基于深度学习的阴道微生态病理图像自动诊断
CSTR:
作者:
作者单位:

1)国防科技大学计算机学院,长沙 410073;2)中国科学院计算机网络信息中心,北京 100850

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研究发展计划(2018YFB0204301),国家自然科学基金(81973244)和国防科技大学高性能计算国家重点实验室资助项目.


Automatic Diagnosis of Vaginal Microecological Pathological Images Based on Deep Learning
Author:
Affiliation:

1)College of Computer, National University of Defense Technology, Changsha 410073, China;2)Computer Network Information Center, Chinese Academy of Sciences, Beijing 100850, China

Fund Project:

This work was supported by grants from National Key Research and Development Program of China (2018YFB0204301), The National Natural Science Foundation of China (81973244) and State Key Laboratory of High Perfomance Computing, National University of Defense Technology.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    阴道微生态病理图像是诊断细菌性阴道病的重要依据,但对其人工分析需要花费大量时间精力,导致诊断效率不高,因此需要寻求针对病理图像的自动诊断新方法. 本文提出一种阴道微生态病理图像自动诊断模型ResLab,该模型以阴道微生态病理图像作为训练数据集,利用深度学习技术对病理图像进行端到端分析,预测Nugent评分,辅助医生进行分级诊断. 为提升模型预测的精确率,本文综合采用多种方法对模型加以改进,包括增加网络层数以提取更深特征,采用两个小卷积核叠加以增大感受野,减少ReLU激活层以降低复杂性,用最大池化层替换平均池化层以提取最显著特征.实验证明,各优化方案均能明显提升模型性能,ResLab模型预测精确率达到82.19%,超过VGG、GoogLeNet、ResNet等网络模型. 结果表明,ResLab模型能为医生提供较准确的参考结果,从而提高诊断效率,减少诊断误差.

    Abstract:

    Vaginal microflora pathological image is an important basis for the diagnosis of bacterial vaginosis, but analysis of the images manually takes a lot of time and effort, leading to low diagnosis efficiency, so new methods of automatic pathological image diagnosis need to be sought. In this paper, we proposed a model, ResLab, to diagnose vaginal microflora pathological image automatically. It took the pathological reports of gynecological examination as training set, and used deep learning technology to perform end-to-end analysis on the pathological images. The ResLab model predicted Nugent score to assist doctors in grading diagnosis. We optimized the ResLab in multiple ways to improve the prediction accuracy, by increasing the number of layers to extract deeper features, stacking two small convolution kernels to increase the receptive field, removing ReLU layers to reduce complexity, and replacing average pooling layer with max pooling layer to extract the most salient feature. It was proven that each optimization plan can significantly improve the perfomance of the model. The prediction accuracy of the ResLab model reached 82.19%, which outperformed VGG, GoogLeNet, ResNet. The ResLab model can provide doctors with relatively accurate reference results, thereby improving diagnosis efficiency and reducing diagnostic error.

    参考文献
    相似文献
    引证文献
引用本文

姚泽欢,陈微,李晨,杨浩艺,何玉麟,谭郁松,李非.基于深度学习的阴道微生态病理图像自动诊断[J].生物化学与生物物理进展,2021,48(11):1348-1357

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-11
  • 最后修改日期:2021-06-23
  • 接受日期:2021-07-05
  • 在线发布日期: 2021-11-23
  • 出版日期: 2021-11-20