1)河北工业大学生命科学与健康工程学院,天津 300130;2)河北省生物电磁与神经工程重点实验室(河北工业大学),天津 300130;3.4)河北省数字医疗工程重点实验室(河北大学),保定 071002;4.3)省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学),天津 300130
Tel:
国家自然科学基金(52077057,52207251)和河北省自然科学基金(F2022202023)资助项目。
1)School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China;2)Key Laboratory of Bioelectromagnetics and Neural Engineering of Hebei Province, Hebei University of Technology, Tianjin 300130, China;3.4)Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, China;4.3)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
This work was supported by grants from The National Natural Science Foundation of China (52077057,52207251) and Hebei Natural Science Foundation (F2022202023).
目的 近年来,失重环境对航天员神经系统造成的负面影响受到广泛关注。重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)技术对神经、精神类疾病的治疗效果有着显著积极影响。复合频率(不同频率刺激模式组成)的rTMS对由失重环境引起的神经系统功能障碍的改善作用仍有待深入研究。探索复合频率刺激(combined frequency stimulation,CFS)对失重环境造成的多种神经系统疾病的治疗效果以及电生理机制,对于脑科学及磁刺激的临床应用具有重要意义。方法 本研究采用40只C57BL/6小鼠,所有小鼠随机分为5组:假刺激组组、后肢去负荷(HU)组、10 Hz组、20 Hz组和CFS(10 Hz+20 Hz,CFS)组。对除sham组以外的小鼠建立维持14 d的模拟失重效应并同期进行14 d的rTMS。通过蔗糖偏好实验和水迷宫实验验证CFS对负性情绪和空间认知能力的改善效果。最后,通过膜片钳技术记录海马齿状回(dentate gyrus,DG)颗粒神经元的动作电位、静息膜电位以及离子通道的动力学特性。结果 行为学结果表明,CFS (10 Hz+20 Hz)显著改善了模拟失重小鼠的认知障碍和负性情绪;电生理实验结果显示,HU操作后小鼠海马DG区颗粒神经元的兴奋性降低,而CFS显著提高了神经元的兴奋性并改善了电压门控Na+、K+通道的动力学特性。结论 复合频率的rTMS(10 Hz+20 Hz)能够有效地改善模拟失重小鼠的认知障碍和负面情绪,这种改善可能与CFS对神经元兴奋性以及Na+、K+通道动力学特性的影响有关。因此,本文有望为CFS改善失重环境下所产生的空间认知和负性情绪障碍提供理论依据。
Objective In recent years, the negative impact of microgravity on astronauts’ nervous systems has received widespread attention. The repetitive transcranial magnetic stimulation (rTMS) technology has shown significant positive effects in the treatment of neurological and psychiatric disorders. The potential benefits of combined frequency stimulation (CFS) which combines different frequency stimulation patterns in ameliorating neurological dysfunctions induced by the microgravity environment, still require in-depth investigation. Exploring the therapeutic effects and electrophysiological mechanisms of CFS in improving various neurological disorders caused by microgravity holds significant importance for neuroscience and the clinical application of magnetic stimulation.Methods This study employed 40 C57BL/6 mice, randomly divided into 5 groups: sham group, hindlimb unloading (HU) group, 10 Hz group, 20 Hz group, and combined frequency stimulation (10 Hz+20 Hz, CFS) group. Mice in all groups except the sham group received 14 d of simulated microgravity conditions along with 14 d of repetitive transcranial magnetic stimulation. The effects of CFS on negative emotions and spatial cognitive abilities were assessed through sucrose preference tests and water maze experiments. Finally, patch-clamp techniques were used to record action potentials, resting membrane potentials, and ion channel dynamics of granule neurons in the hippocampal dentate gyrus (DG) region.Results Compared to the single-frequency stimulation group, behavioral results indicated that the combined frequency stimulation (10 Hz+20 Hz) significantly improved cognitive impairments and negative emotions in simulated microgravity mice. Electrophysiological experiments revealed a decrease in excitability of granule neurons in the hippocampal DG region after HU manipulation, whereas the combined frequency stimulation notably enhanced neuronal excitability and improved the dynamic characteristics of voltage-gated Na+ and K+ channels.Conclusion The repetitive transcranial magnetic stimulation with combined frequencies (10 Hz+20 Hz) effectively ameliorates cognitive impairments and negative emotions in simulated microgravity mice. This improvement is likely attributed to the influence of combined frequency stimulation on neuronal excitability and the dynamic characteristics of Na+ and K+ channels. Consequently, this study holds the promise to provide a theoretical basis for alleviating cognitive and emotional disorders induced by microgravity environments.
赵峻峤,朱明强,朱海军,付蕊,张泽,王佳乐,丁冲.复合频率刺激对后肢去负荷小鼠海马齿状回区颗粒神经元作用的电生理研究[J].生物化学与生物物理进展,2024,51(7):1670-1686
复制生物化学与生物物理进展 ® 2024 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号