空军军医大学空军特色医学中心临床医学实验室,北京 100142
Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing 100142, China
肿瘤耐药是化疗和靶向药物治疗面临的重要问题,它是一个涉及染色质重塑的复杂过程。SWI/SNF是肿瘤发生中研究最多的ATP依赖性染色质重塑复合物之一,在染色质结构稳定性、基因表达和翻译后修饰的协调过程中起着重要作用,但其调控肿瘤耐药的机制尚未被系统梳理。SWI/SNF按其亚基组成可分为BAF、PBAF和ncBAF 3种,这3种亚型均包含ATP酶催化亚基、核心亚基和调节亚基,可以通过调控染色质结构来控制基因表达。SWI/SNF复合物亚基的改变是调控肿瘤耐药和进展的重要因素之一,充分了解该复合物在肿瘤耐药中的分子机制可以改善癌症的治疗。本文总结了SWI/SNF复合物的组成、引起肿瘤耐药的突变或异常表达亚基类型、主要的耐药机制以及肿瘤耐药的克服方法等,为临床上SWI/SNF亚基突变或异常表达引起的肿瘤预后不良的诊断和治疗提供了思路。
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
朱桂珍,叶巧,罗渊,彭洁,王璐,杨昭婷,段峰森,郭丙乾,梅竹松,王广云. SWI/SNF染色质重塑复合物在肿瘤耐药中的作用[J].生物化学与生物物理进展,2025,52(1):20-31
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号