This work was supported by a grant from The National Science Fund for Distinguished Young Scholars of China (30925013)
双光子荧光显微镜是神经科学研究中的重要观测仪器,但是现有的商品化仪器受限于较低的成像速度,难以满足脑功能研究中毫秒量级神经信号检测的需要.基于声光偏转器的快速随机扫描双光子显微成像技术,有望在保持信噪比的同时提高观测速度.本文综述了这一研究的最新进展,从飞秒激光经过角色散器件后的时空演化理论、声光偏转器的色散补偿方法、随机扫描成像仪器及仪器应用到神经成像时钙信号的识别方法四个方面分别进行介绍,最后分析了随机扫描双光子显微成像技术的发展趋势.这项技术的系统深入研究将为神经活动观测提供一种全新的方法,推动脑科学研究的发展.
Two-photon microscope has become an important instrument in neuroscience research. However, the current commercial instruments can hardly meet the need for the detection of neural signal in millisecond scale due to their low imaging rates. Fast random-access two-photon microscopy based on acousto-optic deflector (AOD) has the potential for increasing the observation speed while maintaining adequate signal to noise ratio (SNR). We summarize the latest related research progress. It is demonstrated from four parts, including the spatio-temporal evolution theory of the femtosecond laser after passing the angular dispersion devices, dispersion compensation method for AOD, random-access two-photon microscopy instrument, and calcium signal identification method in the instrument applications. In the end, the future development trends for random-access two-photon microscopy are discussed. The systematic and in-deep research on this technology will provide a new tool for the neural activity observation and boost the development of brain science.
姜润华,吕晓华,李德荣,全廷伟,刘秀丽,骆清铭,曾绍群.综述: 用于神经活动观测的随机扫描双光子显微成像[J].生物化学与生物物理进展,2012,39(6):505-512
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号