芍药甘草汤通过调节NDUFS1表达抑制巨噬细胞向M1极化缓解小鼠溃疡性结肠炎
作者:
作者单位:

1) 北京体育大学中国运动与健康研究院,北京 100084;2) 北京体育大学运动人体科学学院,北京 100084;3) 北京康仁堂药业有限公司中药研究院,北京 101301

作者简介:

SONG Ya-Feng. Tel: 86-10-62962180, E-mail: songyafeng@bsu.edu.cnHAN Jun. Tel: 86-18311059115, E-mail: 729229056@qq.com 宋亚锋 Tel:010-62962180,E-mail:songyafeng@bsu.edu.cn 韩君 Tel:18311059115,E-mail:729229056@qq.com

通讯作者:

中图分类号:

基金项目:


Shakuyakukanzoto Relieves Ulcerative Colitis in Mice by Regulating The Expression of NDUFS1 and Inhibiting The Polarization of Macrophages to M1
Author:
Affiliation:

1) China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;2) Department of Sport and Science, Beijing Sport University, Beijing 100084, China;3) Chinese Medicine Research Institute of Beijing Tcmages Pharmaceutical Co., Ltd., Beijing 101301, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 本研究旨在探索并阐明芍药甘草汤(Shakuyakukanzoto,SKT)通过调节巨噬细胞的能量代谢和极化来改善小鼠溃疡性结肠炎(ulcerative colitis,UC)的可能作用机制。方法 通过给予3%葡聚糖硫酸钠盐(dextran sulfate sodium salt,DSS)构建小鼠UC模型并通过灌胃SKT进行治疗。首先,对两个数据集GSE21157和GSE210415进行单细胞测序分析和代谢通路富集。其次,对UC小鼠腹腔巨噬细胞的提取和代谢组学验证。然后,根据标准逆方差加权两样本的单变量孟德尔随机化分析差异代谢物富集的通路和UC风险相关性。接着,分析在GSE128682和GSE102746数据集转录水平差异。最后,使用定量反转录PCR(qRT-PCR)、蛋白质印迹法(Western blot)和流式细胞术验证结果。结果 苏木精-伊红(HE)染色结果显示,SKT可以显著缓解DSS引起的结肠损伤。单细胞测序分析在肠壁中发现了巨噬细胞、NK细胞、T细胞等10多种不同类型的细胞。在疾病组中,通过比较这两组数据发现,有49条主要涉及能量代谢的巨噬细胞代谢途径的活性显著上调。能量代谢组学中,治疗组与模型组,模型组与空白组分别鉴定了10种和18种显著上调和下调的差异表达代谢物,这些差异表达的代谢物主要与糖酵解和氧化磷酸化有关。根据标准逆方差加权两样本的单变量孟德尔随机化分析,预测糖酵解和氧化磷酸化相关基因泛醌NADH脱氢酶Fe-S蛋白1(recombinant NADH dehydrogenase ubiquinone Fe-S protein 1,NDUFS1)(OR:0.56,95% CI:0.48~0.98,P=0.000 068)与UC风险降低相关。通过对两组数据集转录水平差异分析,与正常组相比,UC中NDUFS1的转录水平降低。qRT-PCR、Western blot和流式细胞术验证结果显示,SKT可以促进NDUFS1蛋白的表达,抑制巨噬细胞向M1型极化。此外,敲低/过表达NDUFS1可以影响SKT对巨噬细胞M1型极化的影响。结论 SKT通过调节NDUFS1蛋白水平,抑制巨噬细胞向M1型极化,从而缓解小鼠UC。这些发现不仅揭示了SKT对UC的治疗机制,也为临床应用提供了新的理论基础。

    Abstract:

    Objective This study aims to explore and elucidate the possible mechanism of action of Shakuyakukanzoto (SKT) in improving ulcerative colitis (UC) in mice through regulating energy metabolism and polarization of macrophages.Methods The mouse UC model was constructed by administering 3% dextran sulfate sodium salt (DSS), and the mice were treated with SKT intragastrically. In addition, single-cell sequencing and enrichment of metabolic pathways against two datasets, GSE21157 and GSE210415, were conducted first. Second, the extraction and metabolomics of peritoneal macrophages from UC mice were verified. Then, the pathway of differentially abundant metabolite enrichment and the correlation of UC risk were analyzed depending on univariate Mendelian randomization of two samples weighted by standard inverse variance. Finally, the results were verified by qRT-PCR, Western blot, and flow cytometry.Results According to the HE staining results, SKT can significantly alleviate colon damage caused by DSS. Macrophages, NK cells, T cells, and more than 10 different types of cells, based on single-cell sequencing analysis, are detected in the intestinal wall. In the disease group, we can conclude that the activity of 49 macrophage metabolic pathways, mainly involved in energy metabolism, is significantly upregulated through a comparison of the two datasets. In energy metabolomics, 10 and 18 types of metabolites accompanied by significantly upregulated and downregulated differential expression were identified in the treatment group and the model group, as well as the model group and the blank group, respectively. Meanwhile, these differentially expressed metabolites present an obvious correlation with glycolysis and oxidative phosphorylation. Moreover, it can be inferred that glycolysis and the oxidative phosphorylation-related gene NDUFS1 (OR: 0.56, 95% CI: 0.48-0.98, P=0.000 068) are associated with a reduced risk of UC based on the univariate Mendelian randomization of two samples weighted based on standard inverse variance. By analyzing the difference in transcription levels between the two datasets, the transcription level of NDUFS1 in UC was decreased compared with that in the normal group. The results of qRT-PCR, Western blot, and flow cytometry indicate that SKT can promote the expression of the oxidative phosphorylation protein NDUFS1 in macrophages and inhibit the M1-type polarization of macrophages. Furthermore, knockdown/overexpression of NDUFS1 can affect the effect of SKT on M1-type polarization of macrophages.Conclusion Based on the results of this study, SKT inhibits macrophage polarization toward the M1 phenotype by regulating the level of the oxidatively phosphorylated protein NDUFS1 in macrophages; hence, UC is also relieved in mice. These conclusions not only reveal the therapeutic mechanism of SKT for UC but also provide a new theoretical basis for clinical application.

    参考文献
    相似文献
    引证文献
引用本文

夏侯志楷,肖红,宋亚锋,韩君.芍药甘草汤通过调节NDUFS1表达抑制巨噬细胞向M1极化缓解小鼠溃疡性结肠炎[J].生物化学与生物物理进展,2024,51(5):1174-1190

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-02
  • 最后修改日期:2024-04-27
  • 接受日期:2023-10-26
  • 在线发布日期: 2024-05-21
  • 出版日期: 2024-05-20