天津大学化工学院,中国科学院重庆绿色智能技术研究院,中国科学院上海生命科学研究院生物化学与细胞生物学研究所,中国科学院重庆绿色智能技术研究院,天津大学化工学院,中国科学院重庆绿色智能技术研究院
重庆市基础前沿项目(cstc2013jcyjC00001),中国科学院仪器装备项目(生物大分子太赫兹成像光谱仪研制),国家青年科学基金项目(21407145),重庆市应用开发项目(cstc2013yykfC00007),国家973项目(2015CB755401)和中国科学院重庆绿色智能技术研究院创新基金(用于癌细胞检测的多功能近场太赫兹显微镜研制)资助
School of Chemical Engineering and Technology,Tianjin University,Chongqing Key Laboratory of Multi-Scale Manufacturing Technology,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Institute of Biochemistry and Cell Biology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Chongqing Key Laboratory of Multi-Scale Manufacturing Technology,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,School of Chemical Engineering and Technology,Tianjin University,Chongqing Key Laboratory of Multi-Scale Manufacturing Technology,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences
This work was supported by grants from The Fundamental & Advanced Research Project of Chongqing(cstc2013jcyjC00001), Scientific Equipment Research Project of Chinese Academy of Sciences(Development of THz imaging spectrometer for biomacromolecules), National Science Foundation for Young Scientists of China(21407145), Application Development Project of Chongqing(cstc2013yykfC00007), National Basic Research Program of China(2015CB755401)and Startup Foundation for Advanced Talents of CIGIT (Development of multifunctional near-field THz microscopy for the detection of early-stage cancerous cells)
生命活动过程与生物分子内或生物分子间机械力的作用密不可分.原子力显微镜具有极高的力学分辨率,可以在近生理条件下对生物样品进行力学测量,是研究生物体系力学相互作用的理想工具.基于原子力显微镜的单分子力谱(AFM-SMFS)技术可以在单分子、单细胞水平测量生物分子内或生物分子间的相互作用.本文首先扼要介绍了AFM-SMFS技术,包括AFM-SMFS的基本原理、力谱测量及分析方法(蠕虫链模型、自由连接链模型和自由旋转链模型)以及探针的化学修饰方法(硅/氮化硅探针和镀金探针的修饰);重点介绍了利用AFM-SMFS技术对活体细胞表面蛋白(转化生长因子β1、CD20、热休克蛋白以及蛋白酪氨酸激酶)和糖类分子(葡萄糖和甘露糖)的近期研究进展;随后介绍了利用AFM-SMFS技术对活菌体表面蛋白(肝素结合血凝黏附素和Als5p黏附蛋白)和糖类分子(半乳糖、甘露糖、B族碳水化合物、荚膜多糖、α-甘露聚糖、β-甘露聚糖、β-葡聚糖以及几丁质)的近期研究进展;最后对AFM-SMFS技术的缺点和发展前景进行了总结和展望.
Mechanical forces are always involved in a biological process in which intra- and/or inter- biomolecular interactions are essential. Atomic force microscopy (AFM) is an ideal technique that can be used to investigate the mechanical interactions occurred in biological system, due to its high resolution in force measurement and its capability of working in near-physiological conditions. Single-molecule force spectroscopy based on AFM (AFM-SMFS) has an extraordinary ability to interrogate the intra- and/or inter- biomolecular interactions at the single-molecule and/or single-cell level. In this review, the basic principle of AFM-SMFS, and the techniques including AFM tip modifications(silicon/nitride silicon and gold-coated silicon tips), force spectroscopy measurement and data analysis (the worm-like chain model, the freely jointed chain model and the freely rotating chain model) required in AFM-SMFS, are briefly introduced. The emphasis is given on the recent progress made in investigating biomolecules, including proteins (transforming growth factor β1, CD20, Heat Shock Proteins, PTK7, heparin-binding haemagglutinin adhesion and Als5p adhesion proteins) and carbohydrates(glucose, mannose, galactose, group B carbohydrate, capsular polysaccharide, α-mannans, β-mannans, β-glucans and chitin) existing on mammalian, bacterial and fungal cell surfaces. Finally, the limitations of AFM-SMFS and its future applications have been summarized.
于小婷,杨忠波,王鑫艳,汤明杰,王占忠,王化斌. AFM单分子力谱技术及其在活体细胞和菌体表面生物大分子研究中的最新进展[J].生物化学与生物物理进展,2016,43(1):28-43
复制生物化学与生物物理进展 ® 2024 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号