1)内蒙古科技大学自动化与电气工程学院,包头 014010;2)内蒙古科技大学数智产业学院,包头 014010;3.4)锡林郭勒盟蒙医医院影像科,锡林浩特026000;4.3)西安电子科技大学生命科学与技术学院,西安 710071;5)内蒙古科技大学理学院,包头 014010
国家脑科学和类脑智能技术计划(2022ZD0214500),国家自然科学基金(82260359,82371500,U22A20303,61971451),内蒙古自然科学基金(2021MS08014,2023QN08007)和内蒙古自治区高等学校基本业务费资助项目。
1)School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou014010, China;2)School of Digital and Intelligence Industry, Inner Mongolia University of Science and Technology, Baotou014010, China;3.4)Imaging Department, Xiling Gol League General Hospital, Xilinhot026000, China;4.3)School of Life Science and Technology, Xidian University, Xi’an710071, China;5)School of Science, Inner Mongolia University of Science and Technology, Baotou014010, China
This work was supported by grants from Chinese National Programs for Brain Science and Brain-like Intelligence Technology (2022ZD0214500), The National Natural Science Foundation of China (82260359, 82371500, U22A20303, 61971451), Natural Science Foundation of Inner Mongolia (2021MS08014, 2023QN08007), and Basic Operating Funds for Higher Education Institutions in Inner Mongolia Autonomous Region.
目的 基于控制和脑网络理论来探讨青少年吸烟者结构脑网络的可控性变化,考察可控性指标是否可以作为预测青少年吸烟者睡眠情况的有力因子。方法 在内蒙古科技大学筛选出50例青少年吸烟者和51例健康对照者。基于弥散张量成像(DTI)构建每例受试者的基于各项异分数(FA)加权矩阵的结构脑网络。依据控制和脑网络理论计算平均可控性和模态可控性。采用双样本t检验进行组间差异比较,采用Pearson相关性分析对存在组间差异脑区的平均可控性和模态可控性与Fagerstr?m尼古丁依赖测试(FTND)进行相关性分析。选取可控性得分在前10%的节点作为超级控制器,最后采用反向传播(back Propagation,BP)神经网络来预测青少年吸烟者的匹兹堡睡眠质量指数(PSQI)。结果 吸烟组的背外侧额上回、辅助运动区、豆状核壳、豆状苍白球脑区的平均可控性,以及眶部额下回、辅助运动区、回直肌、后扣带回的模态可控性,均与健康对照组有显著性差异(P<0.05);吸烟组右侧辅助运动区(SMA.R)的平均可控性与FTND呈正相关(r=0.380 1,P=0.006 5),模态可控性与FTND呈负相关(r=0.329 2,P=0.019 6);利用可控性指标预测青少年PSQI睡眠指数时,平均可控性的预测效果(R=0.722 81)要优于模态可控性的预测效果(R=0.602 26)。结论 青少年吸烟者结构脑网络的可控性存在异常,其可控性指标可以有效预测其睡眠情况,可为评估其认知功能损伤提供影像依据。
Objective The controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers.Methods Fifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerstr?m Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers.Results The average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus in the young smokers’ group, supplementary motor area, gyrus rectus, and posterior cingulate gyrus, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2).Conclusion The controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
丁静静,董芳,王宏德,袁凯,程永欣,王娟,马宇欣,薛婷,喻大华.青少年吸烟者结构脑网络的可控性分析(附勘误)[J].生物化学与生物物理进展,2025,52(1):182-193
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号