采用非侵入性光生物调节治疗癫痫病
CSTR:
作者:
作者单位:

1)合肥工业大学材料科学与工程学院,合肥 230009;2)安徽省第二人民医院神经内科,合肥 230041;3)淮南联合大学医学院,淮南 232038;4)合肥工业大学智能制造技术研究院,合肥 230051

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(21875058),安徽省自然科学基金(2208085J13)和2022年度中山市重大科技专项战略性新兴产业技术攻关专题(2022A1007)资助项目。


The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Author:
Affiliation:

1)School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China;2)Department of Neurology, the Second People’s Hospital of Anhui Province, Hefei 230041, China;3)School of Medicine, Huainan Union University, Huainan 232038, China;4)Intelligent Manufacturing Institute of HFUT, Hefei 230051, China

Fund Project:

This work was supported by grants from The National Natural Science Foundation of China (21875058), Natural Science Foundation of Anhui Province (2208085J13), and Major Science and Technology Project of Zhongshan City in 2022 (2022A1007).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    癫痫是一种由脑部异常同步放电引起反复发作性神经功能异常的慢性脑部疾病,临床常见以意识不清、四肢抽搐为主要表现特征,各年龄段均可发病,涉及的人口众多。安全、有效以及合理地控制癫痫病情,是脑科学与神经内科学领域挑战之一。目前癫痫的治疗主要为药物治疗,部分难治性患者还需通过手术切除大脑异常放电的区域,但药物治疗后部分患者可出现耐药性或严重的副作用,包括肥胖、肝肾功能损伤和认知功能障碍等,手术治疗费用昂贵且影响神经元之间的相互连接及其功能。在过去侵入性神经调控治疗技术的基础上,发展诸如光生物调节(PBM)这类非侵入性神经调控治疗策略是癫痫治疗先进技术的重要发展动向。PBM通过调节线粒体功能、增强脑膜淋巴管引流和清除毒素功能,抑制神经炎症,刺激突触与神经元生长,改善神经元代谢和网络活动,可以有效减少癫痫发作频率。相比于传统治疗,PBM具有非侵入性、无副作用且能够精准调控神经活动的显著优势,在治疗难治性癫痫方面具有广阔应用前景。本文综述了PBM治疗癫痫的研究进展。

    Abstract:

    Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration’ particularly in the fields of neuroscience, optical engineering, and clinical medicine’ will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.

    参考文献
    相似文献
    引证文献
引用本文

李奥运,卢占闯,曹丽,陈思,蒋徽,陈长春,陈雷.采用非侵入性光生物调节治疗癫痫病[J].生物化学与生物物理进展,2025,52(4):882-898

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-10
  • 最后修改日期:2025-02-13
  • 接受日期:2024-12-17
  • 在线发布日期: 2024-12-18
  • 出版日期: 2025-04-28