基于HNP模型及相对熵的蛋白质设计方法在不同蛋白质体系中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(10574009, 30670497)和北京市自然科学基金(5072002)资助项目.


Application of Protein Design Method Based on The HNP Model and Relative Entropy for Different Protein Systems
Author:
Affiliation:

Fund Project:

This work was supported by grants from The National Science Foundation of China (10574009, 30670497) and Beijing Natural Science Foundation (5072002).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    详细考察了基于HNP(H: hydrophobic, N: neutral , P: hydrophilic)模型及相对熵的蛋白质设计方法对于不同结构类型蛋白质的适用性,并与基于HP模型的结果进行了比较.通过对190个4种不同结构类型的蛋白质进行预测,结果表明,基于HNP模型及相对熵的设计方法对于不同结构类型的蛋白质具有普适性.进一步的研究发现,对于α螺旋、β折叠等规则的二级结构,该方法的预测成功率高于无规卷曲结构预测成功率.另外,还比较了对不同氨基酸的预测差异,结果显示亲水残基的预测成功率较高.此外,研究表明该方法对于蛋白质保守残基的预测成功率高于非保守残基.在以上分析的基础上,进一步讨论了导致这些差异的原因.这些研究为基于相对熵的蛋白质设计方法的实际应用和进一步的发展打下了良好基础.

    Abstract:

    The application of the protein design method based on the HNP model and the relative entropy theory is discussed for four structural classes of real proteins, and the results are compared with that of the HP model. Testing on 190 proteins shows that this method is generally effective for the different structural classes of proteins. Further studies show that the success rate of this method on regular secondary structures is higher than that on the random coil. Additionally, the success rate for different types of amino acids is also analyzed. It is found that the success rate on the hydrophilic residues is higher than those of the other two types. Furthermore, the success rate of this method on the conserved residues is higher than the non-conserved residues. The reasons resulting in the difference of the success rate on different systems were also analyzed. All analyses mentioned above make the foundation for the development and the application of this method in the future.

    参考文献
    相似文献
    引证文献
引用本文

齐立省,苏计国,陈慰祖,王存新.基于HNP模型及相对熵的蛋白质设计方法在不同蛋白质体系中的应用[J].生物化学与生物物理进展,2008,35(9):1070-1076

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-01-21
  • 最后修改日期:2008-03-20
  • 接受日期:
  • 在线发布日期: 2008-05-29
  • 出版日期: 2008-09-20