en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
YiJ , LiW . Biological motion perception: the roles of global configuration and local motion. Advances in Psychological Science, 2011, 19(3):301-311
参考文献 2
JohanssonG. Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 1973, 14(2): 201-211
参考文献 3
GrossmanE D, RandolphB, Chai-YounK. Learning to see biological motion: brain activity parallels behavior. Journal of Cognitive Neuroscience, 2004, 16(9): 1669-1679
参考文献 4
JohanssonG. Spatio-temporal differentiation and integration in visual motion perception. Psychological Research, 1976, 38(4): 379-393
参考文献 5
DittrichW H. Action categories and the perception of biological motion. Perception, 1993, 22(1): 15-22
参考文献 6
BarclayC D, CuttingJ E, KozlowskiL T. Temporal and spatial factors in gait perception that influence gender recognition. Attention, Perception, & Psychophysics, 1978, 23(2): 145-152
参考文献 7
MatherG, MurdochL. Gender discrimination in biological motion displays based on dynamic cues. Proceedings of the Royal Society Biological Sciences, 1994, 258(1353): 273-279
参考文献 8
BrownlowS, DixonA R, EgbertC A, et al. Perception of movement and dancer characteristics from point-light displays of dance. Psychological Record, 1997, 47(3): 411-421
参考文献 9
IkedaH, BlakeR, WatanabeK. Eccentric perception of biological motion is unscalably poor. Vision Research, 2005, 45(15): 1935-1943
参考文献 10
GrossmanE D, BlakeR. Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research, 1999, 39(22): 3721-3727
参考文献 11
PavlovaM, SokolovA. Orientation specificity in biological motion perception. Attention, Perception, & Psychophysics, 2000, 62(5): 889-899
参考文献 12
SumiS, . Upside-down presentation of the Johansson moving light-spot pattern. Perception, 1984, 13(3): 283-286
参考文献 13
PavlovaM, SokolovA. Prior knowledge about display inversion in biological motion perception. Perception, 2003, 32(8): 937-946
参考文献 14
TrojeN F. Reference frames for orientation anisotropies in face recognition and biological-motion perception. Perception, 2003, 32(2): 201-210
参考文献 15
SimionF , RegolinL , BulfH . A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci USA, 2008, 105(2):809-813
参考文献 16
BertenthalB I, ProffittD R, CuttingJ E. Infant sensitivity to figural coherence in biomechanical motions. Journal of Experiment Child Psychology, 1984, 37(2): 213-230
参考文献 17
HiraiM, HirakiK. An event-related potentials study of biological motion perception in human infants. Cognitive Brain Research, 2005, 22(2): 301-304
参考文献 18
ZhaoJ, WangL, WangY, et al. Developmental tuning of reflexive attentional effect to biological motion cues. Scientific Reports, 2014, 4(1): 5558-5558
参考文献 19
NormanJ F, PaytonS M, LongJ R, et al. Aging and the perception of biological motion. Psychology & Aging, 2004, 19(1): 219-225
参考文献 20
PilzK S, BennettP J, SekulerA B. Effects of aging on biological motion discrimination. Vision Research, 2010, 50(2): 211-219
参考文献 21
VallortigaraG, RegolinL, MarconatoF. Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. Plos Biology, 2005, 3(7): e208
参考文献 22
BlakeR. Cats perceive biological motion. Psychological Science, 1993, 4(1): 54-57
参考文献 23
IshikawaY, MillsD, WillmottA, et al. Sociability modifies dogs' sensitivity to biological motion of different social relevance. Animal Cognition, 2018, 21(2): 245-252
参考文献 24
McleodP, DittrichW, DriverJ, et al. Preserved and impaired detection of structure from motion by a ''motion-blind'' patient. Visual Cognition, 1996, 3(4): 363-391
参考文献 25
CoweyA, VainaL M. Blindness to form from motion despite intact static form perception and motion detection. Neuropsychologia, 2000, 38(5): 566-578
参考文献 26
Gilaie-DotanS, BentinS, HarelM, et al. Normal form from biological motion despite impaired ventral stream function. Neuropsychologia, 2011, 49(5): 1033-1043
参考文献 27
VainaL M, LemayM, BienfangD C, et al. Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms:a case study. Visual Neuroscience, 1990, 5(4): 353-369
参考文献 28
VainaL M, GrossC G. Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. Proc Natl Acad Sci USA, 2004, 101(48): 16947-16951
参考文献 29
AnnazD, CampbellR, ColemanM, et al. Young children with autism spectrum disorder do not preferentially attend to biological motion. Journal of Autism Developmental Disorders, 2012, 42(3): 401-408
参考文献 30
KlinA, LinD J, GorrindoP, et al. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 2009, 459(7244): 257-261
参考文献 31
BlakeR, TurnerL M, SmoskiM J, et al. Visual recognition of biological motion is impaired in children with autism. Psychological Science, 2003, 14(2): 151-157
参考文献 32
FreitagC M, KonradC, HaberlenM, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia, 2008, 46(5): 1480-1494
参考文献 33
NackaertsE, WagemansJ, HelsenW, et al. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. Plos One, 2012, 7(9): e44473
参考文献 34
KimJ, NortonD, McbainR, et al. Deficient biological motion perception in schizophrenia: results from a motion noise paradigm. Frontiers in Psychology, 2013, 4: 391
参考文献 35
KimJ, DoopM L, BlakeR, et al. Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 2005, 77(2-3): 299-307
参考文献 36
BruzzoA, GesierichB, WohlschlagerA. Simulating biological and non-biological motion. Brain and Cognition, 2008, 66(2): 145-149
参考文献 37
LangeJ, GeorgK, LappeM. Visual perception of biological motion by form: a template-matching analysis. Journal of Vision, 2006, 6(8): 836-849
参考文献 38
GieseM A, PoggioT. Cognitive neuroscience: Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 2003, 4(3):179-192
参考文献 39
CasileA, GieseM. Roles of motion and form in biological motion recognition. Joint International Conference on Artificail Neural Networks and Neural Information Processing, 2003, 2714: 854-862
参考文献 40
ThompsonJ C, BaccusW. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. Neuroimage, 2012, 59(1): 625-634
参考文献 41
JastorffJ, PopivanovI D, VogelsR, et al. Integration of shape and motion cues in biological motion processing in the monkey STS. Neuroimage, 2012, 60(2): 911-921
参考文献 42
HerringtonJ, NymbergC, FajaS, et al. The responsiveness of biological motion processing areas to selective attention towards goals. Neuroimage, 2012, 63(1): 581-590
参考文献 43
HerringtonJ D, NymbergC, SchultzR T. Biological motion task performance predicts superior temporal sulcus activity. Brain and Cognition, 2011, 77(3): 372-381
参考文献 44
PeuskensH, VanrieJ, VerfaillieK, et al. Specificity of regions processing biological motion. European Journal of Neuroscience, 2005, 21(10): 2864-2875
参考文献 45
KrakowskiA I, RossL A, SnyderA C, et al. The neurophysiology of human biological motion processing: a high-density electrical mapping study. Neuroimage, 2011, 56(1): 373-383
参考文献 46
MatherG, BattagliniL, CampanaG. TMS reveals flexible use of form and motion cues in biological motion perception. Neuropsychologia, 2016, 84: 193-197
参考文献 47
SokolovA A, ZeidmanP, ErbM, et al. Structural and effective brain connectivity underlying biological motion detection. Proc Natl Acad Sci USA, 2018, 115(51): E12034-E12042
参考文献 48
HahnC A, O'tooleA J. Recognizing approaching walkers: Neural decoding of person familiarity in cortical areas responsive to faces, bodies, and biological motion. Neuroimage, 2017, 146: 859-868
参考文献 49
EngellA D, MccarthyG. Probabilistic atlases for face and biological motion perception: an analysis of their reliability and overlap. Neuroimage, 2013, 74: 140-151
参考文献 50
MichelsL, KleiserR, De LussanetM H E, et al. Brain activity for peripheral biological motion in the posterior superior temporal gyrus and the fusiform gyrus: dependence on visual hemifield and view orientation. Neuroimage, 2009, 45(1): 151-159
参考文献 51
JastorffJ, OrbanG A. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. Journal of Neuroscience, 2009, 29(22): 7315-7329
参考文献 52
HiraiM, FikushimaH, HirakiK. An event-related potentials study of biological motion perception in humans. Neuroscience Letters, 2003, 344(1): 41-44
参考文献 53
Gilaie-DotanS, SayginA P, LorenziL J, et al. Ventral aspect of the visual form pathway is not critical for the perception of biological motion. Proc Natl Acad Sci USA, 2015, 112(4): E361-E370
参考文献 54
HuberleE, RupekP, LappeM, et al. Perception of biological motion in visual agnosia. Frontiers in Behavioral Neuroscience, 2012, 6:1-7
参考文献 55
GrossmanE D, JardineN L, PylesJ A. fMR-adaptation reveals invariant coding of biological motion on the human STS. Frontiers in Human Neuroscience, 2010, 4:1-18
参考文献 56
GrossmanE, DonnellyM, PriceR, et al. Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 2000, 12(5): 711-720
参考文献 57
Bidet-CauletA, VoisinJ, BertrandO, et al. Listening to a walking human activates the temporal biological motion area. Neuroimage, 2005, 28(1): 132-139
参考文献 58
SayginA P, WilsonS M, HaglerD J, Jr., et al. Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience, 2004, 24(27): 6181-6188
参考文献 59
DowningP E, JiangY H, ShumanM, et al. A cortical area selective for visual processing of the human body. Science, 2001, 293(5539): 2470-2473
参考文献 60
CarterE J, PelphreyK A. School-aged children exhibit domain-specific responses to biological motion. Social Neuroscience, 2006, 1(3-4): 396-411
参考文献 61
BondaE, PetridesM, OstryD, et al. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 1996, 16(11): 3737-3744
参考文献 62
VainaL M , SolomonJ , ChowdhuryS , et al. Functional neuroanatomy of biological motion perception in humans. Proc Natl Acad Sci USA, 2001, 98(20):11656-11661
参考文献 63
SokolovA A, ErbM, GharabaghiA, et al. Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus. Neuroimage, 2012, 59(3): 2824-2830
参考文献 64
PtitoM, FaubertJ, GjeddeA, et al. Separate neural pathways for contour and biological-motion cues in motion-defined animal shapes. NeuroImage, 2003, 19(2): 246-252
参考文献 65
KaiserM D, ShiffrarM, PelphreyK A. Socially tuned: brain responses differentiating human and animal motion. Social Neuroscience, 2012, 7(3): 301-310
参考文献 66
GrossmanE D, BlakeR. Brain areas active during visual perception of biological motion. Neuron, 2002, 35(6): 1167-1175
参考文献 67
GrossmanE D, BlakeR. Brain activity evoked by inverted and imagined biological motion. Vision Research, 2001, 41(10-11): 1475-1482
参考文献 68
GrezesJ, FonluptP, BertenthalB, et al. Does perception of biological motion rely on specific brain regions?. Neuroimage, 2001, 13(5): 775-785
参考文献 69
GarciaJ O, PylesJ A, GrossmanE D. Stimulus complexity modulates contrast response functions in the human middle temporal area (hMT plus ). Brain Research, 2012, 1466:56-69
参考文献 70
ChangD H F, BanH, IkegayaY, et al. Cortical and subcortical responses to biological motion. Neuroimage, 2018, 174: 87-96
参考文献 71
BeauchampM S, LeeK E, HaxbyJ V, et al. fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 2003, 15(7): 991-1001
参考文献 72
GrossmanE D, BattelliL, Pascual-LeoneA. Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 2005, 45(22): 2847-2853
参考文献 73
Van KemenadeB M, MuggletonN, WalshV, et al. Effects of TMS over premotor and superior temporal cortices on biological motion perception. Journal of Cognitive Neuroscience, 2012, 24(4): 896-904
参考文献 74
SayginA P. Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 2007, 130(Pt 9): 2452-2461
参考文献 75
CasileA, GieseM A. Critical features for the recognition of biological motion. Journal of Vision, 2005, 5(4): 348-360
参考文献 76
SigalaR, SerreT, PoggioT, et al. Learning features of intermediate complexity for the recognition of biological motion. International Conference on Artificial Neural Networks: Biological Inspirations, 2005, 3696: 241-246
参考文献 77
BattelliL, CavanaghP, ThorntonI M. Perception of biological motion in parietal patients. Neuropsychologia, 2003, 41(13): 1808-1816
参考文献 78
VainaL M , GrossC G . Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. Proc Natl Acad Sci USA, 2004, 101(48):16947-16951
参考文献 79
BillinoJ, BraunD I, K-DBoehm, et al. Cortical networks for motion processing: effects of focal brain lesions on perception of different motion types. Neuropsychologia, 2009, 47(10): 2133-2144
参考文献 80
SokolovA A, GharabaghiA, TatagibaM S, et al. Cerebellar engagement in an action observation network. Cerebral Cortex, 2010, 20(2): 486-491
参考文献 81
HanZ, BiY, ChenJ, et al. Distinct regions of right temporal cortex are associated with biological and human-agent motion: functional magnetic resonance imaging and neuropsychological evidence. Journal of Neuroscience, 2013, 33(39): 15442-15453
参考文献 82
GrossmanE D, BlakeR, KimC Y. Learning to see biological motion: Brain activity parallels behavior. Journal of Cognitive Neuroscience, 2004, 16(9): 1669-1679
参考文献 83
SokolovA A, ErbM, GroddW, et al. Recovery of biological motion perception and network plasticity after cerebellar tumor removal. Cortex, 2014, 59: 146-152
参考文献 84
OramM W, PerrettD I. Responses of anterior superior temporal polysensory(STPa) neurons to “biological motion” stimuli. Journal of Cognitive Neuroscience, 1994, 6(2): 99-116
参考文献 85
OramM W, PerrettD I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 1996, 76(1): 109-129
参考文献 86
RuganiR, SalvaO R, RegolinL, et al. Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 2015, 290: 1-7
参考文献 87
TakemuraY, YamaguchiS, AokiN, et al. Gene expression of Dio2 (thyroid hormone converting enzyme) in telencephalon is linked with predisposed biological motion preference in domestic chicks. Behavioural Brain Research, 2018, 349: 25-30
参考文献 88
TrojeN F, AustU. What do you mean with "direction"? Local and global cues to biological motion perception in pigeons. Vision Research, 2013, 79: 47-55
目录 contents

    摘要

    识别其他生物体的运动对于个体的生存和社会交互都有极为重要的意义. 本文首先基于生物运动识别的行为学、心理物理学、脑损伤和精神障碍研究介绍了生物运动识别的一些特性和影响因素;然后基于神经影像学、脑损伤和神经电生理学研究从视觉系统背腹侧双通路加工的角度,梳理了其信息加工机制的进展;最后对生物运动识别信息加工神经机制的研究方向提出了一点建议,并指出研究过程中需要注意的问题.

    Abstract

    Recognizing the motion of biological entities is crucial for individual survival and social interaction in many species. The properties and influencing factors of biological motion recognition are summarized here, based on the studies in psychophysical experiments, lesions and mental disorder. Then, the main findings in neural mechanism of biological motion recognition are reviewed from the perspective of dorsal-ventral visual pathways, according to the experimental evidences in neuroimaging, lesions and neuro-electrophysiological studies. Finally, some matters and suggestions for future research about neural mechanism of biological motion recognition are put forward.

    李胜光. 通信作者:E-mail: lisg@psych.ac.cn

    张弢. E-mail: taozhang@psych.ac.cn

    自然界中,及早判明其他生物体的身份及意图往往是性命攸关的事,然而在观测距离过远、背景杂乱或光照不理想等情形下依靠静态的细节特征识别目标是很困难的,但是利用生物运动信息则可以迅捷有效地判断目标身份(如是猎物或捕食者)甚至预测其行为(如将要逃避或者攻击),而且较少受到上述环境因素的干扰. 对包括人类在内的灵长类生物而言,身姿、步态、运动节律等生物运动信息往往可以传递丰富的社会信息,因此生物运动在社会交互中也起着至关重要的作用.

    生物运动(biological motion)指的是生物体(人类和动物)在空间上的整体性移动行为,如步行、奔跑[1]. 20世纪70年代,瑞士心理学家Johansson[2]通过将点光源固定在人体的主要关节处(如肩、肘、踝等),在黑暗条件下记录其行走、奔跑等各种运动,从而得到与人体外观信息相分离,仅包含了生物运动模式信息的光点运动序列(point-light displays,PLD),且后者被广泛用于生物运动研究中. 当这些光点静止不动时,人们很容易将其视为无规律随机排列的散点,而当这些点运动时,即使不经过练习,也很容易将其知觉为完整的人[2,3],即使呈现时间只有200 ms[4].

  • 1 生物运动识别的特性和影响因素

  • 1.1 生物运动可以传递丰富的信息并且其识别会受到多种因素影响

    人们能很好地从PLD视觉刺激中识别出运动的方向、所做动作的类[5]、对象的性[6,7]、情绪状[8]等信息,表明生物运动可以传递丰富的信息,而非仅仅是光点的运动. 中央视野识别生物运动的能力优于外周视野,并且这种差异无法通过放大生物运动刺激的尺寸来弥补,表明负责生物运动识别的神经资源可能主要集中于中央视野区[9]. 此外,弱光条件下生物运动的识别能力会降[10],亮度和对比度下降会增加几乎所有视觉分辨任务的难度,因此这点并非生物运动识别所独有.

    生物运动信息识别中一个很鲜明的特性是存在倒置效应,即PLD刺激倒置会对生物运动识别产生严重的负面影[11,12],并且预先知道刺激是否倒置并不能消除该影[13]. 研究还表明,该倒置作用遵循以自我为中心的参考[14]. 同面孔的识别相似,一般认为,由于生活在重力环境下,在长期的观察中,我们形成了对生物运动配置信息的特定印象,而倒置作用则破坏这种配置信息.

  • 1.2 生物运动识别是一种生而具有、相对稳定并且跨物种的能力

    令人惊奇的是,仅仅出生两天的新生儿就表现出了对生物运动的偏[15]. 如果分别使用静止和运动的“光点小人”测试3~5月龄婴儿的反应,会发现婴儿观看运动“光点小人”的时间更长,即更偏好生物运动刺[16],这不仅表明婴儿可以将二者区分开来,而且也喻示着运动光点序列可能包含了更多的信息,或者是运动目标本身更容易捕获注意. 到8个月大时,婴儿观察PLD生物运动时其右侧脑区的激活模式已经与成年人相似,表明识别生物运动的神经基础在出生后八个月左右就已经成[17]. 到4岁时,儿童的注意力受生物运动方向影响的程度已经可以达到成年人的水[18]. 然而有趣的是,60岁以上的观察者,即使一般视知觉功能受损,对生物运动的识别能力与正常成人也没有显著差[19,20]. 以上研究说明生物运动识别的能力不仅是天生的,而且相对稳定,还基本不受老化的影响.

    生物运动识别和偏好并非人类独有. 饲养于黑暗条件的新生小鸡,在完全没有视觉经验的情况下,相对于随机运动的刺激,也会对生物运动刺激产生偏[21]. 类似的,[22][23]等动物也都表现出对PLD类型生物运动的偏好,因此这可能是所有高等脊椎动物共有的特性.

  • 1.3 脑损伤和精神疾病会对生物运动识别有显著影响

    哪些脑区参与了生物运动的识别?最初的证据多来自于对脑损伤患者的研究. 大脑双侧背侧视觉通路中包含V5/MT(middle temporal area)在内的外侧纹状体区域受损,会导致诸如检测运动和速度的能力丧失,但识别PLD类型生物运动刺激的能力基本不受影[24]. 患者AL腹侧视觉通路受损,病人能观察和描述运动,但是不能识别由运动产生的形状(structure from motion),在日常生活中表现为能识别静止的对象,却无法识别行走的人,使用PLD类型的生物运动刺激检测发现病人在识别生物运动上存在障[25]. 患者LG也是腹侧视觉通路受损,但大脑其他区域没有结构性的异常,该患者存在视觉失认症,其对PLD类型生物运动刺激的识别正常,但是对于PLD类型非生物运动刺激的识别显著受[26]. Vaina[27]报道了一例急性脑出血造成顶-颞-枕区域(parietal-temporal-occipital cortex)及其下白质受到影响的病人,病人的视敏度、对比敏感度、对形状和颜色的识别都正常,但空间定位、深度知觉和双眼立体视觉都严重受损,对运动一致性、运动速度以及由相对运动产生的2D形状的辨别能力均显著下降,但对PLD类型生物运动和运动产生的3D形状的识别却表现正常. 上颞叶多感觉区(superior temporal polysensory area,STP)受损后病人尽管可以正常感知几乎所有视觉运动,但在识别PLD类型的生物运动刺激时出现障[28]. 类似的脑损伤对生物运动识别能力造成影响的病例很多,并且也有不一致的地方(例如腹侧视觉通路受损的病例),似乎视觉系统背腹侧通路多个脑区以及多感觉整合中枢均有参与生物运动识别. 尽管脑损伤研究不能精确定位生物运动识别的关键脑区,但还是能提供丰富的线索,至少可以确定生物运动识别是有别于一般运动信息检测的高级认知过程.

    除显著的脑器质性病变和损伤外,某些类型的精神疾病患者也往往表现出生物运动识别上的障碍. 自闭症儿童并不像正常儿童一样表现出对生物运动的偏[29,30],自闭症患者不仅识别生物运动存在障[31,32],而且在辨识生物运动刺激所携带的个体特征、状态和情绪等信息方面也均弱于常[33]. 精神分裂症患者在生物运动识别任务上的表现显著差于正常控制[34],并且其生物运动识别障碍与社会功能受损程度相[35]. 行为学研究表明正常被试在模拟生物性运动时准确度较高,模拟非生物运动时波动较大,而精神分裂症患者则正好相[36]. 尽管精神疾病与生物运动识别障碍间的相关性对我们深入理解后者的神经机制帮助有限,但却可能用于协助诊断精神疾病的类型甚至亚型.

  • 2 生物运动识别的信息加工机制

    常见的用于解释生物运动识别的理论有两种,分别是模板匹配模型和双通路模型. 模板匹配模型认为生物运动的识别是通过将生物运动序列中每一时刻的刺激与已有的模板库进行比对完成的,而且该理论认为模板匹配识别仅需要通过分析刺激形状信息即可,而非运动信[37]. 模板匹配模型虽然解释了生物运动识别发生的过程,但没有指出识别发生的位置,理论性较强却难以验证. 而在视觉系统背腹侧双通路加工的基础上,双通路模型 (图1)则指出生物运动信息的处理是通过运动通路和形状通路完成[38,39]. 运动通路携带生物运动的运动信息经由V1(primary visual area)、V2、MT的局部运动检测细胞,到MT、MST(medial superior temporal area)、KO(kinetic occipital cortex)的局部模式检测细胞,最后汇聚到颞上沟 (superior temporal sulcus,STS)、FA(face area)、F5(premotor area)的运动模式检测细胞. 形状通路携带生物运动的形状信息经由V1、V2的简单细胞,到V1、V2、V4的复杂细胞,再到IT(inferotemporal cortex)、STS、FA的快照细胞,最后到达STS、FA、F5的运动模式检测细胞. 双通路模型结合了视觉背腹侧通路的理论和神经电生理学的实验证据,并且指出了生物运动信息加工的具体过程和识别位置,具有较强的可验证性.

    图1
                            运动和形状视觉通路加工生物运动信息示意图(修改自文献[38])

    图1 运动和形状视觉通路加工生物运动信息示意图(修改自文献[38])

    Fig. 1 Diagram of motion and form visual pathways processing biological motion information(revised from ref.[38])

    从运动通路来看,研究者使用脑功能成像的方式已经发现被试在知觉生物运动刺激时MT、MST脑区有激[40,41,42,43,44],说明运动通路参与生物运动信息加工过程. 如Peuskens[44]使用连线小人、人物剪影、光点小人作为实验刺激,结果发现人类MT在完整的光点小人运动条件下激活程度最高,因此认为MT的激活主要是对生物运动刺激中运动模式的反应. 事件相关电位的研究发现了类似的结果,在完整的生物运动刺激呈现后的早期(100~200 ms),被试右侧半球会出现更大的正波,源分析定位该位置为MT[45]. 然而,数项脑损伤病人的研究却指出,运动通路损伤不影响生物运动识[24,27]. 例如一位双侧MT损伤的病人经过测试发现存在运动方向判断和点速度知觉的障碍,但她可以识别光点小人的动作类型,只是不能报告目标的空间位置和距[24]. 此外,研究者使用经颅磁刺激(transcranial magnetic stimulation,TMS)干扰MT脑区,发现被试在运动一致性方向判断任务中的正确率显著降低,但在光点小人行进方向判断任务中的正确率没有受到影[46]. 这些研究表明,尽管视觉系统背侧通路多个脑区均可以被生物运动刺激所激活,但至少MT脑区在生物运动识别中并非不可或缺.

    从形状通路来看,脑功能成像研究发现生物运动刺激可以激活颞下皮层中的梭状回(fusiform gyri)和枕叶的腹侧外纹状体区(extrastriate body areas)[40,43,47,48,49,50,51],说明形状通路参与生物运动信息加工过程. 如Michels[50]发现不同面部朝向的光点小人刺激可激活双侧梭状回的不同亚区,其他脑成像研究也指出从梭状回到颞上沟的投射在生物运动知觉中有重要作[47]. Hirai[52]使用事件相关电位技术研究了被试观察形状信息完整和形状信息打乱的光点小人时的脑电波差异,发现形状信息完整条件下出现了更大的负波N200,他们推测该负波产生于外侧纹状皮层. 然而,对脑损伤病人的研究却指出形状通路损伤也不影响生物运动识[26,53,54]. Gilaie-Dotan[53]对6名腹侧通路损伤的病人进行了测试,发现被试有物体识别和面孔加工障碍,但可以识别光点小人刺激,说明他们依然可以加工生物运动信息. 对视觉失认症病人(一般意味着颞叶的腹侧通路高级视皮层受损)的研究发现,被试的物体识别能力严重受损,基本运动识别能力正常,也可以识别人影类型的生物运动刺激,说明被试的生物运动识别能力基本正[54]. 这些研究表明,形状通路参与生物运动识别过程,但形状通路在生物运动识别中的作用并非不可或缺.

    双通路模型还指出,STS可以整合来自运动通路和形状通路的信息. 目前的众多研究表明颞上沟是生物运动识别的关键脑区. 首先,大量研究认为参与生物运动信息加工的脑区里都包含STS,无论是采用人类被试的正电子发射断层成像 (positron emission tomography,PET)、功能磁共振成像 (functional magnetic resonance imaging,fMRI)和事件相关电位(event-related potential, ERP)研究还是采用猕猴动物模型的神经电生理学研[41,43,44,45,51,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71]. 例如,Beauchamp[71]使用真实PLD类型的工具运动和人物运动作为视觉刺激,发现STS不仅在呈现PLD类型的生物运动刺激时有很强激活,而且在呈现真实的人物运动场景时激活更强,据此认为STS整合了生物运动的形状、颜色和运动信息. Peuskens[44]发现MT和STS对生物运动的不同特征信息有选择性激活,其中MT对生物运动刺激中的运动特征反应,而STS则对生物运动刺激中的人物形状特征反应. 其次,STS脑区功能与生物运动识别间存在较强因果关系. 例如使用低频TMS干扰人类STS区后部的神经活动,被试对生物运动刺激的区分度会显著降低,即出现抑制效[72,73]. 在对多个不同区域脑损伤病人的研究中也发现,STS和前运动区(premotor cortex)损伤对生物运动识别的影响最[74]. 以上研究说明了颞上沟在生物运动识别中非常关键. 同时也有证据表明,生物运动识别不仅与形状信息有[37],视觉运动中的光流模式信息也非常重[75],并且相对运动(opponent motion)信息可能是识别生物运动的关键特[76], 但关于颞上沟是如何整合生物运动的形状信息和运动信息的问题仍需要进一步研究.

    表1[24,25,27,53,54,74,77,78,79,80,81]总结了与生物运动有关的脑损伤病人的研究. 从表中可以看出,基本运动识别(如混合运动方向判断)、静止形状识别(如简单物体识别、面孔识别等)与生物运动识别的关系并不密切,甚至可以说是分离的. 由于目前生物运动识别神经生物基础的研究证据以脑损伤病例的报道居多,而脑损伤起因往往不一致且涉及多个功能脑区甚至脑区间连接结构,因此很难通过个别研究结果确定具体哪个脑区与生物运动识别相关性最高. 鉴于此,我们根据文献的描述,将导致生物运动识别障碍的受损脑区绘制成一幅叠加图(图2). 尽管文献报道生物运动识别受到额-顶-颞-枕叶等广泛脑区损伤的影响,甚至小脑外侧区域损伤也会影响生物运动识别, 但由图2可见颞上沟(包括颞上沟后侧、颞上沟前侧、颞上回),尤其是颞上沟后侧, 是生物运动识别最重要的脑区.

    Table 1 Studies of patients with brain injury associated with biological motion recognition表1 与生物运动识别有关的脑损伤病人研究

    受损的功能病人名称参考文献损伤部位基本运动静止形状生物运动
    静止形状WH[54]双侧:枕-颞区×
    GB[53]左侧:腹侧视觉通路×
    SH左侧:腹侧视觉通路×
    基本运动AF[27]双侧:枕-顶-颞区及其下白质×
    LM[24]双侧:MT/V5+×
    生物运动(颞叶)77位病人[81]颞上沟后部×
    60位病人[74]颞上沟和前运动区×
    JR[28]右侧:颞叶前侧和外侧,少许顶叶×
    RJ右侧:颞叶,少许额叶后侧和顶叶×
    IF右侧:颞叶前侧上部×
    LH右侧:颞叶前部×
    AB[79]右侧:枕-颞叶×
    EB右侧:颞叶×
    MAS右侧:颞叶×
    MS左侧:颞叶×
    生物运动(顶叶)LL右侧:顶-额叶×
    UJ左侧:顶叶×
    JR[77]右侧:顶叶小叶,缘上回,角回,枕外侧回,颞中回,颞上回×
    JL右侧:顶叶小叶,缘上回,角回,枕外侧回×
    JS左侧:缘上回,角回×
    AL[25]颞叶,顶叶后侧,枕叶×
    生物运动(额叶)GE[79]左侧:额叶×
    KN双侧:额叶×
    生物运动(小脑)11位病人[80]左侧:小脑外侧×
    左侧:小脑内侧

    注:“√”表示识别正常,"×"表示识别异常.基本运动识别如混合运动方向判断,静止形状识别如简单物体识别、面孔识别等.

    图2
                            生物运动识别异常的脑损伤病人损伤脑区叠加图(153人)

    图2 生物运动识别异常的脑损伤病人损伤脑区叠加图(153人)

    Fig. 2 Superimposed brain areas in brain injury patients with abnormal biological motion recognition(153 patients)

    注:包含了表1中生物运动识别异常的病例(不包括小脑),共153人, 颜色从红到蓝表示重叠率从高到低的变化,重叠率排名比较靠前的脑区分别是颞上沟后侧、颞上沟前侧、颞上回、前运动区. 中英文对照:额叶(frontal lobe)、前运动区(premotor area)、额叶后侧(posterior frontal lobe);顶叶(parietal lobe)、顶上小叶(superior parietal lobule)、缘上回(supramarginal gyrus)、角回(angular gyrus)、顶叶后侧(posterior parietal lobe);枕叶(occipital lobe)、枕外侧回(lateral occipital gyri);颞叶(temporal lobe)、颞上沟后侧(posterior superior temporal sulcus)、颞上回(superior temporal gyri)、颞中回(middle temporal gyri)、颞叶前侧(anterior temporal lobe).

    双通路模型主要强调自下而上的刺激驱动信息加工过程, 然而有学者发现通过学习和训练可以提高被试的生物运动识别能力, 说明生物运动识别具有一定的可塑性或者存在自上而下的调节过程. 例如,Grossman[82]训练初学者判断噪音背景下的视觉刺激是生物运动刺激还是非生物运动刺激. 结果发现,随着训练时间的增加, 被试区分生物运动刺激的能力显著提升, 而且功能性核磁共振成像显示颞上沟后部和面孔识别区的血氧水平依赖(blood oxygen level dependent,BOLD)信号显著增强. 此外,一位因左侧小脑肿瘤而出现身体运动视觉感知障碍的患者SL, 在手术后生物运动识别能力显著提升甚至达到正常水[83].

    除人类被试和病例以外,也有一些关于生物运动识别或偏好的研究是在其他物种上进行的, 包括猴、猫、狗、鸡、鸽子等.脑成像研究发现猕猴和人类的颞上沟在知觉生物运动上具有相同的激活模式,这表明人类和猕猴在识别生物运动上具有共同的神经机[41],电生理学的研究则发现猕猴颞上沟的STPa(anterior superior temporal polysensory area)存在对生物运动具有特异性反应的神经元,因此该区域可能参与对生物运动刺激中形状和运动信息的整[84,85].行为学的实验表明,猫、狗可以识别生物运动,但其内在机制尚不清楚,可能与这类动物的社会性高低有[22,23].而对鸡的研究则发现,它们对生物运动的偏好可能与基因表达、大脑偏侧化程度(右侧)有关,受遗传因素影响较[86,87].对鸽子的研究发现它们可以区分生物运动刺激的运动方向,但倒置效应很微弱,提示人类和鸽子的生物运动信息加工机制可能存在显著的不[88]

  • 3 总结、讨论及展望

    对包括人类在内的所有主要依赖视觉获取信息的生物而言,目标识别都是最核心的能力. 目标识别有两个途径来实现,一是从图像信息中获取,二是从运动信息中获取,两者互为补充,而生物运动识别可能主要采取的是后一种方式. 日常生活中我们识别目标的方式两者都有,例如对自己熟悉的人,哪怕看不清面容仅从走路的姿态我们也能认出来,事实上步态识别就是生物运动识别的一个应用. 生物运动识别是生而具有、跨物种且相对稳定的一种能力,在个体生存和社会交互中都极为重要. 目前对生物运动识别的研究进展主要来自于行为学、心理物理学、神经影像学,以及对脑损伤和精神障碍患者的研究,从现有研究基本可以确定STS是生物运动识别的神经生物学基础中的关键脑区. 综合前人的研究可以发现,生物运动识别中有3个特征信息的加工是比较重要的:a. 形状特征(structure from motion)的提取,这类研究最多,一般是比较光点(或线段)小人形状完整(intact)和形状打乱(scrambled)条件下行为学或脑区活动差异,也包括调整PLD类型光点小人刺激中点的空间位置和相对运动模式以检验被试的生物运动识别能力;b. 倒置效应(inversion effect)检测,一般是比较被试对生物运动刺激及其沿水平轴镜像的识别能力差异;c. 行进方向(walking direction)辨别,一般是比较被试对生物运动刺激及其沿垂直轴镜像的识别能力差异,或者功能脑区神经元的电活动差异. 目前尽管已经形成了可以解释生物运动识别信息加工机制的理论模型,脑成像及神经生物学研究也表明生物运动信息的处理可能依赖于包括颞叶、顶叶在内的特定神经机制,但由于缺少神经电生理证据的支持,我们对生物运动各种特征信息的神经编码机制还所知甚少,尤其是视觉系统哪些脑区参与编码生物运动的什么特征信息以及其层级加工过程都还不清楚.

    脑成像和脑损伤的研究结果对确定生物运动识别的关键脑区有重要参考价值,但也存在局限性. 使用脑成像的研究方法,无论是比较有、无呈现生物运动刺激时脑区激活差异,还是比较光点小人形状完整(intact PLD)和形状打乱(scrambled PLD)条件下脑区激活差异,都只能用于筛选可能参与生物运动识别的候选脑区,而无法确认某个脑区特异性参与了生物运动特征信息加工和识别过程. 尽管对脑损伤病人的研究可以为确定生物运动识别所必须的脑区提供线索,但患者的脑损伤范围无法控制也难以精确界定,特别是白质受损情形下哪条信息传输通路受到了何种程度的影响无法确定. 尽管如此,通过对脑损伤病例报道的总结,颞上沟后侧应该是生物运动识别的关键脑区,这与脑成像和TMS神经调控的结果也是一致的.

    视觉系统是脑内最庞大也最复杂的神经系统,包含不同层级的、不同功能的大量脑区,STS区只是个大的解剖结构,其本身就包含了不同层级的多个脑区,其中既有视觉功能区,也有多感觉整合区. 既然生物运动识别是基于视觉信息的,那么确定哪些视觉功能区参与了哪个生物运动特征信息的编码,以及神经系统如何一步步解决生物运动识别问题的,是研究生物运动识别神经机制首先需要解决的问题. 过去对生物运动识别信息加工过程的推测主要是基于行为学和脑损伤病人研究,认为腹侧视觉通路由于是编码形状的,所以可能起主要作用. 最近一二十年随着实验证据,尤其是来自脑功能成像、神经调控、神经电生理等领域的证据增多,视觉系统背侧通路的作用越来越受到重视. 鉴于视觉系统背腹侧通路的中高级皮层存在广泛的交叉投射,而从视觉刺激角度来看生物运动应该是比光流运动模式更为特异的一种形式,所以很可能背腹侧通路的中高级皮层参与了生物运动某些特征信息的编码,而高级视皮层(包括接收背腹侧视觉通路投射的多感觉整合区)则参与生物运动的整体识别. 为探究这一过程的神经电生理学机制,一方面,鉴于猕猴与人类大脑在功能解剖上的高度相似性,是解决这一问题比较理想的动物模型,另一方面,从视觉系统层级加工角度,可以由背、腹侧通路中级皮层(MT、V4)到高级皮层(MST、VIP、IT),再到信息整合皮层(STP),逐级检验它们各自生物运动特征信息编码的机制和在生物运动识别中的功能角色. 需要注意的是:a. 功能解剖结构上,尽管非人灵长类(例如猕猴)的功能脑区组织模式相较其他生物而言与人类最为接近,但也并非一一对应. 例如人脑MT区一般指的是MT复合体,包含多个功能分区,而猕猴MT区隶属其视觉系统背侧通路中级皮层,与高级皮层MST都是STS脑回的一部分,因此研究人员在比较人类和非人灵长类上的研究结果时要加以区分. b. 信息加工机制上,也要区分感觉信息编码和知觉信息加工间的细微差别. 由于视觉系统采取的是分布式层级加工组织模式,某个脑区的神经元能够编码生物运动特征信息并非意味着它一定参与生物运动的识别,而负责生物运动识别的脑区一般而言则必然能编码其特征信息,并且其神经元电活动的起伏与被试生物运动识别的行为表现正相关.

    Tel: 86-10-64855360

    LI Sheng-Guang. E-mail: lisg@psych.ac.cn

    ZHANG Tao. E-mail: taozhang@psych.ac.cn

  • 参 考 文 献

    • 1

      Yi J , Li W . Biological motion perception: the roles of global configuration and local motion. Advances in Psychological Science, 2011, 19(3):301-311

    • 2

      Johansson G. Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 1973, 14(2): 201-211

    • 3

      Grossman E D, Randolph B, Chai-Youn K. Learning to see biological motion: brain activity parallels behavior. Journal of Cognitive Neuroscience, 2004, 16(9): 1669-1679

    • 4

      Johansson G. Spatio-temporal differentiation and integration in visual motion perception. Psychological Research, 1976, 38(4): 379-393

    • 5

      Dittrich W H. Action categories and the perception of biological motion. Perception, 1993, 22(1): 15-22

    • 6

      Barclay C D, Cutting J E, Kozlowski L T. Temporal and spatial factors in gait perception that influence gender recognition. Attention, Perception, & Psychophysics, 1978, 23(2): 145-152

    • 7

      Mather G, Murdoch L. Gender discrimination in biological motion displays based on dynamic cues. Proceedings of the Royal Society Biological Sciences, 1994, 258(1353): 273-279

    • 8

      Brownlow S, Dixon A R, Egbert C A, et al. Perception of movement and dancer characteristics from point-light displays of dance. Psychological Record, 1997, 47(3): 411-421

    • 9

      Ikeda H, Blake R, Watanabe K. Eccentric perception of biological motion is unscalably poor. Vision Research, 2005, 45(15): 1935-1943

    • 10

      Grossman E D, Blake R. Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research, 1999, 39(22): 3721-3727

    • 11

      Pavlova M, Sokolov A. Orientation specificity in biological motion perception. Attention, Perception, & Psychophysics, 2000, 62(5): 889-899

    • 12

      Sumi S, . Upside-down presentation of the Johansson moving light-spot pattern. Perception, 1984, 13(3): 283-286

    • 13

      Pavlova M, Sokolov A. Prior knowledge about display inversion in biological motion perception. Perception, 2003, 32(8): 937-946

    • 14

      Troje N F. Reference frames for orientation anisotropies in face recognition and biological-motion perception. Perception, 2003, 32(2): 201-210

    • 15

      Simion F , Regolin L , Bulf H . A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci USA, 2008, 105(2):809-813

    • 16

      Bertenthal B I, Proffitt D R, Cutting J E. Infant sensitivity to figural coherence in biomechanical motions. Journal of Experiment Child Psychology, 1984, 37(2): 213-230

    • 17

      Hirai M, Hiraki K. An event-related potentials study of biological motion perception in human infants. Cognitive Brain Research, 2005, 22(2): 301-304

    • 18

      Zhao J, Wang L, Wang Y, et al. Developmental tuning of reflexive attentional effect to biological motion cues. Scientific Reports, 2014, 4(1): 5558-5558

    • 19

      Norman J F, Payton S M, Long J R, et al. Aging and the perception of biological motion. Psychology & Aging, 2004, 19(1): 219-225

    • 20

      Pilz K S, Bennett P J, Sekuler A B. Effects of aging on biological motion discrimination. Vision Research, 2010, 50(2): 211-219

    • 21

      Vallortigara G, Regolin L, Marconato F. Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. Plos Biology, 2005, 3(7): e208

    • 22

      Blake R. Cats perceive biological motion. Psychological Science, 1993, 4(1): 54-57

    • 23

      Ishikawa Y, Mills D, Willmott A, et al. Sociability modifies dogs' sensitivity to biological motion of different social relevance. Animal Cognition, 2018, 21(2): 245-252

    • 24

      Mcleod P, Dittrich W, Driver J, et al. Preserved and impaired detection of structure from motion by a ''motion-blind'' patient. Visual Cognition, 1996, 3(4): 363-391

    • 25

      Cowey A, Vaina L M. Blindness to form from motion despite intact static form perception and motion detection. Neuropsychologia, 2000, 38(5): 566-578

    • 26

      Gilaie-Dotan S, Bentin S, Harel M, et al. Normal form from biological motion despite impaired ventral stream function. Neuropsychologia, 2011, 49(5): 1033-1043

    • 27

      Vaina L M, Lemay M, Bienfang D C, et al. Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms:a case study. Visual Neuroscience, 1990, 5(4): 353-369

    • 28

      Vaina L M, Gross C G. Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. Proc Natl Acad Sci USA, 2004, 101(48): 16947-16951

    • 29

      Annaz D, Campbell R, Coleman M, et al. Young children with autism spectrum disorder do not preferentially attend to biological motion. Journal of Autism Developmental Disorders, 2012, 42(3): 401-408

    • 30

      Klin A, Lin D J, Gorrindo P, et al. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 2009, 459(7244): 257-261

    • 31

      Blake R, Turner L M, Smoski M J, et al. Visual recognition of biological motion is impaired in children with autism. Psychological Science, 2003, 14(2): 151-157

    • 32

      Freitag C M, Konrad C, Haberlen M, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia, 2008, 46(5): 1480-1494

    • 33

      Nackaerts E, Wagemans J, Helsen W, et al. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. Plos One, 2012, 7(9): e44473

    • 34

      Kim J, Norton D, Mcbain R, et al. Deficient biological motion perception in schizophrenia: results from a motion noise paradigm. Frontiers in Psychology, 2013, 4: 391

    • 35

      Kim J, Doop M L, Blake R, et al. Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 2005, 77(2-3): 299-307

    • 36

      Bruzzo A, Gesierich B, Wohlschlager A. Simulating biological and non-biological motion. Brain and Cognition, 2008, 66(2): 145-149

    • 37

      Lange J, Georg K, Lappe M. Visual perception of biological motion by form: a template-matching analysis. Journal of Vision, 2006, 6(8): 836-849

    • 38

      Giese M A, Poggio T. Cognitive neuroscience: Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 2003, 4(3):179-192

    • 39

      Casile A, Giese M. Roles of motion and form in biological motion recognition. Joint International Conference on Artificail Neural Networks and Neural Information Processing, 2003, 2714: 854-862

    • 40

      Thompson J C, Baccus W. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. Neuroimage, 2012, 59(1): 625-634

    • 41

      Jastorff J, Popivanov I D, Vogels R, et al. Integration of shape and motion cues in biological motion processing in the monkey STS. Neuroimage, 2012, 60(2): 911-921

    • 42

      Herrington J, Nymberg C, Faja S, et al. The responsiveness of biological motion processing areas to selective attention towards goals. Neuroimage, 2012, 63(1): 581-590

    • 43

      Herrington J D, Nymberg C, Schultz R T. Biological motion task performance predicts superior temporal sulcus activity. Brain and Cognition, 2011, 77(3): 372-381

    • 44

      Peuskens H, Vanrie J, Verfaillie K, et al. Specificity of regions processing biological motion. European Journal of Neuroscience, 2005, 21(10): 2864-2875

    • 45

      Krakowski A I, Ross L A, Snyder A C, et al. The neurophysiology of human biological motion processing: a high-density electrical mapping study. Neuroimage, 2011, 56(1): 373-383

    • 46

      Mather G, Battaglini L, Campana G. TMS reveals flexible use of form and motion cues in biological motion perception. Neuropsychologia, 2016, 84: 193-197

    • 47

      Sokolov A A, Zeidman P, Erb M, et al. Structural and effective brain connectivity underlying biological motion detection. Proc Natl Acad Sci USA, 2018, 115(51): E12034-E12042

    • 48

      Hahn C A, O'toole A J. Recognizing approaching walkers: Neural decoding of person familiarity in cortical areas responsive to faces, bodies, and biological motion. Neuroimage, 2017, 146: 859-868

    • 49

      Engell A D, Mccarthy G. Probabilistic atlases for face and biological motion perception: an analysis of their reliability and overlap. Neuroimage, 2013, 74: 140-151

    • 50

      Michels L, Kleiser R, De Lussanet M H E, et al. Brain activity for peripheral biological motion in the posterior superior temporal gyrus and the fusiform gyrus: dependence on visual hemifield and view orientation. Neuroimage, 2009, 45(1): 151-159

    • 51

      Jastorff J, Orban G A. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. Journal of Neuroscience, 2009, 29(22): 7315-7329

    • 52

      Hirai M, Fikushima H, Hiraki K. An event-related potentials study of biological motion perception in humans. Neuroscience Letters, 2003, 344(1): 41-44

    • 53

      Gilaie-Dotan S, Saygin A P, Lorenzi L J, et al. Ventral aspect of the visual form pathway is not critical for the perception of biological motion. Proc Natl Acad Sci USA, 2015, 112(4): E361-E370

    • 54

      Huberle E, Rupek P, Lappe M, et al. Perception of biological motion in visual agnosia. Frontiers in Behavioral Neuroscience, 2012, 6:1-7

    • 55

      Grossman E D, Jardine N L, Pyles J A. fMR-adaptation reveals invariant coding of biological motion on the human STS. Frontiers in Human Neuroscience, 2010, 4:1-18

    • 56

      Grossman E, Donnelly M, Price R, et al. Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 2000, 12(5): 711-720

    • 57

      Bidet-Caulet A, Voisin J, Bertrand O, et al. Listening to a walking human activates the temporal biological motion area. Neuroimage, 2005, 28(1): 132-139

    • 58

      Saygin A P, Wilson S M, Hagler D J, Jr., et al. Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience, 2004, 24(27): 6181-6188

    • 59

      Downing P E, Jiang Y H, Shuman M, et al. A cortical area selective for visual processing of the human body. Science, 2001, 293(5539): 2470-2473

    • 60

      Carter E J, Pelphrey K A. School-aged children exhibit domain-specific responses to biological motion. Social Neuroscience, 2006, 1(3-4): 396-411

    • 61

      Bonda E, Petrides M, Ostry D, et al. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 1996, 16(11): 3737-3744

    • 62

      Vaina L M , Solomon J , Chowdhury S , et al. Functional neuroanatomy of biological motion perception in humans. Proc Natl Acad Sci USA, 2001, 98(20):11656-11661

    • 63

      Sokolov A A, Erb M, Gharabaghi A, et al. Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus. Neuroimage, 2012, 59(3): 2824-2830

    • 64

      Ptito M, Faubert J, Gjedde A, et al. Separate neural pathways for contour and biological-motion cues in motion-defined animal shapes. NeuroImage, 2003, 19(2): 246-252

    • 65

      Kaiser M D, Shiffrar M, Pelphrey K A. Socially tuned: brain responses differentiating human and animal motion. Social Neuroscience, 2012, 7(3): 301-310

    • 66

      Grossman E D, Blake R. Brain areas active during visual perception of biological motion. Neuron, 2002, 35(6): 1167-1175

    • 67

      Grossman E D, Blake R. Brain activity evoked by inverted and imagined biological motion. Vision Research, 2001, 41(10-11): 1475-1482

    • 68

      Grezes J, Fonlupt P, Bertenthal B, et al. Does perception of biological motion rely on specific brain regions?. Neuroimage, 2001, 13(5): 775-785

    • 69

      Garcia J O, Pyles J A, Grossman E D. Stimulus complexity modulates contrast response functions in the human middle temporal area (hMT plus ). Brain Research, 2012, 1466:56-69

    • 70

      Chang D H F, Ban H, Ikegaya Y, et al. Cortical and subcortical responses to biological motion. Neuroimage, 2018, 174: 87-96

    • 71

      Beauchamp M S, Lee K E, Haxby J V, et al. fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 2003, 15(7): 991-1001

    • 72

      Grossman E D, Battelli L, Pascual-Leone A. Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 2005, 45(22): 2847-2853

    • 73

      Van Kemenade B M, Muggleton N, Walsh V, et al. Effects of TMS over premotor and superior temporal cortices on biological motion perception. Journal of Cognitive Neuroscience, 2012, 24(4): 896-904

    • 74

      Saygin A P. Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 2007, 130(Pt 9): 2452-2461

    • 75

      Casile A, Giese M A. Critical features for the recognition of biological motion. Journal of Vision, 2005, 5(4): 348-360

    • 76

      Sigala R, Serre T, Poggio T, et al. Learning features of intermediate complexity for the recognition of biological motion. International Conference on Artificial Neural Networks: Biological Inspirations, 2005, 3696: 241-246

    • 77

      Battelli L, Cavanagh P, Thornton I M. Perception of biological motion in parietal patients. Neuropsychologia, 2003, 41(13): 1808-1816

    • 78

      Vaina L M , Gross C G . Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. Proc Natl Acad Sci USA, 2004, 101(48):16947-16951

    • 79

      Billino J, Braun D I, Boehm K-D, et al. Cortical networks for motion processing: effects of focal brain lesions on perception of different motion types. Neuropsychologia, 2009, 47(10): 2133-2144

    • 80

      Sokolov A A, Gharabaghi A, Tatagiba M S, et al. Cerebellar engagement in an action observation network. Cerebral Cortex, 2010, 20(2): 486-491

    • 81

      Han Z, Bi Y, Chen J, et al. Distinct regions of right temporal cortex are associated with biological and human-agent motion: functional magnetic resonance imaging and neuropsychological evidence. Journal of Neuroscience, 2013, 33(39): 15442-15453

    • 82

      Grossman E D, Blake R, Kim C Y. Learning to see biological motion: Brain activity parallels behavior. Journal of Cognitive Neuroscience, 2004, 16(9): 1669-1679

    • 83

      Sokolov A A, Erb M, Grodd W, et al. Recovery of biological motion perception and network plasticity after cerebellar tumor removal. Cortex, 2014, 59: 146-152

    • 84

      Oram M W, Perrett D I. Responses of anterior superior temporal polysensory(STPa) neurons to “biological motion” stimuli. Journal of Cognitive Neuroscience, 1994, 6(2): 99-116

    • 85

      Oram M W, Perrett D I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 1996, 76(1): 109-129

    • 86

      Rugani R, Salva O R, Regolin L, et al. Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 2015, 290: 1-7

    • 87

      Takemura Y, Yamaguchi S, Aoki N, et al. Gene expression of Dio2 (thyroid hormone converting enzyme) in telencephalon is linked with predisposed biological motion preference in domestic chicks. Behavioural Brain Research, 2018, 349: 25-30

    • 88

      Troje N F, Aust U. What do you mean with "direction"? Local and global cues to biological motion perception in pigeons. Vision Research, 2013, 79: 47-55

汤琴

机 构:

2). 中国科学院心理研究所,北京 100101

3). 中国科学院大学心理系,北京 100101

Affiliation:

2). Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

3). Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China

张波

机 构:

2). 中国科学院心理研究所,北京 100101

3). 中国科学院大学心理系,北京 100101

4). 中国科学院深圳先进技术研究院,深圳 518055

Affiliation:

2). Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

3). Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China

4). Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China

丰婷婷

机 构:

2). 中国科学院心理研究所,北京 100101

3). 中国科学院大学心理系,北京 100101

Affiliation:

2). Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

3). Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China

刘精璇

机 构:

2). 中国科学院心理研究所,北京 100101

3). 中国科学院大学心理系,北京 100101

Affiliation:

2). Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

3). Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China

韩文浩

机 构:

2). 中国科学院心理研究所,北京 100101

3). 中国科学院大学心理系,北京 100101

Affiliation:

2). Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

3). Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China

李胜光

机 构:

1). 脑与认知国家科学重点实验室,北京 100101

2). 中国科学院心理研究所,北京 100101

Affiliation:

1). State Key Laboratory of Brain and Cognitive Science, Beijing 100101, China

2). Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

角 色:通讯作者

Role:Corresponding author

作者简介:Tel: 010-64855360

张弢

机 构:

1). 脑与认知国家科学重点实验室,北京 100101

2). 中国科学院心理研究所,北京 100101

3). 中国科学院大学心理系,北京 100101

Affiliation:

1). State Key Laboratory of Brain and Cognitive Science, Beijing 100101, China

2). Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

3). Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China

角 色:通讯作者

Role:Corresponding author

作者简介:Tel: 010-64855360

html/pibben/20190059/alternativeImage/6cc7b209-f40b-4959-ace0-a58a7dc70dfa-F001.png
受损的功能病人名称参考文献损伤部位基本运动静止形状生物运动
静止形状WH[54]双侧:枕-颞区×
GB[53]左侧:腹侧视觉通路×
SH左侧:腹侧视觉通路×
基本运动AF[27]双侧:枕-顶-颞区及其下白质×
LM[24]双侧:MT/V5+×
生物运动(颞叶)77位病人[81]颞上沟后部×
60位病人[74]颞上沟和前运动区×
JR[28]右侧:颞叶前侧和外侧,少许顶叶×
RJ右侧:颞叶,少许额叶后侧和顶叶×
IF右侧:颞叶前侧上部×
LH右侧:颞叶前部×
AB[79]右侧:枕-颞叶×
EB右侧:颞叶×
MAS右侧:颞叶×
MS左侧:颞叶×
生物运动(顶叶)LL右侧:顶-额叶×
UJ左侧:顶叶×
JR[77]右侧:顶叶小叶,缘上回,角回,枕外侧回,颞中回,颞上回×
JL右侧:顶叶小叶,缘上回,角回,枕外侧回×
JS左侧:缘上回,角回×
AL[25]颞叶,顶叶后侧,枕叶×
生物运动(额叶)GE[79]左侧:额叶×
KN双侧:额叶×
生物运动(小脑)11位病人[80]左侧:小脑外侧×
左侧:小脑内侧
html/pibben/20190059/alternativeImage/6cc7b209-f40b-4959-ace0-a58a7dc70dfa-F002.png

图1 运动和形状视觉通路加工生物运动信息示意图(修改自文献[38])

Fig. 1 Diagram of motion and form visual pathways processing biological motion information(revised from ref.[38])

Table 1 Studies of patients with brain injury associated with biological motion recognition表1 与生物运动识别有关的脑损伤病人研究

图2 生物运动识别异常的脑损伤病人损伤脑区叠加图(153人)

Fig. 2 Superimposed brain areas in brain injury patients with abnormal biological motion recognition(153 patients)

image /

无注解

“√”表示识别正常,"×"表示识别异常.基本运动识别如混合运动方向判断,静止形状识别如简单物体识别、面孔识别等.

包含了表1中生物运动识别异常的病例(不包括小脑),共153人, 颜色从红到蓝表示重叠率从高到低的变化,重叠率排名比较靠前的脑区分别是颞上沟后侧、颞上沟前侧、颞上回、前运动区. 中英文对照:额叶(frontal lobe)、前运动区(premotor area)、额叶后侧(posterior frontal lobe);顶叶(parietal lobe)、顶上小叶(superior parietal lobule)、缘上回(supramarginal gyrus)、角回(angular gyrus)、顶叶后侧(posterior parietal lobe);枕叶(occipital lobe)、枕外侧回(lateral occipital gyri);颞叶(temporal lobe)、颞上沟后侧(posterior superior temporal sulcus)、颞上回(superior temporal gyri)、颞中回(middle temporal gyri)、颞叶前侧(anterior temporal lobe).

  • 参 考 文 献

    • 1

      Yi J , Li W . Biological motion perception: the roles of global configuration and local motion. Advances in Psychological Science, 2011, 19(3):301-311

    • 2

      Johansson G. Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 1973, 14(2): 201-211

    • 3

      Grossman E D, Randolph B, Chai-Youn K. Learning to see biological motion: brain activity parallels behavior. Journal of Cognitive Neuroscience, 2004, 16(9): 1669-1679

    • 4

      Johansson G. Spatio-temporal differentiation and integration in visual motion perception. Psychological Research, 1976, 38(4): 379-393

    • 5

      Dittrich W H. Action categories and the perception of biological motion. Perception, 1993, 22(1): 15-22

    • 6

      Barclay C D, Cutting J E, Kozlowski L T. Temporal and spatial factors in gait perception that influence gender recognition. Attention, Perception, & Psychophysics, 1978, 23(2): 145-152

    • 7

      Mather G, Murdoch L. Gender discrimination in biological motion displays based on dynamic cues. Proceedings of the Royal Society Biological Sciences, 1994, 258(1353): 273-279

    • 8

      Brownlow S, Dixon A R, Egbert C A, et al. Perception of movement and dancer characteristics from point-light displays of dance. Psychological Record, 1997, 47(3): 411-421

    • 9

      Ikeda H, Blake R, Watanabe K. Eccentric perception of biological motion is unscalably poor. Vision Research, 2005, 45(15): 1935-1943

    • 10

      Grossman E D, Blake R. Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research, 1999, 39(22): 3721-3727

    • 11

      Pavlova M, Sokolov A. Orientation specificity in biological motion perception. Attention, Perception, & Psychophysics, 2000, 62(5): 889-899

    • 12

      Sumi S, . Upside-down presentation of the Johansson moving light-spot pattern. Perception, 1984, 13(3): 283-286

    • 13

      Pavlova M, Sokolov A. Prior knowledge about display inversion in biological motion perception. Perception, 2003, 32(8): 937-946

    • 14

      Troje N F. Reference frames for orientation anisotropies in face recognition and biological-motion perception. Perception, 2003, 32(2): 201-210

    • 15

      Simion F , Regolin L , Bulf H . A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci USA, 2008, 105(2):809-813

    • 16

      Bertenthal B I, Proffitt D R, Cutting J E. Infant sensitivity to figural coherence in biomechanical motions. Journal of Experiment Child Psychology, 1984, 37(2): 213-230

    • 17

      Hirai M, Hiraki K. An event-related potentials study of biological motion perception in human infants. Cognitive Brain Research, 2005, 22(2): 301-304

    • 18

      Zhao J, Wang L, Wang Y, et al. Developmental tuning of reflexive attentional effect to biological motion cues. Scientific Reports, 2014, 4(1): 5558-5558

    • 19

      Norman J F, Payton S M, Long J R, et al. Aging and the perception of biological motion. Psychology & Aging, 2004, 19(1): 219-225

    • 20

      Pilz K S, Bennett P J, Sekuler A B. Effects of aging on biological motion discrimination. Vision Research, 2010, 50(2): 211-219

    • 21

      Vallortigara G, Regolin L, Marconato F. Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. Plos Biology, 2005, 3(7): e208

    • 22

      Blake R. Cats perceive biological motion. Psychological Science, 1993, 4(1): 54-57

    • 23

      Ishikawa Y, Mills D, Willmott A, et al. Sociability modifies dogs' sensitivity to biological motion of different social relevance. Animal Cognition, 2018, 21(2): 245-252

    • 24

      Mcleod P, Dittrich W, Driver J, et al. Preserved and impaired detection of structure from motion by a ''motion-blind'' patient. Visual Cognition, 1996, 3(4): 363-391

    • 25

      Cowey A, Vaina L M. Blindness to form from motion despite intact static form perception and motion detection. Neuropsychologia, 2000, 38(5): 566-578

    • 26

      Gilaie-Dotan S, Bentin S, Harel M, et al. Normal form from biological motion despite impaired ventral stream function. Neuropsychologia, 2011, 49(5): 1033-1043

    • 27

      Vaina L M, Lemay M, Bienfang D C, et al. Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms:a case study. Visual Neuroscience, 1990, 5(4): 353-369

    • 28

      Vaina L M, Gross C G. Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. Proc Natl Acad Sci USA, 2004, 101(48): 16947-16951

    • 29

      Annaz D, Campbell R, Coleman M, et al. Young children with autism spectrum disorder do not preferentially attend to biological motion. Journal of Autism Developmental Disorders, 2012, 42(3): 401-408

    • 30

      Klin A, Lin D J, Gorrindo P, et al. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 2009, 459(7244): 257-261

    • 31

      Blake R, Turner L M, Smoski M J, et al. Visual recognition of biological motion is impaired in children with autism. Psychological Science, 2003, 14(2): 151-157

    • 32

      Freitag C M, Konrad C, Haberlen M, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia, 2008, 46(5): 1480-1494

    • 33

      Nackaerts E, Wagemans J, Helsen W, et al. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. Plos One, 2012, 7(9): e44473

    • 34

      Kim J, Norton D, Mcbain R, et al. Deficient biological motion perception in schizophrenia: results from a motion noise paradigm. Frontiers in Psychology, 2013, 4: 391

    • 35

      Kim J, Doop M L, Blake R, et al. Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 2005, 77(2-3): 299-307

    • 36

      Bruzzo A, Gesierich B, Wohlschlager A. Simulating biological and non-biological motion. Brain and Cognition, 2008, 66(2): 145-149

    • 37

      Lange J, Georg K, Lappe M. Visual perception of biological motion by form: a template-matching analysis. Journal of Vision, 2006, 6(8): 836-849

    • 38

      Giese M A, Poggio T. Cognitive neuroscience: Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 2003, 4(3):179-192

    • 39

      Casile A, Giese M. Roles of motion and form in biological motion recognition. Joint International Conference on Artificail Neural Networks and Neural Information Processing, 2003, 2714: 854-862

    • 40

      Thompson J C, Baccus W. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. Neuroimage, 2012, 59(1): 625-634

    • 41

      Jastorff J, Popivanov I D, Vogels R, et al. Integration of shape and motion cues in biological motion processing in the monkey STS. Neuroimage, 2012, 60(2): 911-921

    • 42

      Herrington J, Nymberg C, Faja S, et al. The responsiveness of biological motion processing areas to selective attention towards goals. Neuroimage, 2012, 63(1): 581-590

    • 43

      Herrington J D, Nymberg C, Schultz R T. Biological motion task performance predicts superior temporal sulcus activity. Brain and Cognition, 2011, 77(3): 372-381

    • 44

      Peuskens H, Vanrie J, Verfaillie K, et al. Specificity of regions processing biological motion. European Journal of Neuroscience, 2005, 21(10): 2864-2875

    • 45

      Krakowski A I, Ross L A, Snyder A C, et al. The neurophysiology of human biological motion processing: a high-density electrical mapping study. Neuroimage, 2011, 56(1): 373-383

    • 46

      Mather G, Battaglini L, Campana G. TMS reveals flexible use of form and motion cues in biological motion perception. Neuropsychologia, 2016, 84: 193-197

    • 47

      Sokolov A A, Zeidman P, Erb M, et al. Structural and effective brain connectivity underlying biological motion detection. Proc Natl Acad Sci USA, 2018, 115(51): E12034-E12042

    • 48

      Hahn C A, O'toole A J. Recognizing approaching walkers: Neural decoding of person familiarity in cortical areas responsive to faces, bodies, and biological motion. Neuroimage, 2017, 146: 859-868

    • 49

      Engell A D, Mccarthy G. Probabilistic atlases for face and biological motion perception: an analysis of their reliability and overlap. Neuroimage, 2013, 74: 140-151

    • 50

      Michels L, Kleiser R, De Lussanet M H E, et al. Brain activity for peripheral biological motion in the posterior superior temporal gyrus and the fusiform gyrus: dependence on visual hemifield and view orientation. Neuroimage, 2009, 45(1): 151-159

    • 51

      Jastorff J, Orban G A. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. Journal of Neuroscience, 2009, 29(22): 7315-7329

    • 52

      Hirai M, Fikushima H, Hiraki K. An event-related potentials study of biological motion perception in humans. Neuroscience Letters, 2003, 344(1): 41-44

    • 53

      Gilaie-Dotan S, Saygin A P, Lorenzi L J, et al. Ventral aspect of the visual form pathway is not critical for the perception of biological motion. Proc Natl Acad Sci USA, 2015, 112(4): E361-E370

    • 54

      Huberle E, Rupek P, Lappe M, et al. Perception of biological motion in visual agnosia. Frontiers in Behavioral Neuroscience, 2012, 6:1-7

    • 55

      Grossman E D, Jardine N L, Pyles J A. fMR-adaptation reveals invariant coding of biological motion on the human STS. Frontiers in Human Neuroscience, 2010, 4:1-18

    • 56

      Grossman E, Donnelly M, Price R, et al. Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 2000, 12(5): 711-720

    • 57

      Bidet-Caulet A, Voisin J, Bertrand O, et al. Listening to a walking human activates the temporal biological motion area. Neuroimage, 2005, 28(1): 132-139

    • 58

      Saygin A P, Wilson S M, Hagler D J, Jr., et al. Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience, 2004, 24(27): 6181-6188

    • 59

      Downing P E, Jiang Y H, Shuman M, et al. A cortical area selective for visual processing of the human body. Science, 2001, 293(5539): 2470-2473

    • 60

      Carter E J, Pelphrey K A. School-aged children exhibit domain-specific responses to biological motion. Social Neuroscience, 2006, 1(3-4): 396-411

    • 61

      Bonda E, Petrides M, Ostry D, et al. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 1996, 16(11): 3737-3744

    • 62

      Vaina L M , Solomon J , Chowdhury S , et al. Functional neuroanatomy of biological motion perception in humans. Proc Natl Acad Sci USA, 2001, 98(20):11656-11661

    • 63

      Sokolov A A, Erb M, Gharabaghi A, et al. Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus. Neuroimage, 2012, 59(3): 2824-2830

    • 64

      Ptito M, Faubert J, Gjedde A, et al. Separate neural pathways for contour and biological-motion cues in motion-defined animal shapes. NeuroImage, 2003, 19(2): 246-252

    • 65

      Kaiser M D, Shiffrar M, Pelphrey K A. Socially tuned: brain responses differentiating human and animal motion. Social Neuroscience, 2012, 7(3): 301-310

    • 66

      Grossman E D, Blake R. Brain areas active during visual perception of biological motion. Neuron, 2002, 35(6): 1167-1175

    • 67

      Grossman E D, Blake R. Brain activity evoked by inverted and imagined biological motion. Vision Research, 2001, 41(10-11): 1475-1482

    • 68

      Grezes J, Fonlupt P, Bertenthal B, et al. Does perception of biological motion rely on specific brain regions?. Neuroimage, 2001, 13(5): 775-785

    • 69

      Garcia J O, Pyles J A, Grossman E D. Stimulus complexity modulates contrast response functions in the human middle temporal area (hMT plus ). Brain Research, 2012, 1466:56-69

    • 70

      Chang D H F, Ban H, Ikegaya Y, et al. Cortical and subcortical responses to biological motion. Neuroimage, 2018, 174: 87-96

    • 71

      Beauchamp M S, Lee K E, Haxby J V, et al. fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 2003, 15(7): 991-1001

    • 72

      Grossman E D, Battelli L, Pascual-Leone A. Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 2005, 45(22): 2847-2853

    • 73

      Van Kemenade B M, Muggleton N, Walsh V, et al. Effects of TMS over premotor and superior temporal cortices on biological motion perception. Journal of Cognitive Neuroscience, 2012, 24(4): 896-904

    • 74

      Saygin A P. Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 2007, 130(Pt 9): 2452-2461

    • 75

      Casile A, Giese M A. Critical features for the recognition of biological motion. Journal of Vision, 2005, 5(4): 348-360

    • 76

      Sigala R, Serre T, Poggio T, et al. Learning features of intermediate complexity for the recognition of biological motion. International Conference on Artificial Neural Networks: Biological Inspirations, 2005, 3696: 241-246

    • 77

      Battelli L, Cavanagh P, Thornton I M. Perception of biological motion in parietal patients. Neuropsychologia, 2003, 41(13): 1808-1816

    • 78

      Vaina L M , Gross C G . Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. Proc Natl Acad Sci USA, 2004, 101(48):16947-16951

    • 79

      Billino J, Braun D I, Boehm K-D, et al. Cortical networks for motion processing: effects of focal brain lesions on perception of different motion types. Neuropsychologia, 2009, 47(10): 2133-2144

    • 80

      Sokolov A A, Gharabaghi A, Tatagiba M S, et al. Cerebellar engagement in an action observation network. Cerebral Cortex, 2010, 20(2): 486-491

    • 81

      Han Z, Bi Y, Chen J, et al. Distinct regions of right temporal cortex are associated with biological and human-agent motion: functional magnetic resonance imaging and neuropsychological evidence. Journal of Neuroscience, 2013, 33(39): 15442-15453

    • 82

      Grossman E D, Blake R, Kim C Y. Learning to see biological motion: Brain activity parallels behavior. Journal of Cognitive Neuroscience, 2004, 16(9): 1669-1679

    • 83

      Sokolov A A, Erb M, Grodd W, et al. Recovery of biological motion perception and network plasticity after cerebellar tumor removal. Cortex, 2014, 59: 146-152

    • 84

      Oram M W, Perrett D I. Responses of anterior superior temporal polysensory(STPa) neurons to “biological motion” stimuli. Journal of Cognitive Neuroscience, 1994, 6(2): 99-116

    • 85

      Oram M W, Perrett D I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 1996, 76(1): 109-129

    • 86

      Rugani R, Salva O R, Regolin L, et al. Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 2015, 290: 1-7

    • 87

      Takemura Y, Yamaguchi S, Aoki N, et al. Gene expression of Dio2 (thyroid hormone converting enzyme) in telencephalon is linked with predisposed biological motion preference in domestic chicks. Behavioural Brain Research, 2018, 349: 25-30

    • 88

      Troje N F, Aust U. What do you mean with "direction"? Local and global cues to biological motion perception in pigeons. Vision Research, 2013, 79: 47-55