国家自然科学基金资助项目(90208021)
This work was supported by a grant from The National Natural Science Foundation of China (90208021)
为研究光、生长素和油菜素内酯在基因层次上的互作机制,开发了转录调控元件识别工具OCMMat,其中,在对共表达基因信息和直系同源基因信息进行整合时,利用了转录调控元件在直系同源基因启动子中的富集性.利用该方法发现,CYP72B1基因和AUR3基因启动子含有3个相同的调控模序GAGACA、AAGAAAAA、ATCATG,它们分别承担了AuxRE元件、GT元件和GT辅助元件的功能.其中,ATCATG模序是目前尚未报道过的调控元件,与AAGAAAAA模序的距离相对恒定.基于调控元件识别结果,构建了CYP72B1基因和AUR3基因响应光、生长素和油菜素内酯的转录调控模型,模型显示:光信号和生长素、油菜素内酯信号在CYP72B1基因和AUR3基因的转录调控元件上相互交叠,而生长素和油菜素内酯信号则在转录因子ARF水平上相交.
Light, auxin and brassinosteroid play important roles in plant growth and development. Genetic analysis has demonstrated complex interactions between their signaling pathways, but the gene regulatory mechanisms connecting these pathways are poorly understood. CYP72B1 and AUR3 are two important genes responsive to light, auxin and brassinosteroid at transcription level. To understand the regulation mechanism of the two genes, a new tool called OCMMat was developed for identifying cis-elements, OCMMat combines both the over-representation property of regulatory elements in co-expressed genes and the conservation property in orthologous genes, for the latter, it was estimated by an enrichment score of regulatory element in orthologous promoter sequences. Using this tool, 3 regulatory motifs shared by genes CYP72B1 and AUR3 were reported, motif GAGACA which is the same as a known cis-element AuxRE, motif AAGAAAAA containing the sequence of GT element and the third ATCATG which is a new one named EDIB element. The space and the order of AAGAAAAA and EDIB show the same pattern in promoters of both the co-expressed genes and the orthologs of CYP72B1. Based on the sequence analysis and the literature knowledge to date, a model was proposed for describing the transcriptional regulatory mechanism of CYP72B1 and AUR3 in response to light, auxin and brassinosteroid. The model presents how the signaling pathways of light, auxin and brassinosteroid are interplaying at gene transcription level. In response to light, the transcription factors GT factor and an unknown protein repress the expression of CYP72B1 and AUR3, the hormone pathways are not interfered and thus work in their own way. While in the absence of light stimulation, CYP72B1 and AUR3 are expressed and the products, in turn, inhibit both the auxin pathway and the brassinosteroid pathways. On the other side, at high hormone level, gene expression is up-regulated through ARF binding, the gene products inhibit the hormone pathways in a feedback manner, and meanwhile, rescues the light signal through the photoreceptor phyB.
张长青,王进,朱怀球,高翔.CYP72B1基因和AUR3基因响应光、生长素和油菜素内酯的转录调控机制研究[J].生物化学与生物物理进展,2009,36(9):1215-1221
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号