干扰素刺激因子与细胞器之间的相互调控
DOI:
CSTR:
作者:
作者单位:

1)南方医科大学附属郴州医院重症医学科,郴州 423000;2)中国人民解放军总医院医学创新研究部,北京 100853

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(82130062)和国家临床重点专科重大科研专项(Z2023074)资助。


Interplay Between Interferon Stimulatory Pathways and Organellar Dynamics
Author:
Affiliation:

1)Department of Critical Care Medicine, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou 423000, China;2)Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China

Fund Project:

This work was supported by grants from The National Natural Science Foundation of China (82130062) and the National Key Clinical Specialty Scientific Research Project (Z2023074).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    干扰素刺激因子(stimulator of interferon genes,STING)为定位于内质网的模式识别受体,主要在巨噬细胞、自然杀伤细胞、树突状细胞和T细胞等多种免疫细胞中表达。作为先天免疫系统的关键组成部分,STING以直接或间接的方式对胞质内多种来源的异常DNA产生应答,发挥抗病毒与抗肿瘤的经典作用。在应对外界刺激和生存压力时,细胞器的功能与结构损伤同细胞死亡以及多种疾病的发生、发展密切相关。为维持细胞活力,机体进化出了细胞器质量控制系统,用于调控细胞器功能,防止损伤因素持续存在而使细胞发生不可逆损伤。近年来,随着研究的不断深入,发现STING与多种细胞器调节之间存在紧密关联,并且参与调节部分细胞器质量控制系统的运行,共同对疾病的发生、发展产生影响。基于此,本文着重综述STING与细胞器相互调节的最新研究进展,剖析STING在细胞器质量控制系统以及多种疾病发病机制中的具体作用。旨在通过对STING及其下游通路和细胞器之间交互作用的总结与梳理,为人类疾病发病机制与治疗的研究提供 思路。

    Abstract:

    Interferon stimulating factor (STING), a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body"s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells" capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.

    参考文献
    相似文献
    引证文献
引用本文

李金儒,段昱,戴新贵,姚咏明.干扰素刺激因子与细胞器之间的相互调控[J].生物化学与生物物理进展,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-25
  • 最后修改日期:2025-05-15
  • 接受日期:2025-04-09
  • 在线发布日期: 2025-04-10
  • 出版日期:
关闭