基于核范数正则化的抗癌药物组合协同作用预测
作者:
作者单位:

1)燕山大学理学院,秦皇岛 066004;2)中车唐山机车车辆有限公司,唐山 063000

作者简介:

Tel: 15232356135, E-mail: yushuangli@ysu.edu.cnTel: 86-15232356135, E-mail: yushuangli@ysu.edu.cn

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金(A2020203021)和河北省引进留学人员基金(C20200365)资助项目。


Predicting Synergistic Effect of Anticancer Drug Combinations Based on Nuclear Norm Regularization
Author:
Affiliation:

1)School of Science, Yanshan University, Qinhuangdao 066004, China;2)CRRC TANGSHAN CO., LTD, Tangshan 063000, China

Fund Project:

This work was supported by grants from Natural Science Foundation of Hebei, China (A2020203021) and Science Foundation for Returned Scholars of Hebei Province (C20200365).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 抗癌药物联合疗法是一种很有前途的治疗策略。针对特定癌症类型,选择高度协同的药物组合,对提高癌症疗效至关重要。然而,确定具有协同作用的药物组合是一项复杂而困难的工作。本研究旨在完全以数据驱动、计算建模的方式优化抗癌药物组合高通量虚拟筛选,为“旧药重新定位新组合”提供理论参考。方法 借鉴矩阵填充思想,构建了基于核范数正则化的计算模型NNRM,用于预测抗癌药物组合的协同得分和协同状态。针对固定细胞系构造对称的协同得分观测矩阵;采用分折技巧将观测矩阵稀疏化;借助“交替方向乘子法”和“软阈值估计”求解模型。结果 将NNRM应用于O"Neil团队发布的数据集,预测的协同得分与观测值之间的均方根误差为14.78,预测的协同状态准确率为0.94,优于随机森林(RF)和支持向量机(SVM),完全可以与深度学习模型相媲美。此外,NNRM预测的部分缺失值结果与已有研究或临床实践相吻合。结论 NNRM可实现大规模、批量预测抗癌药物组合的协同作用,极大地降低了已有模型对数据的要求和计算成本,缩短了高通量虚拟筛选的测试时间,可以作为抗癌药物组合高通量虚拟筛选的可选择工具。

    Abstract:

    Objective Anticancer drug combination therapies are a promising therapeutic strategy. Drug combinations exhibiting a highly synergistic effect are crucial to improve the treatment for specific cancers. However, identifying such combinations is very complicated and difficult due to the tremendous screening cost. The availability of large-scale high-throughput combination screening data provides opportunities for computational approaches. The purpose of this study is to optimize the high-throughput virtual screening of anticancer drug combinations in a completely data-driven and computational modeling way, and provide theoretical reference for “old drugs repositioning as new combinations”.Methods Inspired by the matrix completion, we present a nuclear norm regularization-based model, termed NNRM, to predict synergy scores and synergy status of anticancer drug combinations. Symmetric observation matrixes of synergy scores were constructed for given cell lines; a folding technique was employed to sparse the observation matrix; alternating direction multiplier method and soft threshold estimation were applied to solve the model.Results NNRM achieved expected predictive result on the dataset released by O’Neil’s team, the root mean square error of the synergy score prediction was 14.78, and the accuracy of the synergy status prediction was 0.94. It is not only significantly superior to the Random Forest and the Support Vector Machine, but also completely comparable to the state-of-the-art deep learning models including DeepSynergy, Deep learning+PCA and AuDNNsynergy. Moreover, NNRM effectively filled the missing synergy scores most of which are consistent with existing research or clinical practice.Conclusion NNRM could predict the synergistic effect of large-scale drug combinations in batches, which greatly lowers the data requirements by existing models, reduces the computational cost, and shortens the screening time. It indicates that NNRM is an alternative tool for high-throughput virtual screening of anticancer drug combinations.

    参考文献
    相似文献
    引证文献
引用本文

史磊晶,王波,张杉,任福全,李玉双.基于核范数正则化的抗癌药物组合协同作用预测[J].生物化学与生物物理进展,2023,50(3):634-646

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-29
  • 最后修改日期:2023-03-01
  • 接受日期:2022-07-15
  • 在线发布日期: 2023-03-22
  • 出版日期: 2023-03-20