中脑运动区与位移运动控制
CSTR:
作者:
作者单位:

1)北京师范大学生命科学学院,北京 100875;2)北京师范大学珠海校区实验教学平台,珠海 519087

作者简介:

通讯作者:

中图分类号:

基金项目:


The Mesencephalic Locomotor Region for Locomotion Control
Author:
Affiliation:

1)College of Life Sciences, Beijing Normal University, Beijing 100875, China;2)Experimental Teaching Platform, Beijing Normal University Zhuhai Campus, Zhuhai 519087, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    位移运动(locomotion)是一种普遍存在的基本运动功能,包括游泳、行走、奔跑和飞行等多种形式,对于动物的生存和环境适应至关重要。中脑运动区(mesencephalic locomotor region,MLR)位于中脑与后脑的交界处,是控制位移运动的关键脑区。在不同物种中,MLR的解剖位置和功能表现出高度的保守性。本文综述了从七鳃鳗到两栖类、爬行类,再到哺乳类和鸟类等不同物种中MLR的结构和功能的最新研究进展,特别关注了近期在哺乳类中利用光遗传学等新技术对MLR特定神经环路的精细解析,旨在揭示MLR调控运动的普遍性策略。鸟类具有卓越的飞行能力,但目前对于鸟类MLR的结构和功能的认识仍不清晰。通过对鸟类与其他物种MLR同源结构的比较分析,期望为鸟类MLR的确切定位以及飞行运动复杂调控机制的揭示提供重要线索。

    Abstract:

    Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.

    参考文献
    相似文献
    引证文献
引用本文

郭星辰,谢言,魏莘烁,李文芬,孙颖郁.中脑运动区与位移运动控制[J].生物化学与生物物理进展,2025,52(7):1804-1816

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-06
  • 最后修改日期:2025-07-18
  • 接受日期:2025-03-06
  • 在线发布日期: 2025-03-07
  • 出版日期: 2025-07-28