文献 25
JinushiM, ChibaS, YoshiyamaH, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA, 2011, 108(30): 12425-12430
参考文献 26
YangJ, LiaoD, ChenC, et al. Tumor‐associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox‐2 signaling pathway. Stem cells, 2013, 31(2): 248-258
参考文献 27
WanS, ZhaoE, KryczekI, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology, 2014, 147(6): 1393-1404
参考文献 28
FanQ M, JingY Y, YuG F, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett, 2014, 352(2): 160-168
参考文献 29
ZhangX, ZhangY, XuJ, et al. Antigen presentation of the Oct4 and Sox2 peptides by CD154-activated B lymphocytes enhances the killing effect of cytotoxic T lymphocytes on tumor stem-like cells derived from cisplatin-resistant lung cancer cells. J Cancer, 2018, 9(2): 367-374
参考文献 30
XuL, WangX, WangJ, et al. Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma. Tumor Biology, 2016, 37(6): 7835-7842
参考文献 31
GrangeC, TapparoM, TrittaS, et al. Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer, 2015, 15:1009
参考文献 32
SzarynskaM, OlejniczakA, KobielaJ, et al. Cancer stem cells as targets for DC-based immunotherapy of colorectal cancer. Sci Rep, 2018, 8(1): 12042
参考文献 33
RamuttonT, BuccheriS, DieliF, et al. gammadelta T cells as a potential tool in colon cancer immunotherapy. Immunotherapy, 2014, 6(9): 989-999
参考文献 34
TodaroM, Perez AleaM, ScopellitiA, et al. IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle, 2008, 7(3): 309-313
参考文献 35
HanashA M, DudakovJ A, HuaG, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity, 2012, 37(2): 339-350
参考文献 36
KryczekI, LinY, NagarshethN, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity, 2014, 40(5): 772-784
参考文献 37
CuiT X, KryczekI, ZhaoL, et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity, 2013, 39(3): 611-621
参考文献 38
PengD, TanikawaT, LiW, et al. Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling. Cancer Res, 2016, 76(11): 3156-3165
参考文献 39
SunL, WangQ, ChenB, et al. Human gastric cancer mesenchymal stem cell-derived IL15 contributes to tumor cell epithelial-mesenchymal transition via upregulation Tregs ratio and PD-1 expression in CD4(+)T cell. Stem Cells Dev, 2018, 27(17): 1203-1214
参考文献 40
MilanovicM, FanD N Y, BelenkiD, et al. Senescence-associated reprogramming promotes cancer stemness. Nature, 2018, 553(7686): 96-100
参考文献 41
ChenD, WuM, LiY, et al. Targeting BMI1(+) cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell, 2017, 20(5): 621-634.e6
参考文献 42
ChenJ, LiJ, WuL, et al. Syntheses and anti-pancreatic cancer activities of rakicidin A analogues. Eur J Med Chem, 2018, 151: 601-627
参考文献 43
SunY, DingY, LiD, et al. Cyclic depsipeptide BE-43547A2 : synthesis and activity against pancreatic cancer stem cells. Angew Chem Int Ed Engl, 2017, 56(46): 14627-14631
参考文献 44
WangJ, KuangB, GuoX, et al. Total syntheses and biological activities of vinylamycin analogues. J Med Chem, 2017, 60(3): 1189-1209
参考文献 45
KumarV, DonthireddyL, MarvelD, et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell, 2017, 32(5): 654-668 e655
参考文献 46
Dianat-MoghadamH, RokniM, MarofiF, et al. Natural killer cell-based immunotherapy: from transplantation toward targeting cancer stem cells. J Cell Physiol, 2018, 234(1): 259-273
参考文献 47
ZhuX, PrasadS, GaedickeS, et al. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget, 2015, 6(1): 171-184
参考文献 48
HanJ, ChuJ, Keung ChanW, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep, 2015, 5:11483
参考文献 49
ZhouB B, ZhangH, DamelinM, et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov, 2009, 8(10): 806-823
参考文献 50
BaumannM, KrauseM, HillR. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer, 2008, 8(7): 545-554
参考文献 51
SuiQ, ZhangJ, SunX, et al. NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma. J Immunol, 2014, 193(4): 2016-2023
参考文献 52
SunX, SuiQ, ZhangC, et al. Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther, 2013, 12(12): 2885-2896
参考文献 53
Almiron BonninD A, HavrdaM C, LeeM C, et al. Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene, 2018, 37(8): 1107-1118
参考文献 54
YangZ, HeL, LinK, et al. The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res, 2017, 23(21): 6673-6685
参考文献 55
LeeT K, CastilhoA, CheungV C, et al. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell, 2011, 9(1): 50-63
参考文献 56
WangX, LiY, DaiY, et al. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep, 2016, 6:36796
参考文献 57
LuoY, CuiY, CaoX, et al. 8-Bromo-7-methoxychrysin-blocked STAT3/Twist axis inhibits the stemness of cancer stem cell-like cell originated from SMMC-7721 cells. Acta Biochim Biophys Sin (Shanghai), 2017, 49(5): 458-464
参考文献 58
KimY J, KimJ Y, LeeN, et al. Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. Biochem Biophys Res Commun, 2017, 486(4): 1069-1076
参考文献 59
LiY, AtkinsonK, ZhangT. Combination of chemotherapy and cancer stem cell targeting agents: preclinical and clinical studies. Cancer Lett, 2017, 396:103-109
参考文献 60
NingN, PanQ, ZhengF, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res, 2012, 72(7): 1853-1864
参考文献 61
LeeY, SunwooJ. PD-L1 is preferentially expressed on CD44+ tumor-initiating cells in head and neck squamous cell carcinoma. Journal for ImmunoTherapy of Cancer, 2014, 2(Suppl 3): P270
参考文献 62
WangT, NarayanaswamyR, RenH, et al. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment. Cancer Biol Ther, 2016, 17(6): 698-707
参考文献 63
SchottA F, LandisM D, DontuG, et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res, 2013, 19(6): 1512-1524
目录 contents

    摘要

    肿瘤干细胞是肿瘤组织中一小群特殊的未分化的细胞,由于其对化疗药耐受及致瘤潜能,被认为是造成肿瘤发生、复发和转移的根源,所以深入了解肿瘤干细胞特性对提高肿瘤治疗效率有着重要临床意义. 肿瘤微环境中的免疫细胞及其分泌的分子与肿瘤干细胞之间存在复杂的相互作用,可以维持肿瘤干细胞的干性及自我更新能力. 目前,肿瘤免疫微环境对肿瘤干细胞的影响、肿瘤干细胞对免疫微环境的塑造作用以及靶向肿瘤干细胞或免疫微环境等研究,是肿瘤干细胞研究领域的热点问题. 本文就免疫微环境对肿瘤干细胞的影响、靶向肿瘤干细胞及微环境治疗的研究进展进行了综述.

    Abstract

    Cancer stem cells(CSCs) are a small group of special undifferentiated cells in tumor tissues. Because of the drug tolerance and tumorigenic potential, CSCs are considered to be the source of tumor occurrence, recurrence and metastasis. Therefore, it is very significant to understand the characteristics of CSCs in augmenting clinical therapeutic efficiency. In tumor microenvironment the complex crosstalk between immune cells and CSCs sustains the stemness and self-renewal ability of CSCs. The effect of immune microenvironment on CSCs, the role of CSCs in shaping immune microenvironment, and the targeted therapy of CSCs or immune microenvironment are hot topics in this field. In this review, the effects of immune microenvironment on the characteristics of CSCs and the research progress of targeting CSCs and microenvironment are summarized.

    肿瘤干细胞(cancer stem cell,CSC)是指肿瘤中存在的一小部分未分化的细胞亚群,这类细胞具有自我更新潜能和极强的致瘤潜力,在体内以较低的数量就可以形成肿瘤,又被称为肿瘤起始细胞(cancer initiating cell,CIC). 肿瘤干细胞在体内通常处于休眠的状态,在受到外界刺激时便可以分化为肿瘤细胞,故又有肿瘤再生细胞(tumor-repopulating cell,TRC)之称. 与肿瘤组织细胞不同,肿瘤干细胞自身分化较慢,对化疗药不敏感,被认为是肿瘤复发和转移的根源. 肿瘤干细胞处于特定的微环境中,其中免疫微环境的复杂性和多样性在免疫编辑中起着至关重要的作用. 近年来,肿瘤干细胞及其免疫微环境的相互作用逐渐得以阐明,并且发现靶向肿瘤干细胞及其免疫微环境有望成为肿瘤治疗的新策略.

  • 1 肿瘤免疫微环境

    肿瘤免疫微环境(tumor immune microenvironment,TIME)主要是指与免疫细胞相关的微环境. 根据肿瘤组织中免疫细胞的特征可将TIME分为三类:a.浸润排斥的TIME(infiltrated-excluded TIME,I-E TIME). I-E类型的免疫微环境中有大量的免疫细胞,但在肿瘤核心部位相对缺乏细胞毒性T淋巴细胞,I-E类型的肿瘤被认为免疫原性差或“冷”. b.炎症性浸润的TIME(infiltrated–inflamed TIME,I-I TIME). 在免疫学上I-I TIME被认为是“热”肿瘤,其特征表现为表达免疫负调受体PD-1的CTLs与表达抑制性配体PD-L1的白细胞的高度浸润. c.第三淋巴结构TIME(tertiary lymphoid structures TIME,TLS-TIME). TLS-TIMEs通常存在于侵袭性肿瘤的边缘和基质[1],其中含有大量的淋巴细胞,包括初始和活化的常规T细胞、调节性T细胞、B细胞和树突状细胞.

  • 1.1 CTL细胞与肿瘤干细胞

    细胞毒性T淋巴细胞(CTL)通过分泌穿孔素、颗粒酶杀伤肿瘤细胞,或通过Fas-FasL途径介导肿瘤细胞凋亡,发挥抗肿瘤作用. 但是,在肿瘤免疫微环境中,肿瘤干细胞对CTL细胞的毒性作用具有抗性. 许多肿瘤干细胞可以通过低表达MHCⅠ来逃避免疫识别和CTL介导的杀伤作[2];联会复合蛋白3(SCP3)是联会复合体的结构成分,介导减数分裂过程中的染色体配体,在肿瘤干细胞中表达的SCP3通过活化AKT/Cyclin-D1-CDK4/6信号通路促进Nanog表达,使细胞获得干性样表征,从而抵抗CTL毒性作[3].

    CTL细胞分泌的细胞因子IFN-γ对于肿瘤组织细胞和肿瘤干细胞的作用大不相同. 肿瘤特异性CTL细胞所分泌的IFN-γ可以诱导黑色素瘤细胞发生凋亡,而肿瘤干细胞在IFN-γ作用下,细胞周期抑制因子p27表达升高,细胞增殖被阻断,肿瘤干细胞进入休眠期,从而有利于肿瘤干细胞的存[4]. 另外,IFN-γ还可以促进造血因子的释放,丰富肿瘤干细胞微环境中的血液供应,促进肿瘤细胞增殖,也为肿瘤干细胞提供充足的营[5]. 更为重要的是,IFN-γ促进肿瘤干细胞显著上调色氨酸转运蛋白,使得色氨酸大量进入肿瘤干细胞并被吲哚胺-2,3-双加氧酶(IDO)催化为犬尿酸(Kyn)释放到胞外,犬尿酸转运到CTLs中可直接激活胞浆转录因子芳香族碳氢化合物受体(AhR),AhR入核后直接结合PD-1启动子,启动T细胞PD-1的表[6],导致T细胞活性受到抑制.

  • 1.2 自然杀伤细胞与肿瘤干细胞

    自然杀伤(NK)细胞参与先天免疫反应,可以识别病毒感染细胞和肿瘤细胞,而对机体正常细胞无细胞毒作用,这种区别“自我”和“非我”的能力取决于NK细胞活化和抑制性识别受体的综合平衡. Tallerico[7,8,9]发现,在结肠癌和胶质母细胞瘤中,NK细胞可以杀死肿瘤干细胞,而分化的肿瘤细胞对NK细胞不敏感. 造成这种差异的原因是,在结肠癌干细胞中低表达抑制NK识别的MHCⅠ类分子,而高表达天然细胞毒性受体NKp30和NKp44的配体. 在脂肪肉瘤和胰腺导管腺癌患者临床样本中也发现相同现象,活化的NK细胞优先杀死高表达CD24、CD44、ALDH的肿瘤干细胞,且这些干细胞高表达NK细胞活化性配体MICA/B、Fas和DR5[10]. 与上述现象相反,乳腺癌干细胞对NK细胞介导的细胞毒性具有抗性,其中机制之一是miRNA20a下调乳腺癌干细胞MICA/B的表[11],降低了NK细胞对干细胞的识别能力. 黑色素瘤干细胞表达的miR155促进干性标志分子CD44和CD90的表达,同时分泌的miR155可以促进NK细胞IFN-γ、颗粒酶B的产生和NKG2D的表[12],但是最终并没有提高NK细胞对黑色素瘤细胞的杀伤能力. 说明肿瘤干细胞分泌的miRNAs不仅可以调节自身特性,还可以影响微环境中NK细胞的功能. 有研究发现,活化的NK细胞上清液孵育肿瘤干细胞球体后,促进了肿瘤干细胞向肿瘤组织细胞的分化,表现为肿瘤干细胞的标志分子ALDH、CD44、CD47及多能转录因子Sox2和Nanog表达水平下降,并且耐药相关转运蛋白(ABCG2和ABCB1)表达水平降低,孵育后的CSC对顺铂更加敏[13]. 因此,在不同肿瘤微环境中,NK细胞对肿瘤干细胞的调控作用和机制也不同.

  • 1.3 Treg细胞与肿瘤干细胞

    调节性T细胞(Treg)具有免疫耐受、抑制常规T细胞和其他免疫细胞(如NK和B细胞)的能力,在造血干细胞移植治疗中可以减少移植物抗宿主病(GVHD)的发生[14]. 在肿瘤微环境中,Treg通过抑制效应T细胞和分泌各种可溶性因子调节肿瘤微环境,发挥促进肿瘤发展和转移的作用,与肿瘤干细胞之间有着复杂的相互作用.

    研究发现,免疫微环境中的Treg可以分泌VEGFA,促进缺氧微环境中的血管生成,为肿瘤干细胞提供丰富的营养物质. 同时,VEGFA与肿瘤干细胞表面VEGFR结合,能够快速激活VEGFR/JAK2/STAT3信号通路,诱导干性多能转录因子MYC和Sox2的表达,从而促进肿瘤干细胞的自我更[15]. 在非小细胞肺癌中,Treg分泌的TGF-β可促进肿瘤干细胞的上皮-间质转化(EMT),增强肿瘤干细胞的迁移能力,导致肿瘤的转[16]. 此外,TGF-β促进非小细胞肺癌细胞小鼠移植瘤中肿瘤干细胞数量增加及干性增强,增强对抗肺血管生成药物内皮抑素(ES)的耐药[17]. 还有研究证实,在细胞因子IL-1β、IL-2、IL-21和IL-23的诱导下,Treg细胞可产生IL-17[18],促进肿瘤干细胞相关干性标志物CD133、CD44、CD166、EpCAM和ALDH的表达,促进肿瘤的起始能[19].

  • 1.4 TAM细胞与肿瘤干细胞

    在肿瘤组织中募集的先天性和适应性免疫细胞中,存在大量的巨噬细[20]. 这些肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)在肿瘤干细胞的致瘤活性中起着决定性作用. 其中,TAM的标志分子CD204、CD68和CD163的表达水平与肿瘤干细胞标志物CD44和CD133、ALDH及干性维持分子Sox2的表达水平呈现正相关[21,22]. 许多证据证明,TAM不仅会阻止T细胞攻击肿瘤细胞,而且还会分泌一系列炎症因子,如TGF-β、IL-6、IL-10和肿瘤坏死因子TNF-α,增强肿瘤细胞的干[23]. 细胞因子、趋化因子、生长因子在TAM与肿瘤干细胞之间组成了复杂的调控网络. 一方面,肿瘤干细胞可以通过分泌骨膜素(POSTN)、CXCL12、CXCL16募集大量的TAM在肿瘤部位浸润并且维持TAM的M2表[24];另一方面,乳脂肪表皮生长因子Ⅷ(MFG-E8)是一种由TAM高度产生的、与吞噬作用和血管生成、免疫耐受相关的生长因子,它可以激活肿瘤干细胞中的STAT3和Hedgehog信号通路,促进肿瘤干细胞的致瘤性和对化疗药的抗药[25]. Wan[26,27]的研究发现,TAM分泌的IL-6和表皮生长因子(EGF)可以激活肿瘤干细胞的STAT3信号通路,提高干性维持分子Sox2的表达,增强肿瘤干细胞的扩增和致瘤潜力. 此外,TAM还可以分泌M2型相关细胞因子TGF-β,诱导肝癌细胞的EMT,促进肝癌细胞的干细胞样特[28].

  • 1.5 B细胞与肿瘤干细胞

    B淋巴细胞作为一类重要的专职APC细胞,具有抗原呈递功能. 有研究发现,在肺癌干细胞微环境中,B细胞表面的共刺激分子CD40与CD154(CD40L)分子相互作用后,活化的B淋巴细胞向CTL细胞呈递抗原能力增强,导致CTL细胞分泌的IFN-γ及IL-2的水平显著增加,并且增强了CTL对肺癌干细胞的杀伤作[29]. 但是,肿瘤干细胞免疫微环境中还存在对免疫应答具有负向调控作用的调节性B细胞(Breg),Breg分泌的IL-10是B细胞产生IL-10的主要来源. 在B淋巴细胞的实体瘤——Burkitt’s淋巴瘤中,IL-10和一种脂肪组织中少量存在的间充质干细胞共同作用,活化肿瘤干细胞的JAK2/STAT3信号通路,增强肿瘤干细胞的干性样特[30].

  • 1.6 树突状细胞与肿瘤干细胞

    成熟树突状细胞(DC)的主要作用是抗原呈递和激活初始T淋巴细胞. 单核细胞在粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)和IL-4的刺激下可分化为成熟的DC,表现为单核细胞/巨噬细胞标记物CD14的表达显著降低,特异性标记物CD1a表达增加,活化标记物CD83和CD40、抗原递呈分子HLA-DR以及共刺激分子CD80和CD86的表达增加. 此外,参与T细胞接触的黏附分子,如整合素α4和α5的表达也随之上[31]. 有研究表明,肾癌干细胞分泌的细胞外囊泡(extracellular vesicles,EVs)携带人白细胞抗原G(HLA-G),可以抑制上述活化标记物、共刺激分子和黏附分子的表达,损伤单核细胞来源DC的成熟和分化,抑制免疫应[31]. 在结直肠癌中也发现,肿瘤组织中的结直肠癌干细胞数量越多,活化的DC数量越少,并且伴随着DC分泌的细胞因子如IL-10、IL-12和IFN-γ的降低,发挥细胞毒作用的颗粒酶以及诱导FasR+靶细胞凋亡的FasL表达均受到抑制,导致结直肠癌干细胞微环境中DC刺激幼稚T淋巴细胞增殖分化和细胞毒作用均受到抑[32].

  • 1.7 其他免疫细胞与肿瘤干细胞

    肿瘤干细胞的免疫微环境中还伴随着许多其他免疫细胞的浸润,比如γδT细胞、Th细胞和MDSC(myeloid-derived suppressor cells)等. 其中,肿瘤细胞通过下调NKG2D配体MICA/B、ULBPs来逃避γδT细胞的杀伤作[33]. 但是,在结肠癌中,γδT细胞表面的肿瘤坏死因子相关凋亡诱导配体(TRAIL)与结肠癌干细胞表面的TRAIL配体DR5结合,对肿瘤干细胞发挥杀伤作[33]. 肿瘤微环境中的CD4+T和Tfh细胞通过分泌IL-4调节肿瘤干细胞中MAPK和AKT信号通路发挥抗凋亡作用,促进肿瘤进[34]. IL-22在组织损伤时发挥着保护作用,对干细胞维持自身干性也发挥重要作[35]. 肿瘤微环境中的Th22细胞可以分泌大量的IL-22,促进肿瘤细胞转录因子STAT3活化和组蛋白H3K79甲基转移酶DOT1L的表达. DOT1L可以诱导肿瘤干细胞多能转录因子Nanog、Sox2及核心干性基因Pou5F1的活化,从而增加肿瘤干细胞的致瘤潜[36].

    MDSCs是肿瘤微环境中的重要细胞组分,发挥免疫抑制作用. MDSCs细胞所分泌的IL-6和NO可以活化肿瘤干细胞中的STAT3和NOTCH信号通路,刺激肿瘤干细胞中microRNA101的表达,进而促进羧基末端结合蛋白2(CtBP2)蛋白质的表达,CtBP2蛋白作为转录辅助抑制因子,可以直接靶向干细胞核心基因Nanog和Sox2,最终导致肿瘤干细胞的干性增[37,38].

    除了各种免疫细胞,在肿瘤微环境中还存在很多间充质干细胞(mesenchymal stem cells,MSC),它们分泌的IL-15可以促进肿瘤细胞的干性、促进EMT,并通过激活CD4+T细胞中的STAT5信号通路促进PD-1的表达,并上调Treg的比[39]. 总之,肿瘤干细胞与其免疫微环境形成一个复杂的调控网络(图1).

    图1
                            肿瘤干细胞的免疫微环境

    图1 肿瘤干细胞的免疫微环境

    Fig. 1 TIME of cancer stem cell

    注:肿瘤干细胞的免疫微环境中存在许多免疫细胞及免疫分子,包括CTL、B、Treg、NK、γδT、MDSC、DC、TAM等细胞和相关细胞因子,这些细胞与肿瘤干细胞相互作用,形成复杂的调控网络.

  • 2 靶向肿瘤干细胞及其免疫微环境治疗

  • 2.1 靶向肿瘤干细胞的治疗

    越来越多的研究证明,针对肿瘤细胞的传统疗法并不能根除肿瘤干细胞,一些诱导肿瘤细胞衰老的化疗药物反而促使肿瘤细胞表达干性样特征,进而转变为肿瘤干细[40]. 相比之下,靶向肿瘤干细胞的治疗有望实现肿瘤的根治,或者减少肿瘤复发、转移的风险,是肿瘤治疗的研究趋势和未来希[41]. 目前已有许多靶向肿瘤干细胞的药物被证明具有较好的抗肿瘤效应,比如倍半萜内酯类、Rakicidin类和端粒酶抑制剂等化合物,对肿瘤干细胞具有毒性作[42,43,44]. 其中,第一代候选药物DMAMCL(即ACT001)具有抗白血病干细胞作用,并可以穿过血脑屏障,现已作为抗脑胶质母细胞瘤新药进入澳洲I期临床试验,并被美国食品药品管理局(FDA)批准为“孤儿药”.

  • 2.2 改善免疫微环境策略

    通过改善肿瘤免疫微环境,可以破坏肿瘤微环境对肿瘤干细胞的“保护”作用,促进抗肿瘤免疫细胞对肿瘤干细胞的杀伤作用. 改善肿瘤免疫微环境的策略主要分为两个方面:a.针对微环境中免疫抑制性细胞,例如TAM和MDSC等;b.针对肿瘤干细胞微环境中发挥细胞毒性作用的淋巴细胞,例如NK和T细胞. 通过抑制免疫抑制细胞或促进效应淋巴细胞的细胞毒性作用而清除肿瘤干细胞,从而达到消除肿瘤细胞的目的.

    CSF-1R蛋白介导了巨噬细胞在肿瘤组织中的存活和功能,但是单独使用CSF-1R抑制剂清除肿瘤相关巨噬细胞后,在临床实验中并没有显示出延缓肿瘤进展的效果,反而导致了CXCL1趋化因子的增加,进而招募了大量多核型髓源抑制性细胞(PMN-MDSC);联合使用CSF-1R抑制剂和趋化因子受体CXCR2抑制剂,可以减少肿瘤相关巨噬细胞,而且显著抑制了肿瘤进[45]. Tocilizumab是一种IL-6受体的抗体药物,被FDA批准用于治疗类风湿性关节炎. 有研究发现,Tocilizumab可以在体内外抑制TAM分泌IL-6,从而抑制TAM刺激的肝癌肿瘤干细胞活化,该药具有治疗HCC患者的潜[27].

    NK细胞和T细胞可以在长期治疗后有效根除异质性肿瘤细胞,所以基于NK细胞和T细胞靶向CSC的疗法是一种有前途的策[46]. 嵌合抗原受体修饰的T细胞免疫疗法(CAR-T)为癌症治疗提供了新的策略,尤其是在急性白血病和非霍奇金淋巴瘤的治疗领域,越来越多的成功例子使CAR-T成为免疫治疗的热点. 基于肿瘤干细胞标志物CD133的表位AC133设计的AC133-CAR-T细胞,在体内外可以特异性杀伤表达CD133的胶质母细胞瘤干细[47]. 同时,也有研究设计靶向胶质母细胞瘤干细胞的EGFR-CAR修饰的NK-92细胞,可以治疗复发性胶质[48].

  • 3 结语

    尽管传统的放射疗法和化学疗法对肿瘤有一定的治疗效果,但是临床数据显示肿瘤干细胞对各种化学治疗和放射治疗具有抗[49,50]. 因此,需要开发出特异性和有效靶向CSC的新型治疗策略. 本实验室的研究发现,阻断肝癌细胞中STAT3信号通路,不仅可以抑制肝癌细胞的增殖、诱导肝癌细胞的凋亡,并且能够改善肿瘤微环境中NK细胞免疫耐受状况,增强NK细胞的杀伤功[51,52]. 许多研究表明,STAT3相关信号通路在维持多种肿瘤干细胞自我更新中发挥重要的作用,包括神经胶质瘤干细胞、膀胱癌干细胞、乳腺癌干细胞、结直肠癌干细胞、肝癌干细胞[26,36,53,54,55],并且阻断STAT3的许多化合物表现出较强的抑制肿瘤干细胞干性样特性的作[56,57,58]. 这些研究提示,针对STAT3的抑制剂在肿瘤治疗中可以达到抑制肿瘤细胞特性、抑制肿瘤干细胞特性、改善肿瘤微环境免疫耐受三种治疗效果. 除了STAT3信号通路抑制剂,针对肿瘤干细胞中的Wnt/β-catenin、Notch、Hedgehog信号通路的抑制剂也能靶向肿瘤干细[59].

    免疫治疗通过激活人体本身的免疫系统,依靠自身的免疫机能杀灭肿瘤细胞. 免疫治疗在多种肿瘤中展示出了强大的抗肿瘤活性,多个肿瘤免疫药物已被批准临床应用并取得了显著疗效. 随着对肿瘤干细胞研究的深入,靶向CSC的免疫疗法也相继被开发. 例如,研究证明CSC-DC疫苗可以引发机体的体液免疫和细胞免疫应答,其诱导产生的抗体和T细胞可以直接靶向肿瘤干细胞,产生较强的杀伤作[60],研究者们还开发出可以靶向杀伤肿瘤干细胞的CAR-T、CAR-NK细胞,为肿瘤治疗带来更好的效果. 但仍有部分患者对免疫疗法没有应答,也有部分患者在治疗后会再次复发. 造成这种不良治疗效果及预后的原因与患者间肿瘤免疫微环境的差异密切相关,肿瘤微环境中的免疫细胞组成会影响其对特定免疫疗法的响应,甚至会决定肿瘤免疫疗法的成败. 因此,有研究提出可以通过改善免疫微环境来提高肿瘤治疗效果. 例如,如前所述的抑制TAM的IL-6分泌可以抑制肿瘤干细胞的活化从而提高肿瘤治疗效果. 还有报道发现,肿瘤干细胞上高表达免疫抑制相关分子PD-L1[61],具有可以通过PD-L1/PD-1轴下调T细胞应答的可能性,提示免疫检查点阻断疗法是一种靶向肿瘤干细胞的潜在治疗方案,具体的治疗效果有待进一步研究.

    放射疗法和化学疗法、相关抑制剂治疗和免疫疗法是目前肿瘤治疗的三大主流方法,虽然后两者可以特异性针对肿瘤干细胞及其微环境,但仍不足以治疗癌症. 研究证明,放化疗和肿瘤干细胞靶向药物的联合治疗可以增强每种方法的效果,为肿瘤治疗带来新的方向. 沙利霉素被证明可以显著抑制乳腺癌干细胞的干性,与常规化疗药物紫杉醇或盐酸阿霉素脂质体联合治疗乳腺癌相比,单独治疗有着更好的治疗效[62]. 抑制Notch通路的小分子药物MK-0752联合紫杉醇,在乳腺癌治疗中降低了乳腺癌干细胞的数量,显示了这种联合策略的可行[63]. 越来越多的体内外实验认为化疗药物和肿瘤干细胞靶向药物联合治疗具有潜在益处,多种针对不同肿瘤类型的联合治疗方案已进入临床实验阶段,以解决联合治疗的药代动力学,评价其安全性和有效[59].

    目前,虽然化疗或者靶向肿瘤干细胞药物治疗与免疫疗法的联合治疗尚未报道,但这种联合疗法在肿瘤治疗中具有极大的潜能. 一方面,针对肿瘤干细胞的治疗可以有效清除肿瘤干细胞,防止癌症的复发和转移,较为彻底地根除肿瘤;另一方面,通过改善肿瘤干细胞微环境,抑制对肿瘤干细胞有帮助的细胞,活化对肿瘤干细胞有杀伤作用的细胞,利用机体自身的免疫系统发挥抗肿瘤作用.

    总之,针对肿瘤干细胞的治疗或者改善肿瘤干细胞免疫微环境是未来肿瘤治疗的趋势. 充分掌握患者肿瘤干细胞的免疫微环境组成及其相互作用,可以建立更有效、精准的肿瘤免疫治疗方案.

    Tel: 86-531-88383781 E-mail: zhangj65@sdu.edu.cn

  • 参 考 文 献

    • 1

      Binnewies M, Roberts E W, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med, 2018, 24(5): 541-550

    • 2

      Morrison B J, Steel J C, Morris J C. Reduction of MHC-I expression limits T-lymphocyte-mediated killing of cancer-initiating cells. BMC Cancer, 2018, 18(1): 469

    • 3

      Oh S J, Cho H, Kim S, et al. Targeting cyclin D-CDK4/6 sensitizes immune-refractory cancer by blocking the SCP3-NANOG axis. Cancer Res, 2018, 78(10): 2638-2653

    • 4

      Liu Y, Liang X, Yin X, et al. Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-gamma-induced immunologic dormancy of tumor-repopulating cells. Nat Commun, 2017, 8:15207

    • 5

      Schurch C M, Riether C, Ochsenbein A F. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell, 2014, 14(4): 460-472

    • 6

      Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation. Cancer Cell, 2018, 33(3): 480-494.e7

    • 7

      Avril T, Vauleon E, Hamlat A, et al. Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol, 2012, 22(2): 159-174

    • 8

      Tallerico R, Todaro M, Di Franco S, et al. Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol, 2013, 190(5): 2381-2390

    • 9

      Kim G R, Ha G H, Bae J H, et al. Metastatic colon cancer cell populations contain more cancer stem-like cells with a higher susceptibility to natural killer cell-mediated lysis compared with primary colon cancer cells. Oncol Lett, 2015, 9(4): 1641-1646

    • 10

      Ames E, Canter R J, Grossenbacher S K, et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol, 2015, 195(8): 4010-4019

    • 11

      Wang B, Wang Q, Wang Z, et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res, 2014, 74(20): 5746-5757

    • 12

      Joshi P, Kooshki M, Aldrich W, et al. Expression of natural killer cell regulatory microRNA by uveal melanoma cancer stem cells. Clin Exp Metastasis, 2016, 33(8): 829-838

    • 13

      Ferreira-Teixeira M, Paiva-Oliveira D, Parada B, et al. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med, 2016, 14(1): 163

    • 14

      Pierini A, Alvarez M, Negrin R S. NK cell and CD4+FoxP3+ regulatory T cell based therapies for hematopoietic stem cell engraftment. Stem Cells Int, 2016, 2016:9025835

    • 15

      Zhao D, Pan C, Sun J, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene, 2015, 34(24): 3107-3119

    • 16

      Tirino V, Camerlingo R, Bifulco K, et al. TGF-beta1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death Dis, 2013, 4:e620

    • 17

      Wang Y, Jiang M, Li Z, et al. Hypoxia and TGF-beta1 lead to endostatin resistance by cooperatively increasing cancer stem cells in A549 transplantation tumors. Cell Biosci, 2015, 5:72

    • 18

      Voo K S, Wang Y H, Santori F R, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci USA, 2009, 106(12): 4793-4798

    • 19

      Yang S, Wang B, Guan C, et al. Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol, 2011, 89(1): 85-91

    • 20

      Noy R, Pollard J W. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014, 41(1): 49-61

    • 21

      Hou Y C, Chao Y J, Tung H L, et al. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer, 2014, 120(17): 2766-2777

    • 22

      He K F, Zhang L, Huang C F, et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. Biomed Res Int, 2014, 2014:838632

    • 23

      Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther, 2018, 11:3817-3826

    • 24

      Zeng J, Liu Z, Sun S, et al. Tumor-associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells. Oncol Lett, 2018, 15(6): 8681-8686

    • 25

      Jinushi M, Chiba S, Yoshiyama H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA, 2011, 108(30): 12425-12430

    • 26

      Yang J, Liao D, Chen C, et al. Tumor‐associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox‐2 signaling pathway. Stem cells, 2013, 31(2): 248-258

    • 27

      Wan S, Zhao E, Kryczek I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology, 2014, 147(6): 1393-1404

    • 28

      Fan Q M, Jing Y Y, Yu G F, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett, 2014, 352(2): 160-168

    • 29

      Zhang X, Zhang Y, Xu J, et al. Antigen presentation of the Oct4 and Sox2 peptides by CD154-activated B lymphocytes enhances the killing effect of cytotoxic T lymphocytes on tumor stem-like cells derived from cisplatin-resistant lung cancer cells. J Cancer, 2018, 9(2): 367-374

    • 30

      Xu L, Wang X, Wang J, et al. Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma. Tumor Biology, 2016, 37(6): 7835-7842

    • 31

      Grange C, Tapparo M, Tritta S, et al. Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer, 2015, 15:1009

    • 32

      Szarynska M, Olejniczak A, Kobiela J, et al. Cancer stem cells as targets for DC-based immunotherapy of colorectal cancer. Sci Rep, 2018, 8(1): 12042

    • 33

      Ramutton T, Buccheri S, Dieli F, et al. gammadelta T cells as a potential tool in colon cancer immunotherapy. Immunotherapy, 2014, 6(9): 989-999

    • 34

      Todaro M, Perez Alea M, Scopelliti A, et al. IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle, 2008, 7(3): 309-313

    • 35

      Hanash A M, Dudakov J A, Hua G, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity, 2012, 37(2): 339-350

    • 36

      Kryczek I, Lin Y, Nagarsheth N, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity, 2014, 40(5): 772-784

    • 37

      Cui T X, Kryczek I, Zhao L, et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity, 2013, 39(3): 611-621

    • 38

      Peng D, Tanikawa T, Li W, et al. Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling. Cancer Res, 2016, 76(11): 3156-3165

    • 39

      Sun L, Wang Q, Chen B, et al. Human gastric cancer mesenchymal stem cell-derived IL15 contributes to tumor cell epithelial-mesenchymal transition via upregulation Tregs ratio and PD-1 expression in CD4(+)T cell. Stem Cells Dev, 2018, 27(17): 1203-1214

    • 40

      Milanovic M, Fan D N Y, Belenki D, et al. Senescence-associated reprogramming promotes cancer stemness. Nature, 2018, 553(7686): 96-100

    • 41

      Chen D, Wu M, Li Y, et al. Targeting BMI1(+) cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell, 2017, 20(5): 621-634.e6

    • 42

      Chen J, Li J, Wu L, et al. Syntheses and anti-pancreatic cancer activities of rakicidin A analogues. Eur J Med Chem, 2018, 151: 601-627

    • 43

      Sun Y, Ding Y, Li D, et al. Cyclic depsipeptide BE-43547A2 : synthesis and activity against pancreatic cancer stem cells. Angew Chem Int Ed Engl, 2017, 56(46): 14627-14631

    • 44

      Wang J, Kuang B, Guo X, et al. Total syntheses and biological activities of vinylamycin analogues. J Med Chem, 2017, 60(3): 1189-1209

    • 45

      Kumar V, Donthireddy L, Marvel D, et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell, 2017, 32(5): 654-668 e655

    • 46

      Dianat-Moghadam H, Rokni M, Marofi F, et al. Natural killer cell-based immunotherapy: from transplantation toward targeting cancer stem cells. J Cell Physiol, 2018, 234(1): 259-273

    • 47

      Zhu X, Prasad S, Gaedicke S, et al. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget, 2015, 6(1): 171-184

    • 48

      Han J, Chu J, Keung Chan W, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep, 2015, 5:11483

    • 49

      Zhou B B, Zhang H, Damelin M, et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov, 2009, 8(10): 806-823

    • 50

      Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer, 2008, 8(7): 545-554

    • 51

      Sui Q, Zhang J, Sun X, et al. NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma. J Immunol, 2014, 193(4): 2016-2023

    • 52

      Sun X, Sui Q, Zhang C, et al. Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther, 2013, 12(12): 2885-2896

    • 53

      Almiron Bonnin D A, Havrda M C, Lee M C, et al. Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene, 2018, 37(8): 1107-1118

    • 54

      Yang Z, He L, Lin K, et al. The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res, 2017, 23(21): 6673-6685

    • 55

      Lee T K, Castilho A, Cheung V C, et al. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell, 2011, 9(1): 50-63

    • 56

      Wang X, Li Y, Dai Y, et al. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep, 2016, 6:36796

    • 57

      Luo Y, Cui Y, Cao X, et al. 8-Bromo-7-methoxychrysin-blocked STAT3/Twist axis inhibits the stemness of cancer stem cell-like cell originated from SMMC-7721 cells. Acta Biochim Biophys Sin (Shanghai), 2017, 49(5): 458-464

    • 58

      Kim Y J, Kim J Y, Lee N, et al. Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. Biochem Biophys Res Commun, 2017, 486(4): 1069-1076

    • 59

      Li Y, Atkinson K, Zhang T. Combination of chemotherapy and cancer stem cell targeting agents: preclinical and clinical studies. Cancer Lett, 2017, 396:103-109

    • 60

      Ning N, Pan Q, Zheng F, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res, 2012, 72(7): 1853-1864

    • 61

      Lee Y, Sunwoo J. PD-L1 is preferentially expressed on CD44+ tumor-initiating cells in head and neck squamous cell carcinoma. Journal for ImmunoTherapy of Cancer, 2014, 2(Suppl 3): P270

    • 62

      Wang T, Narayanaswamy R, Ren H, et al. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment. Cancer Biol Ther, 2016, 17(6): 698-707

    • 63

      Schott A F, Landis M D, Dontu G, et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res, 2013, 19(6): 1512-1524

沈文姝

机 构:山东大学药学院免疫药物学研究所,济南 250012

Affiliation:Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China

韩秋菊

机 构:山东大学药学院免疫药物学研究所,济南 250012

Affiliation:Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China

张建

机 构:山东大学药学院免疫药物学研究所,济南 250012

Affiliation:Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China

角 色:通讯作者

Role:Corresponding author

作者简介:

Profile:

html/pibben/20190010/alternativeImage/5bf18b22-9904-4fdb-8041-f51553bcf8e7-F001.jpg

图1 肿瘤干细胞的免疫微环境

Fig. 1 TIME of cancer stem cell

image /

肿瘤干细胞的免疫微环境中存在许多免疫细胞及免疫分子,包括CTL、B、Treg、NK、γδT、MDSC、DC、TAM等细胞和相关细胞因子,这些细胞与肿瘤干细胞相互作用,形成复杂的调控网络.

  • 参 考 文 献

    • 1

      Binnewies M, Roberts E W, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med, 2018, 24(5): 541-550

    • 2

      Morrison B J, Steel J C, Morris J C. Reduction of MHC-I expression limits T-lymphocyte-mediated killing of cancer-initiating cells. BMC Cancer, 2018, 18(1): 469

    • 3

      Oh S J, Cho H, Kim S, et al. Targeting cyclin D-CDK4/6 sensitizes immune-refractory cancer by blocking the SCP3-NANOG axis. Cancer Res, 2018, 78(10): 2638-2653

    • 4

      Liu Y, Liang X, Yin X, et al. Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-gamma-induced immunologic dormancy of tumor-repopulating cells. Nat Commun, 2017, 8:15207

    • 5

      Schurch C M, Riether C, Ochsenbein A F. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell, 2014, 14(4): 460-472

    • 6

      Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation. Cancer Cell, 2018, 33(3): 480-494.e7

    • 7

      Avril T, Vauleon E, Hamlat A, et al. Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol, 2012, 22(2): 159-174

    • 8

      Tallerico R, Todaro M, Di Franco S, et al. Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol, 2013, 190(5): 2381-2390

    • 9

      Kim G R, Ha G H, Bae J H, et al. Metastatic colon cancer cell populations contain more cancer stem-like cells with a higher susceptibility to natural killer cell-mediated lysis compared with primary colon cancer cells. Oncol Lett, 2015, 9(4): 1641-1646

    • 10

      Ames E, Canter R J, Grossenbacher S K, et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol, 2015, 195(8): 4010-4019

    • 11

      Wang B, Wang Q, Wang Z, et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res, 2014, 74(20): 5746-5757

    • 12

      Joshi P, Kooshki M, Aldrich W, et al. Expression of natural killer cell regulatory microRNA by uveal melanoma cancer stem cells. Clin Exp Metastasis, 2016, 33(8): 829-838

    • 13

      Ferreira-Teixeira M, Paiva-Oliveira D, Parada B, et al. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med, 2016, 14(1): 163

    • 14

      Pierini A, Alvarez M, Negrin R S. NK cell and CD4+FoxP3+ regulatory T cell based therapies for hematopoietic stem cell engraftment. Stem Cells Int, 2016, 2016:9025835

    • 15

      Zhao D, Pan C, Sun J, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene, 2015, 34(24): 3107-3119

    • 16

      Tirino V, Camerlingo R, Bifulco K, et al. TGF-beta1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death Dis, 2013, 4:e620

    • 17

      Wang Y, Jiang M, Li Z, et al. Hypoxia and TGF-beta1 lead to endostatin resistance by cooperatively increasing cancer stem cells in A549 transplantation tumors. Cell Biosci, 2015, 5:72

    • 18

      Voo K S, Wang Y H, Santori F R, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci USA, 2009, 106(12): 4793-4798

    • 19

      Yang S, Wang B, Guan C, et al. Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol, 2011, 89(1): 85-91

    • 20

      Noy R, Pollard J W. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014, 41(1): 49-61

    • 21

      Hou Y C, Chao Y J, Tung H L, et al. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer, 2014, 120(17): 2766-2777

    • 22

      He K F, Zhang L, Huang C F, et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. Biomed Res Int, 2014, 2014:838632

    • 23

      Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther, 2018, 11:3817-3826

    • 24

      Zeng J, Liu Z, Sun S, et al. Tumor-associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells. Oncol Lett, 2018, 15(6): 8681-8686

    • 25

      Jinushi M, Chiba S, Yoshiyama H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA, 2011, 108(30): 12425-12430

    • 26

      Yang J, Liao D, Chen C, et al. Tumor‐associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox‐2 signaling pathway. Stem cells, 2013, 31(2): 248-258

    • 27

      Wan S, Zhao E, Kryczek I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology, 2014, 147(6): 1393-1404

    • 28

      Fan Q M, Jing Y Y, Yu G F, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett, 2014, 352(2): 160-168

    • 29

      Zhang X, Zhang Y, Xu J, et al. Antigen presentation of the Oct4 and Sox2 peptides by CD154-activated B lymphocytes enhances the killing effect of cytotoxic T lymphocytes on tumor stem-like cells derived from cisplatin-resistant lung cancer cells. J Cancer, 2018, 9(2): 367-374

    • 30

      Xu L, Wang X, Wang J, et al. Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma. Tumor Biology, 2016, 37(6): 7835-7842

    • 31

      Grange C, Tapparo M, Tritta S, et al. Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer, 2015, 15:1009

    • 32

      Szarynska M, Olejniczak A, Kobiela J, et al. Cancer stem cells as targets for DC-based immunotherapy of colorectal cancer. Sci Rep, 2018, 8(1): 12042

    • 33

      Ramutton T, Buccheri S, Dieli F, et al. gammadelta T cells as a potential tool in colon cancer immunotherapy. Immunotherapy, 2014, 6(9): 989-999

    • 34

      Todaro M, Perez Alea M, Scopelliti A, et al. IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle, 2008, 7(3): 309-313

    • 35

      Hanash A M, Dudakov J A, Hua G, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity, 2012, 37(2): 339-350

    • 36

      Kryczek I, Lin Y, Nagarsheth N, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity, 2014, 40(5): 772-784

    • 37

      Cui T X, Kryczek I, Zhao L, et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity, 2013, 39(3): 611-621

    • 38

      Peng D, Tanikawa T, Li W, et al. Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling. Cancer Res, 2016, 76(11): 3156-3165

    • 39

      Sun L, Wang Q, Chen B, et al. Human gastric cancer mesenchymal stem cell-derived IL15 contributes to tumor cell epithelial-mesenchymal transition via upregulation Tregs ratio and PD-1 expression in CD4(+)T cell. Stem Cells Dev, 2018, 27(17): 1203-1214

    • 40

      Milanovic M, Fan D N Y, Belenki D, et al. Senescence-associated reprogramming promotes cancer stemness. Nature, 2018, 553(7686): 96-100

    • 41

      Chen D, Wu M, Li Y, et al. Targeting BMI1(+) cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell, 2017, 20(5): 621-634.e6

    • 42

      Chen J, Li J, Wu L, et al. Syntheses and anti-pancreatic cancer activities of rakicidin A analogues. Eur J Med Chem, 2018, 151: 601-627

    • 43

      Sun Y, Ding Y, Li D, et al. Cyclic depsipeptide BE-43547A2 : synthesis and activity against pancreatic cancer stem cells. Angew Chem Int Ed Engl, 2017, 56(46): 14627-14631

    • 44

      Wang J, Kuang B, Guo X, et al. Total syntheses and biological activities of vinylamycin analogues. J Med Chem, 2017, 60(3): 1189-1209

    • 45

      Kumar V, Donthireddy L, Marvel D, et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell, 2017, 32(5): 654-668 e655

    • 46

      Dianat-Moghadam H, Rokni M, Marofi F, et al. Natural killer cell-based immunotherapy: from transplantation toward targeting cancer stem cells. J Cell Physiol, 2018, 234(1): 259-273

    • 47

      Zhu X, Prasad S, Gaedicke S, et al. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget, 2015, 6(1): 171-184

    • 48

      Han J, Chu J, Keung Chan W, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep, 2015, 5:11483

    • 49

      Zhou B B, Zhang H, Damelin M, et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov, 2009, 8(10): 806-823

    • 50

      Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer, 2008, 8(7): 545-554

    • 51

      Sui Q, Zhang J, Sun X, et al. NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma. J Immunol, 2014, 193(4): 2016-2023

    • 52

      Sun X, Sui Q, Zhang C, et al. Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther, 2013, 12(12): 2885-2896

    • 53

      Almiron Bonnin D A, Havrda M C, Lee M C, et al. Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene, 2018, 37(8): 1107-1118

    • 54

      Yang Z, He L, Lin K, et al. The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res, 2017, 23(21): 6673-6685

    • 55

      Lee T K, Castilho A, Cheung V C, et al. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell, 2011, 9(1): 50-63

    • 56

      Wang X, Li Y, Dai Y, et al. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep, 2016, 6:36796

    • 57

      Luo Y, Cui Y, Cao X, et al. 8-Bromo-7-methoxychrysin-blocked STAT3/Twist axis inhibits the stemness of cancer stem cell-like cell originated from SMMC-7721 cells. Acta Biochim Biophys Sin (Shanghai), 2017, 49(5): 458-464

    • 58

      Kim Y J, Kim J Y, Lee N, et al. Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. Biochem Biophys Res Commun, 2017, 486(4): 1069-1076

    • 59

      Li Y, Atkinson K, Zhang T. Combination of chemotherapy and cancer stem cell targeting agents: preclinical and clinical studies. Cancer Lett, 2017, 396:103-109

    • 60

      Ning N, Pan Q, Zheng F, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res, 2012, 72(7): 1853-1864

    • 61

      Lee Y, Sunwoo J. PD-L1 is preferentially expressed on CD44+ tumor-initiating cells in head and neck squamous cell carcinoma. Journal for ImmunoTherapy of Cancer, 2014, 2(Suppl 3): P270

    • 62

      Wang T, Narayanaswamy R, Ren H, et al. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment. Cancer Biol Ther, 2016, 17(6): 698-707

    • 63

      Schott A F, Landis M D, Dontu G, et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res, 2013, 19(6): 1512-1524