1.北京师范大学体育与运动学院;2.首都医科大学宣武医院;3.北京师范大学化学学院
神经元兼容的活体化学测量原理和应用研究
1.Beijing Normal University;2.Capital Medical University
睡眠是与觉醒状态交替转换的一种本能行为,它有助于机体恢复细胞能量、增强免疫能力、促进生长发育、巩固学习记忆等,确保生命活动的正常进行。随着工作生活等社会压力的增大,睡眠障碍(Sleep Disorder,SD)的发生率逐年升高,解析其发生机理并寻找有效地调控靶点愈发重要。多巴胺(Dopamine, DA)是神经系统中重要的神经递质,除参与动作发起、运动调节、情绪调控外,在睡眠-觉醒状态转换的稳态重塑中也发挥关键作用。本文将对不同形式运动引起的DA变化及其在睡眠结构障碍调节中的作用进行综述,为临床睡眠障碍运动处方的制定,及药物运动联合干预提供理论参考。
Abstract Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze its mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for Ventral tegmental area dopamine neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, Experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to further study the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
侯莉娟,耿雅萱,李科,黄朝阳,毛兰群.多巴胺在运动调控睡眠-觉醒中的作用机制研究[J].生物化学与生物物理进展,,():
复制生物化学与生物物理进展 ® 2024 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号