军事医学科学院放射与辐射医学研究所,国防科学技术大学计算机学院软件研究所,军事医学科学院放射与辐射医学研究所,国防科学技术大学计算机学院软件研究所
国家自然科学基金重大计划(U1435222), 国家自然科学基金面上项目(61402486)和全军后勤科研计划重点项目(BWS14C051)资助
Institute of Radiation Medicine, Academy of Military Medical Sciences,School of Computer Science, National University of Defense Technology,Institute of Radiation Medicine, Academy of Military Medical Sciences,School of Computer Science, National University of Defense Technology
This work was supported by grants from the National Natural Science Foundation of China (U1435222) and the Logistics Research Plan of Chinese PLA (BWS14C051)
高通量测序技术的发展正在逐渐改变诸多生物学领域的研究方法.为应对突发疫情以及新发未知微生物威胁的需求,微生物鉴定技术逐渐从传统的物理化学方法及核酸杂交等分子水平方法进一步走向利用无需培养的测序数据进行快速分析检测.随之而来的是对高通量数据分析在精度及速度的要求.基于高通量测序数据的微生物检测数据分析方法在近些年得到了快速的发展.本文分析了目前基于高通量测序数据的微生物检测数据分析方法,对其数据分析的处理流程和计算方法进行了研究,比较了各个微生物检测数据分析方法的特点及适用场景.最后结合本实验室工作总结微生物检测数据分析方法在实际应用中可能遇到的问题,希望对该应用领域的研究有一定的参考意义.
Next-generation sequencing is changing research methods in biological fields. Microbial identification and detection technologies based on next-generation sequencing have advantage of high-precision and radial-velocity need, and the capability to replace previous culture-based and molecular methods, such as using nucleic acid amplification and hybridization technologies for rapid response to known and unknown biological threats. In this paper, we compared current computational analysis approaches on next-generation sequencing data for microbial identification and detection, including design principles, computational pipeline, and benchmark testing. Furthermore, some possible problems were summarized involving the use of these computational approaches.
周子寒,彭绍亮,伯晓晨,李非.基于高通量测序技术的微生物检测数据分析方法[J].生物化学与生物物理进展,2017,44(1):58-69
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号