基于径向基函数神经网络的肺部加权频差电阻抗成像方法
作者:
作者单位:

湖南师范大学工程与设计学院,长沙 410081

作者简介:

张甫 Tel: 13507489016, E-mail: fuzhang@hunnu.edu.cn杨宇祥 Tel: 16674224725, E-mail: yuxiang.yang@hunnu.edu.cnZHANG Fu. Tel: 86-13507489016, E-mail: fuzhang@hunnu.edu.cnYANG Yu-Xiang. Tel: 86-16674224725, E-mail: yuxiang.yang@hunnu.edu.cn

通讯作者:

中图分类号:

R332.1;TH77;Q64

基金项目:

国家自然科学基金(32201134,32171366,31671002),湖南省自然科学基金 (2021JJ30014,2021JJ40359)和湖南省研究生科研创新项目(CX20210494)资助。


Weighted Frequency-difference Electrical Impedance Tomography of Lung Based on RBFNN
Author:
Affiliation:

College of Engineering and Design, Hunan Normal University, Changsha 410081, China

Fund Project:

This work was supported by grants from The National Natural Science Foundation of China (32201134,32171366,31671002), the Natural Science Foundation of Hunan Province (2021JJ30014, 2021JJ40359), and Hunan Provincial Innovation Foundation for Postgraduate (CX20210494).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 对肺通气过程进行床旁实时连续图像监控,是机械通气患者和临床医生的迫切需求。肺部电阻抗成像(EIT)可反映呼吸引起的胸腔电特性变化分布,在肺通气监测方面具有天然的优势。本文目的在于建立基于径向基函数神经网络(RBFNN)的肺部加权频差电阻抗成像(wfd-EIT)方法,实现对肺通气的高空间分辨率成像。方法 利用肺部wfd-EIT成像方法实时描绘胸腔电导率分布状况,再通过RBFNN将目标区域可视化并精准识别其边界信息。首先通过数值分析模拟,在各个激励频率利用COMSOL与MATLAB软件建立2 028个仿真样本,分为训练样本集和测试样本集,验证所提出成像方法的可行性和有效性。其次,为了验证仿真结果,建立肺部物理模型,选用具有低电导特性的生物组织模拟肺部通气区域,对其进行成像实验,并采用图像相关系数(ICC)和肺区域比(LRR)定量数据衡量成像方法的准确性。结果 wfd-EIT方法可以在任意时刻进行图像重建,并能够准确反映出目标区域的电特性分布;利用基于RBFNN的算法能够增强目标区域的成像精度,ICC可达0.94以上,更好地凸显其边界轮廓信息。结论 通过wfd-EIT成像方法,利用多频阻抗谱同步测量实现目标区域的快速可视化,并结合RBFNN网络逼近任意非线性函数的优点,实现对目标区域电特性变化的精准识别,为下一步进行临床肺通气的EIT图像监测奠定了理论和技术基础。

    Abstract:

    Objective It is an urgent need for patients with mechanical ventilation and clinicians to monitor the process of pulmonary ventilation with real-time continuous images at the bedside. Electrical impedance imaging (EIT) of the lung can reflect the distribution of changes in the electrical characteristics of the chest caused by breathing, which has a natural advantage in the monitoring of pulmonary ventilation. The purpose of this paper is to establish a radial basis function neural network (RBFNN) based weighted frequency-difference EIT (wfd-EIT) method to achieve high spatial resolution imaging of pulmonary ventilation.Methods The wfd-EIT method was used to describe the conductivity distribution of the thoracic cavity in real time, and then the target region was visualized and its boundary information was accurately identified by the RBFNN. Firstly, through numerical analysis and simulation, 2 028 simulation samples were established by COMSOL and MATLAB software at each excitation frequency, which were divided into training set and test set to verify the feasibility and effectiveness of the proposed imaging method. Secondly, in order to verify the simulation results, a lung physical model was established. Biological tissues with low conductance characteristics were selected to simulate the ventilation area of the lung, and the imaging experiment was conducted on it. The quantitative data of image correlation coefficient (ICC) and lung region ratio (LRR) were used to measure the accuracy of the imaging method.Results The wfd-EIT method can reconstruct the image at any time and accurately reflect the electrical characteristics distribution of the target region. The algorithm based on RBFNN can enhance the imaging accuracy of the target region with ICC reaching over 0.94, which can better highlight the boundary contour information.Conclusion The wfd-EIT imaging method utilizes the simultaneous measurement of multi-frequency impedance spectra to realize rapid visualization of the target area, and combines the advantages of the RBFNN in approximating arbitrary non-linear functions to achieve accurate identification of the electrical characteristics changes in the target area, which lays theoretical and technical foundations for EIT image monitoring of clinical pulmonary ventilation in the next step.

    参考文献
    相似文献
    引证文献
引用本文

白世展,李文胜,林海军,李建闽,张甫,杨宇祥.基于径向基函数神经网络的肺部加权频差电阻抗成像方法[J].生物化学与生物物理进展,2023,50(7):1755-1766

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-19
  • 最后修改日期:2023-04-14
  • 接受日期:2022-09-15
  • 在线发布日期: 2023-07-19
  • 出版日期: 2023-07-20