en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
WisnerA L, PotterA A, KosterW. Effect of the Salmonella pathogenicity island 2 type Ⅲ secretion system on Salmonella survival in activated chicken macrophage-like HD11 cells. Plos One, 2011, 6(12): e29787
参考文献 2
VoetschA C, Van GilderT J, AnguloF J, et al. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis, 2004, 38(Suppl 3): S127-134
参考文献 3
RomlingU, BokranzW, RabschW, et al. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int J Med Microbiol, 2003, 293(4): 273-285
参考文献 4
MarinC, HernandizA, LainezM. Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult Sci, 2009, 88(2): 424-431
参考文献 5
ScherK, RomlingU, YaronS. Effect of heat, acidification, and chlorination on Salmonellaenterica serovar typhimurium cells in a biofilm formed at the air-liquid interface. Appl Environ Microbiol, 2005, 71(3): 1163-1168
参考文献 6
JosephB, OttaS K, KarunasagarI, et al. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol, 2001, 64(3): 367-372
参考文献 7
FlemmingH C, WingenderJ. The biofilm matrix. Nat Rev Microbiol, 2010, 8(9): 623-633
参考文献 8
ShiW Y, ZhouX D. Preface for the microbial biofilm issue. Int J Oral Sci, 2011, 3(2): 47-48
参考文献 9
DuranN, DuranM, De JesusM B, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, 12(3): 789-799
参考文献 10
PelgriftR Y, FriedmanA J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev, 2013, 65(13-14): 1803-1815
参考文献 11
GaoL, ZhuangJ, NieL, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol, 2007, 2(9): 577-583
参考文献 12
WeiH, WangE. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev, 2013, 42(14): 6060-6093
参考文献 13
WuJ, WangX, WangQ, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (Ⅱ). Chem Soc Rev, 2019, 48(4): 1004-1076
参考文献 14
ToumeyC. Quick lessons on environmental nanotech. Nat Nanotechnol, 2015, 10(7): 566-567
参考文献 15
GaoL, YanX. Discovery and current application of nanozyme. Prog Biochem Biophys, 2013, 40(10): 892-902
参考文献 16
XuZ, QiuZ, LiuQ, et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat Commun, 2018, 9(1): 3713
参考文献 17
PrattL A, KolterR. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type Ⅰ pili. Mol Microbiol, 1998, 30(2): 285-293
参考文献 18
El HagM, FengZ, SuY, et al. Contribution of the csgA and bcsA genes to Salmonella enterica serovar Pullorum biofilm formation and virulence. Avian Pathol, 2017, 46(5): 541-547
参考文献 19
LawrenceJ R, WolfaardtG M, KorberD R. Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl Environ Microbiol, 1994, 60(4): 1166-1173
参考文献 20
BaninE, BradyK M, GreenbergE P. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol, 2006, 72(3): 2064-2069
参考文献 21
HengzhuangW, WuH, CiofuO, et al. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother, 2011, 55(9): 4469-4474
参考文献 22
WangH Y, HuaX W, WuF G, et al. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Appl Mater Interfaces, 2015, 7(13): 7082-7092
参考文献 23
YangX, LiJ, LiangT, et al. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale, 2014, 6(17): 10126-10133
参考文献 24
FangF C. Antimicrobial actions of reactive oxygen species. MBio, 2011, 2(5), pii: e00141-11
参考文献 25
DunnillC, PattonT, BrennanJ, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J, 2017, 14(1): 89-96
参考文献 26
TangY, QiuZ, XuZ, et al. Antibacterial mechanism and applications of nanozymes. Prog Biochem Biophys, 2018, 45(2): 118-128
目录 contents

    摘要

    运用结晶紫染色定量法、生物被膜形态观察、生物被膜干重称量法、活菌定量计数法和细菌内活性氧检测法,评估氧化铁纳米酶和硫化铁纳米酶对鼠伤寒沙门菌生物被膜的影响及其机制. 结果显示:鼠伤寒沙门菌S025株与这两类铁基纳米酶共孵育48 h后,其生物被膜结晶紫染色吸光度值(A)、生物被膜厚度、生物被膜干重和活菌数量与未处理组相比均显著下降,活性氧水平显著上升,其中硫化铁纳米酶效果优于四氧化三铁纳米酶;在生物被膜形成后,加入铁基纳米酶处理0.5 h、2 h和12 h,生物被膜结晶紫染色A值、生物被膜厚度、生物被膜干重和活菌数量与未处理组相比均显著下降,活性氧水平显著上升,硫化铁纳米酶效果同样优于四氧化三铁纳米酶. 以上结果表明,铁基纳米酶通过调控鼠伤寒沙门菌胞内活性氧水平,不仅可以预防该菌的生物被膜形成,而且可以破坏已形成的生物被膜,本研究将有助于预防和治疗鼠伤寒沙门菌生物被膜引起的相关疾病.

    Abstract

    To evaluate the effect of iron-based nanozymes on the biofilm of S.typhimurium, the biofilms were detected by crystal violet staining method, biofilm integrity, biofilm biomass, bacterial activity, and the intracellular ROS levels of S.typhimurium S025. Our results showed that, after treatment with iron oxide (Fe3O4) nanozyme and iron sulfide (nFeS) nanozyme during biofilm formation for 48 h, the A550 value, biofilm height, biofilm biomass, and bacteria viability were significantly decreased compared to the untreated group, but the intracellular ROS levels remarkably increased. Moreover, to determine whether there is a similar inhibitory effect on pre-formed biofilms, Fe3O4 nanozyme and nFeS nanozyme were incubated from the apical side of the biofilms for different time. As expected, both nanozymes appreciably destroyed the biofilms that had formed. Importantly, nFeS nanozyme showed better efficacy than Fe3O4 nanozyme in above biofilm treatment. Taken together, these findings clearly demonstrated that iron-based nanozymes, as a suitable agent, regulated intracellular ROS levels to prevent the biofilm formation of S.typhimurium and destroyed the matured biofilm, which is helpful to preventing and treating relevant diseases caused by biofilm of S.typhimurium.

    肠道沙门菌是一类非常重要的食源性病原菌,多表现为一系列炎症、腹泻、伤寒型发热等. 人类最常见肠道沙门菌主要有两种:鼠伤寒沙门菌(Salmonella typhimuriumS. typhimurium)和肠炎沙门菌. 其中,鼠伤寒沙门菌宿主范围广泛,不仅可以感染家禽和哺乳动物,也可感染人类,是一种具有重要公共卫生学意义的人畜共患病原[1]. 虽然我国沙门菌感染的统计数据不完全,但美国每年估计造成超过100万人感染和400人死[2]. 沙门菌通常在环境中以生物被膜状态存[3],研究表明,高达89.66%的沙门菌能够形成生物被膜,同时该状态下的沙门菌大大增强了对外界不利生长环境和抗生素等的抵抗[4,5],导致人食源性沙门菌病屡屡发[6].

    生物被膜是细菌或者真菌等微生物吸附于固体表面形成的一种复杂的微生物结构,主要由细菌、真菌等分泌的多糖、胞外DNA(extracellular DNAs,eDNAs)、蛋白质和脂类等胞外多聚物质(exopolymer sbusatance,EPS)组成的生物膜基质(biofilm matrix),将细菌或真菌包裹在内部形[7,8]. 研究表明,处于生物被膜状态的细菌对抗生素、热应激、消毒剂、pH和机体免疫力等的抵抗力都相应增强,这不仅使得沙门菌在动物饲养环境和肉食品加工中更容易存活,而且可能是造成其在自然界持续感染的重要原因之一. 因此,开发高效杀菌、生物安全性好并避免耐药性产生的新型抗菌剂迫在眉睫.

    已有报道,纳米[9]、氧化[10]等纳米材料具有良好的抗菌活性,但是纳米银容易引发细胞毒性,并且会污染环境,具有一定的生物安全性问题,不适合人体使用. 纳米酶是以纳米材料Fe3O4[11]为代表的一类既具有纳米材料的特性,又具有催化功能的模拟[12,13]. 它具有催化活性高、稳定性好、成本低、生物安全性高等优[14],因此应用于许多领域,包括疾病诊断和抗菌等. 活性氧(reactive oxygen species,ROS)在机体防御病原体侵袭中发挥着重要作用,而Fe3O4纳米酶能够调节由ROS诱导的自由基水平,人们常常在其表面修饰一些酶或者其他催化基团,从而使其获得更强或者更多的催化功[15]. Fe3O4纳米酶合成反应体系中加入半胱氨酸,可以形成硫化铁纳米酶(Cys-nFeS nanozyme[16],其过氧化物酶、过氧化氢酶活性显著增[15],同时能够释放多硫化物进一步增强抗菌效果. 本研究主要探讨氧化铁纳米酶和硫化铁纳米酶对鼠伤寒沙门菌生物被膜的影响,为开发新的抗细菌生物被膜制剂提供参考.

  • 1 材料与方法

  • 1.1 材料

    鼠伤寒沙门菌S025由农业部畜禽传染病学重点实验室馈赠,氯化铁、乙二醇购自美国Sigma有限公司,半胱氨酸(cysteine)、结晶紫(crystal violet)购自上海生工生物工程有限公司,胰蛋白胨大豆肉汤培养基(tryptic soy borth,TSB)购自Fluka公司,Alexa Fluor 647-葡聚糖(647/668 nm,分子质量:10 000 MW)和SYTO 9绿色荧光核酸染料(485/498 nm,分子探针)购自美国Thermo生物公司,ROS检测试剂盒购自中国碧云天生物技术研究所.

  • 1.2 培养细菌生物被膜

    将鼠伤寒沙门菌S025株单个菌落接种于3 ml TSB中,于37℃、220 r/min培养12 h,细菌吸光度值(A600)为1. 用1∶10稀释的TSB培养基按 1∶100稀释上述培养菌液,接种到96孔聚苯乙烯U型细胞培养板中,100 μl/孔,28℃静置培养48 h.

  • 1.3 合成铁基纳米酶

    参照水热合成[16]并进行适当改进. 首先将0.82 g无水氯化铁溶于40 ml无水乙醇中,并不断搅拌直至澄清,然后缓缓加入3.6 g醋酸钠快速搅拌直至形成均匀悬浊液,加入0.5 g半胱氨酸搅拌,超声10 min后,将上述溶液转移至50 ml聚四氟乙烯反应釜中,将反应釜置于200℃加热12 h后,待反应釜冷却至室温时,取出黑色沉淀物,无水乙醇和水洗涤产物3次后,将产物放置60℃烘箱直至完全干燥,得到的产物即为硫化铁纳米酶. 上述合成方法如果不加入半胱氨酸,则合成的产品为四氧化三铁纳米酶.

  • 1.4 铁基纳米酶处理鼠伤寒沙门菌生物被膜

    用1∶10 TSB培养基溶解硫化铁纳米酶、Fe3O4纳米酶和半胱氨酸,与培养菌液混匀,使其终浓度为500 mg/L,然后将稀释后的菌液接种于96孔聚苯乙烯U型细胞培养板中,28℃静置培养48 h,研究铁基纳米酶对鼠伤寒沙门菌生物被膜的影响.

    用1∶10 TSB培养基稀释培养菌液,然后将稀释后的菌液接种于96孔聚苯乙烯U型细胞培养板中,28℃静置培养48 h后,弃上清,0.01 mol/L PBS清洗2次,加入终浓度为500 mg/L 的硫化铁纳米酶、Fe3O4纳米酶或者半胱氨酸,28℃孵育0.5 h、2 h、12 h,评估铁基纳米酶对鼠伤寒沙门菌生物被膜的影响.

  • 1.5 生物被膜结晶紫染色吸光度值(A)测定

    参照Pratt[17]方法,将96孔聚苯乙烯U型细胞培养板中上清弃去,0.01 mol/L PBS清洗2次,加入0.4%结晶紫染液(100 μl/孔)避光染色 20 min后,弃上清,去离子水清洗3次,每孔加入100 μl 乙醇∶丙酮=3∶1的溶液溶解,将溶液收集至无菌离心管中,磁铁将纳米酶吸附至管底,将上清转移至96孔板中,测定A550值.

  • 1.6 共聚焦观察细菌生物被膜

    用含有终浓度为1 μmol/L Alexa Fluor 647-葡聚糖(647/668 nm,分子质量为10 000)的1∶10 TSB培养基稀释培养菌液,然后将稀释后的菌液接种于24孔无菌细胞爬片中,铁基纳米酶处理鼠伤寒沙门菌生物被膜方法同1.4. 生物被膜形成后,弃上清,无菌生理盐水清洗2次,加入终浓度为 50 nmol/L的SYTO 9绿色荧光核酸染料(485/ 498 nm;分子探针)孵育30 min后,4%多聚甲醛4℃固定15 min,应用Leica TCS SP8 STED共聚焦显微镜观察.

  • 1.7 电镜观察细菌生物被膜

    铁基纳米酶处理鼠伤寒沙门菌生物被膜方法同1.4. 生物被膜形成后,弃上清,2.5%戊二醛4℃固定12 h,PBS清洗2次,梯度酒精(30%、50%、70%、90%、100%、100%(含有饱和Na2SO4))脱水,CPD-300型临界点干燥仪内干燥,将样品粘贴到样品台,SCD 500型离子溅射仪内对样品表面喷镀黄金,S-4800Ⅱ场发射扫描电镜FESEM观察.

  • 1.8 称量生物被膜干重

    用1∶10 TSB培养基稀释培养菌液,然后将稀释后的菌液接种于60 mm规格的一次性培养皿中,4 ml/孔,铁基纳米酶处理鼠伤寒沙门菌生物被膜方法同1.4. 将一次性培养皿上清弃去,0.01 mol/L PBS清洗2次,加入适量PBS后,无菌玻璃珠振荡黏附在板底的生物被膜,使其脱落,收集菌液并超声,磁铁将纳米酶吸附至管底,将上清转移至新的离心管中,离心弃上清,加入200 μl PBS混匀后,将菌液转移至锡箔纸中,160℃,5 h,烘干称重,记录生物被膜干重.

  • 1.9 统计生物被膜中活菌数量

    用1∶10 TSB培养基稀释培养菌液,然后将稀释后的菌液接种于24孔细胞培养板中,300 μl/孔,铁基纳米酶处理鼠伤寒沙门菌生物被膜方法同1.4. 将24孔细胞培养板上清弃去,PBS清洗2次后,加入适量PBS,无菌玻璃珠振荡黏附在板底的生物被膜,使其脱落,收集菌液并超声,磁铁将纳米酶吸附至管底,将上清转移至新的离心管中,离心弃上清,加入1 ml PBS混匀后,倍比稀释涂板拍照并计数.

  • 1.10 检测细菌内活性氧

    用1∶10 TSB培养基稀释培养菌液,然后将稀释后的菌液接种于96孔细胞培养板中,100 μl/孔,铁基纳米酶处理鼠伤寒沙门菌生物被膜方法同1.4. 将96孔细胞培养板上清弃去,PBS清洗2次后,加入终浓度为100 μmol/L的DCFH-DA,100 μl/孔,37℃孵育30 min后,弃上清,PBS清洗3次后,加入100 μl PBS,荧光酶标仪检测,激发波长是 488 nm,发射波长是525 nm.

  • 1.11 数据处理及分析

    数据均采用平均值±标准差(means ± s.d.)表示. 应用SPSS17.0软件对试验数据进行统计分析,采用单因子方差(one-way ANOVA)或者t检验(student’s t-test)分析进行差异显著性检验. 应用软件GraphPad Prism 7进行图表制作.

  • 2 结果

  • 2.1 扫描电镜观察

    运用扫描电子显微镜检测纳米酶的形态及粒径,Fe3O4纳米酶(图1a)形貌良好,呈球形,尺寸均一,粒径为200 nm;以半胱氨酸(cysteine,Cys)为硫源制备的硫化铁纳米酶(图1b)形貌呈片状.

    Fig. 1 The scanning electron microscope (SEM) images of Fe3O4 nanozyme (a) with ball-like nanostructure and Cys-nFeS nanozyme(b)with sheet-like hexagonal nanostructure

  • 2.2 生物被膜结晶紫染色A

    生物被膜内物质可以与结晶紫染料结合,运用结晶紫染色定量法对生物被膜进行检[18],研究铁基纳米酶对破坏已经形成的生物被膜和预防鼠伤寒沙门菌生物被膜形成的能力. 生物被膜形成后,与未处理组相比,加入硫化铁纳米酶或者Fe3O4纳米酶处理2 h(图2b)和12 h(图2c)后,生物被膜结晶紫染色A值极显著下降(P<0.01),半胱氨酸组没有变化;硫化铁纳米酶组,随着处理时间的增加,生物被膜结晶紫染色A值逐渐降低;与Fe3O4纳米酶组相比,硫化铁纳米酶组生物被膜结晶紫染色A值显著下降(P<0.05). 鼠伤寒沙门菌S025株与硫化铁纳米酶或者Fe3O4纳米酶共孵育 48 h后(图2d),其生物被膜结晶紫染色A值极显著下降(P<0.01);硫化铁纳米酶组生物被膜结晶紫染色A值极显著低于Fe3O4纳米酶组(P<0.01). 以上结果表明硫化铁纳米酶与Fe3O4纳米酶不仅可以破坏已形成的生物被膜,而且可以预防鼠伤寒沙门菌生物被膜的形成,且硫化铁纳米酶作用效果更显著.

    Fig. 2 Biofilms were stained by crystal violet and measured at 550 nm

    NOTE: S.typhimurium S025 biofilms were formed on pre-sterilized 96 well plate,treated with Cys-nFeS nanozyme, Fe3O4 nanozyme or Cys for 0.5 h(a),2 h(b) and 12 h (c),and stained by crystal violet.(d) S.typhimurium S025 was cocultured with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 48 h,and stained by crystal violet. The data shown are the means ± SD (n=6). *P<0.05;**P<0.01.

  • 2.3 生物被膜形态和干重

    葡聚糖是沙门菌生物被膜基质的主要成分,在沙门菌生物被膜形成过程中加入Alexa Fluor 647-葡聚糖,用于观察生物被膜的形[19],同时用Syto 9(绿色)对细菌核酸进行染色. 如图3a所示,与未处理组相比,生物被膜形成后,硫化铁纳米酶处理12 h,细菌数量和生物膜基质明显减少,生物被膜厚度由10 μm降到4 μm;硫化铁纳米酶与鼠伤寒沙门菌S025株共培养48 h后,细菌数量和生物膜基质也显著减少. 同时运用扫描电镜对细菌和生物膜基质进行观察(图3b),未处理组中鼠伤寒沙门菌形成典型的生物膜结构,包括成团的细菌簇和生物膜基质(红色箭头所示),但是当硫化铁纳米酶处理后,细菌数量和生物膜基质急剧减少. 此外对生物被膜烘干,称量统计生物被膜干重. 在生物被膜形成后,再加入硫化铁纳米酶或者Fe3O4纳米酶处理2 h(图3d)、12 h(图3e),生物被膜干重与未处理组相比均显著下降(P<0.05),且随着时间的增加,生物被膜干重呈下降趋势. 鼠伤寒沙门菌S025株与硫化铁纳米酶或者Fe3O4纳米酶共孵育48 h后(图3f),其生物被膜干重与未处理组相比均极显著下降(P<0.01). 以上结果表明硫化铁纳米酶和Fe3O4纳米酶具有杀鼠伤寒沙门菌和破坏生物膜基质的作用,且硫化铁纳米酶作用效果更显著.

    Fig. 3 Confocal 3D images, SEM images and dry weight of biofilm

    NOTE: (a)Confocal 3D image of S.typhimurium S025 biofilms treated by Cys-nFeS nanozyme for 12 h or cocultured for 48 h.(b)SEM image of S.typhimurium S025 biofilms treated by Cys-nFeS nanozyme for 12 h or cocultured for 48 h. The red arrows indicate EPS,the white arrows indicate Cys-nFeS nanozyme. (c-e)S.typhimurium S025 biofilms were formed on pre-sterilized cell plate,treated with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 0.5 h(c),2 h(d) and 12 h(e),and then biofilm biomass were measured. (f)S.typhimurium S025 was cocultured with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 48 h,and then biofilm biomass were measured. The data shown are the means ± SD (n=6). *P<0.05; **P<0.01.

  • 2.4 生物被膜中活菌数量

    生物被膜是由生物膜基质以及包裹在内部的细菌、真菌组成,通过计算生物被膜中活菌数对生物被膜进行量[20]. 在生物被膜形成后,再加入硫化铁纳米酶或者Fe3O4纳米酶处理0.5 h(图4c)、 2 h(图4d)、12 h(图4a,e),生物被膜内活菌数量与未处理组相比均极显著下降(P<0.01),与图3a,b 结果一致. 鼠伤寒沙门菌S025株与硫化铁纳米酶或者Fe3O4纳米酶共孵育48 h后(图4b,f),生物被膜内活菌数量与未处理组相比均极显著下降(P<0.01),硫化铁纳米酶组细菌数量极显著低于Fe3O4纳米酶组(P<0.01),与图3a,b 结果一致. 以上结果表明硫化铁纳米酶与Fe3O4纳米酶不仅可以杀死已经形成的生物被膜内细菌,而且可以杀死浮游状态的鼠伤寒沙门菌,预防鼠伤寒沙门菌生物被膜的形成,且硫化铁纳米酶作用效果更显著.

    Fig. 4 The colony-forming units of Salmonella cells in biofilm

    NOTE: S.typhimurium S025 biofilms were formed on pre-sterilized cell plate,treated with Cys-nFeS nanozyme, Fe3O4 nanozyme or Cys for 0.5 h (c), 2 h (d)and 12 h (a,e),and then the biofilms were collected for counting of the colony-forming units of Salmonella cells cultured on agar plates after dilution to the proper concentration. S.typhimurium S025 was cocultured with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 48 h,and then the biofilms were collected for counting of the colony-forming units of Salmonella cells cultured on agar plates after dilution to the proper concentration(b,f). The data shown are the means ± SD (n=6). *P<0.05;**P<0.01.

  • 2.5 细菌内ROS水平

    为了探究铁基纳米酶抗沙门菌生物被膜的机制,对沙门菌胞内ROS活性水平进行检测. 在生物被膜形成后,再加入硫化铁纳米酶或者Fe3O4纳米酶处理0.5 h(图5a)、2 h(图5b)、12 h(图5c),细菌内ROS活性水平与未处理组相比均极显著上升(P<0.01). 鼠伤寒沙门菌S025株与硫化铁纳米酶或者Fe3O4纳米酶共孵育48 h后(图5d),细菌内ROS活性水平与未处理组相比均极显著上升(P<0.01),硫化铁纳米酶组ROS活性水平极显著高于Fe3O4纳米酶组(P<0.01). 以上结果与生物被膜结晶紫染色A值、生物被膜形态和干重、活菌数量结果一致,表明硫化铁纳米酶与Fe3O4纳米酶通过调节细菌内ROS活性水平清除生物被膜和杀菌,且硫化铁纳米酶刺激细菌产生ROS活性水平显著高于Fe3O4纳米酶处理组.

    Fig.5 The level of the internal ROS

    NOTE: (a-c)S.typhimurium S025 biofilms were formed on pre-sterilized 96 well plate, treated with Cys-nFeS nanozyme, Fe3O4 nanozyme or Cys for 0.5 h(a),2 h(b)and 12 h(c),and the intracellular ROS level of S.typhimurium S025 was detected by using a 2’,7’-dichlorofluorescin diacetate (DCFH-DA) fluorescent probe. (d)S.typhimurium S025 was cocultured with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 48 h,and the intracellular ROS level of S.typhimurium S025 was detected. The data shown are the means ± SD(n=6). *P<0.05; **P<0.01.

  • 3 讨论

    沙门菌生物被膜可以感染包括人在内的多种宿主,导致严重的胃肠炎和腹泻,以及危及生命的食物中毒,是影响全球公共卫生和经济发展最重要的健康问题之一. 细菌形成生物被膜后,耐药性大大增加,研究表明位于生物被膜内的细菌抵抗抗生素的能力是浮游态细菌的1 000[21],所以需要开发新型的抗生物被膜制剂,既能高效地清除生物被膜,又具有较好的生物和环境相容性. 最新研究证实,纳米金属硫化物(例如CuS和MoS2)由于无机硫的存在,所以抗菌活性很[22,23]. 半胱氨酸为含硫氨基酸,能谱仪对硫化铁纳米酶元素种类进行分析,显示含有铁和硫,硫与铁的原子比例大约为9∶10. 0.5 g/L硫化铁纳米酶处理口腔变异链球菌 10 min后,细菌数量由107 CFU/ml下降到 104 CFU/ml[16];鼠伤寒沙门菌与硫化铁纳米酶共孵育48 h后,其生物被膜中活菌数量显著下降,在生物被膜形成后,再加入硫化铁纳米酶处理0.5 h、2 h和12 h,生物被膜中活菌数量也显著下降,表明硫化铁纳米酶可以影响细菌的活力,可能与其含硫相关. 活性氧是机体防御病原体侵袭的第一道防线,巨噬细胞和中性粒细胞借助溶酶体内的酸性环境产生大量的活性氧自由基,包括羟基自由基和超氧自由基等,这些ROS可以破坏蛋白质、核酸、脂类等生物分子,使其失去功[24,25]. 纳米酶在酸性pH时(pH=4.5)表现出过氧化物酶的催化活性,催化过氧化氢产生羟基自由[15]. 纳米酶进入细胞后,在溶酶体酸性环境中发挥过氧化物酶活性,提高ROS活性水平,从而杀死多种细菌和清除生物被[26]. 0.5 g/L硫化铁纳米酶处理口腔变异链球菌后,细菌数量急剧下降,细菌内ROS水平上升50%[16];硫化铁纳米酶处理鼠伤寒沙门菌生物被膜0.5 h、2 h和12 h以及与细菌共孵育48 h后,细菌内ROS水平显著上升,表明硫化铁纳米酶通过调控细菌内ROS活性水平,发挥杀菌作用. 研究发现,硫化铁纳米酶过氧化物酶活性比Fe3O4纳米酶[16],这与硫化铁纳米酶刺激细菌ROS活性水平显著高于Fe3O4纳米酶结果一致,所以硫化铁纳米酶预防鼠伤寒沙门菌生物被膜形成和破坏已经形成的生物被膜能力显著高于Fe3O4纳米酶. 硫化铁纳米酶还可以释放多硫化氢,包括H2S2H2S3,清除口腔变异链球[16]. 我们的研究为硫化铁纳米酶提供了一个新的应用,预防鼠伤寒沙门菌生物被膜的形成和清除已经形成的生物被膜,为解决生物被膜引起的感染提供了一种新的治疗策略.

    Tel: 86-514-87797090, E-mail: lzgao@yzu.edu.cn

  • 参 考 文 献

    • 1

      Wisner A L, Potter A A, Koster W. Effect of the Salmonella pathogenicity island 2 type Ⅲ secretion system on Salmonella survival in activated chicken macrophage-like HD11 cells. Plos One, 2011, 6(12): e29787

    • 2

      Voetsch A C, Van Gilder T J, Angulo F J, et al. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis, 2004, 38(Suppl 3): S127-134

    • 3

      Romling U, Bokranz W, Rabsch W, et al. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int J Med Microbiol, 2003, 293(4): 273-285

    • 4

      Marin C, Hernandiz A, Lainez M. Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult Sci, 2009, 88(2): 424-431

    • 5

      Scher K, Romling U, Yaron S. Effect of heat, acidification, and chlorination on Salmonellaenterica serovar typhimurium cells in a biofilm formed at the air-liquid interface. Appl Environ Microbiol, 2005, 71(3): 1163-1168

    • 6

      Joseph B, Otta S K, Karunasagar I, et al. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol, 2001, 64(3): 367-372

    • 7

      Flemming H C, Wingender J. The biofilm matrix. Nat Rev Microbiol, 2010, 8(9): 623-633

    • 8

      Shi W Y, Zhou X D. Preface for the microbial biofilm issue. Int J Oral Sci, 2011, 3(2): 47-48

    • 9

      Duran N, Duran M, De Jesus M B, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, 12(3): 789-799

    • 10

      Pelgrift R Y, Friedman A J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev, 2013, 65(13-14): 1803-1815

    • 11

      Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol, 2007, 2(9): 577-583

    • 12

      Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev, 2013, 42(14): 6060-6093

    • 13

      Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (Ⅱ). Chem Soc Rev, 2019, 48(4): 1004-1076

    • 14

      Toumey C. Quick lessons on environmental nanotech. Nat Nanotechnol, 2015, 10(7): 566-567

    • 15

      Gao L, Yan X. Discovery and current application of nanozyme. Prog Biochem Biophys, 2013, 40(10): 892-902

    • 16

      Xu Z, Qiu Z, Liu Q, et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat Commun, 2018, 9(1): 3713

    • 17

      Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type Ⅰ pili. Mol Microbiol, 1998, 30(2): 285-293

    • 18

      El Hag M, Feng Z, Su Y, et al. Contribution of the csgA and bcsA genes to Salmonella enterica serovar Pullorum biofilm formation and virulence. Avian Pathol, 2017, 46(5): 541-547

    • 19

      Lawrence J R, Wolfaardt G M, Korber D R. Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl Environ Microbiol, 1994, 60(4): 1166-1173

    • 20

      Banin E, Brady K M, Greenberg E P. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol, 2006, 72(3): 2064-2069

    • 21

      Hengzhuang W, Wu H, Ciofu O, et al. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother, 2011, 55(9): 4469-4474

    • 22

      Wang H Y, Hua X W, Wu F G, et al. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Appl Mater Interfaces, 2015, 7(13): 7082-7092

    • 23

      Yang X, Li J, Liang T, et al. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale, 2014, 6(17): 10126-10133

    • 24

      Fang F C. Antimicrobial actions of reactive oxygen species. MBio, 2011, 2(5), pii: e00141-11

    • 25

      Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J, 2017, 14(1): 89-96

    • 26

      Tang Y, Qiu Z, Xu Z, et al. Antibacterial mechanism and applications of nanozymes. Prog Biochem Biophys, 2018, 45(2): 118-128

阴银燕

机 构:扬州大学医学院,扬州 225009

Affiliation:Medical College of Yangzhou University, Yangzhou 225009, China

吴梦星

机 构:扬州大学医学院,扬州 225009

Affiliation:Medical College of Yangzhou University, Yangzhou 225009, China

秦涛

机 构:扬州大学兽医学院,江苏省动物重要疫病与人兽共患病防控协同创新中心,扬州 225009

Affiliation:College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for The Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225009, China

何凯明

机 构:扬州大学医学院,扬州 225009

Affiliation:Medical College of Yangzhou University, Yangzhou 225009, China

徐诺

机 构:扬州大学医学院,扬州 225009

Affiliation:Medical College of Yangzhou University, Yangzhou 225009, China

史艺

机 构:扬州大学医学院,扬州 225009

Affiliation:Medical College of Yangzhou University, Yangzhou 225009, China

刘岐

机 构:扬州大学医学院,扬州 225009

Affiliation:Medical College of Yangzhou University, Yangzhou 225009, China

彭大新

机 构:扬州大学兽医学院,江苏省动物重要疫病与人兽共患病防控协同创新中心,扬州 225009

Affiliation:College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for The Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225009, China

高利增

机 构:扬州大学医学院,扬州 225009

Affiliation:Medical College of Yangzhou University, Yangzhou 225009, China

html/pibben/20190024/media/367eb1e2-cb8d-488a-ab5a-d562cebea221-image001.jpeg
html/pibben/20190024/alternativeImage/367eb1e2-cb8d-488a-ab5a-d562cebea221-F002.png
html/pibben/20190024/alternativeImage/367eb1e2-cb8d-488a-ab5a-d562cebea221-F003.png
html/pibben/20190024/alternativeImage/367eb1e2-cb8d-488a-ab5a-d562cebea221-F004.png
html/pibben/20190024/alternativeImage/367eb1e2-cb8d-488a-ab5a-d562cebea221-F005.png

Fig. 1 The scanning electron microscope (SEM) images of Fe3O4 nanozyme (a) with ball-like nanostructure and Cys-nFeS nanozyme(b)with sheet-like hexagonal nanostructure

Fig. 2 Biofilms were stained by crystal violet and measured at 550 nm

Fig. 3 Confocal 3D images, SEM images and dry weight of biofilm

Fig. 4 The colony-forming units of Salmonella cells in biofilm

Fig.5 The level of the internal ROS

image /

无注解

S.typhimurium S025 biofilms were formed on pre-sterilized 96 well plate,treated with Cys-nFeS nanozyme, Fe3O4 nanozyme or Cys for 0.5 h(a),2 h(b) and 12 h (c),and stained by crystal violet.(d) S.typhimurium S025 was cocultured with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 48 h,and stained by crystal violet. The data shown are the means ± SD (n=6). *P<0.05;**P<0.01.

(a)Confocal 3D image of S.typhimurium S025 biofilms treated by Cys-nFeS nanozyme for 12 h or cocultured for 48 h.(b)SEM image of S.typhimurium S025 biofilms treated by Cys-nFeS nanozyme for 12 h or cocultured for 48 h. The red arrows indicate EPS,the white arrows indicate Cys-nFeS nanozyme. (c-e)S.typhimurium S025 biofilms were formed on pre-sterilized cell plate,treated with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 0.5 h(c),2 h(d) and 12 h(e),and then biofilm biomass were measured. (f)S.typhimurium S025 was cocultured with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 48 h,and then biofilm biomass were measured. The data shown are the means ± SD (n=6). *P<0.05; **P<0.01.

S.typhimurium S025 biofilms were formed on pre-sterilized cell plate,treated with Cys-nFeS nanozyme, Fe3O4 nanozyme or Cys for 0.5 h (c), 2 h (d)and 12 h (a,e),and then the biofilms were collected for counting of the colony-forming units of Salmonella cells cultured on agar plates after dilution to the proper concentration. S.typhimurium S025 was cocultured with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 48 h,and then the biofilms were collected for counting of the colony-forming units of Salmonella cells cultured on agar plates after dilution to the proper concentration(b,f). The data shown are the means ± SD (n=6). *P<0.05;**P<0.01.

(a-c)S.typhimurium S025 biofilms were formed on pre-sterilized 96 well plate, treated with Cys-nFeS nanozyme, Fe3O4 nanozyme or Cys for 0.5 h(a),2 h(b)and 12 h(c),and the intracellular ROS level of S.typhimurium S025 was detected by using a 2’,7’-dichlorofluorescin diacetate (DCFH-DA) fluorescent probe. (d)S.typhimurium S025 was cocultured with Cys-nFeS nanozyme,Fe3O4 nanozyme or Cys for 48 h,and the intracellular ROS level of S.typhimurium S025 was detected. The data shown are the means ± SD(n=6). *P<0.05; **P<0.01.

  • 参 考 文 献

    • 1

      Wisner A L, Potter A A, Koster W. Effect of the Salmonella pathogenicity island 2 type Ⅲ secretion system on Salmonella survival in activated chicken macrophage-like HD11 cells. Plos One, 2011, 6(12): e29787

    • 2

      Voetsch A C, Van Gilder T J, Angulo F J, et al. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis, 2004, 38(Suppl 3): S127-134

    • 3

      Romling U, Bokranz W, Rabsch W, et al. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int J Med Microbiol, 2003, 293(4): 273-285

    • 4

      Marin C, Hernandiz A, Lainez M. Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult Sci, 2009, 88(2): 424-431

    • 5

      Scher K, Romling U, Yaron S. Effect of heat, acidification, and chlorination on Salmonellaenterica serovar typhimurium cells in a biofilm formed at the air-liquid interface. Appl Environ Microbiol, 2005, 71(3): 1163-1168

    • 6

      Joseph B, Otta S K, Karunasagar I, et al. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol, 2001, 64(3): 367-372

    • 7

      Flemming H C, Wingender J. The biofilm matrix. Nat Rev Microbiol, 2010, 8(9): 623-633

    • 8

      Shi W Y, Zhou X D. Preface for the microbial biofilm issue. Int J Oral Sci, 2011, 3(2): 47-48

    • 9

      Duran N, Duran M, De Jesus M B, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, 12(3): 789-799

    • 10

      Pelgrift R Y, Friedman A J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev, 2013, 65(13-14): 1803-1815

    • 11

      Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol, 2007, 2(9): 577-583

    • 12

      Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev, 2013, 42(14): 6060-6093

    • 13

      Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (Ⅱ). Chem Soc Rev, 2019, 48(4): 1004-1076

    • 14

      Toumey C. Quick lessons on environmental nanotech. Nat Nanotechnol, 2015, 10(7): 566-567

    • 15

      Gao L, Yan X. Discovery and current application of nanozyme. Prog Biochem Biophys, 2013, 40(10): 892-902

    • 16

      Xu Z, Qiu Z, Liu Q, et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat Commun, 2018, 9(1): 3713

    • 17

      Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type Ⅰ pili. Mol Microbiol, 1998, 30(2): 285-293

    • 18

      El Hag M, Feng Z, Su Y, et al. Contribution of the csgA and bcsA genes to Salmonella enterica serovar Pullorum biofilm formation and virulence. Avian Pathol, 2017, 46(5): 541-547

    • 19

      Lawrence J R, Wolfaardt G M, Korber D R. Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl Environ Microbiol, 1994, 60(4): 1166-1173

    • 20

      Banin E, Brady K M, Greenberg E P. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol, 2006, 72(3): 2064-2069

    • 21

      Hengzhuang W, Wu H, Ciofu O, et al. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother, 2011, 55(9): 4469-4474

    • 22

      Wang H Y, Hua X W, Wu F G, et al. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Appl Mater Interfaces, 2015, 7(13): 7082-7092

    • 23

      Yang X, Li J, Liang T, et al. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale, 2014, 6(17): 10126-10133

    • 24

      Fang F C. Antimicrobial actions of reactive oxygen species. MBio, 2011, 2(5), pii: e00141-11

    • 25

      Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J, 2017, 14(1): 89-96

    • 26

      Tang Y, Qiu Z, Xu Z, et al. Antibacterial mechanism and applications of nanozymes. Prog Biochem Biophys, 2018, 45(2): 118-128