基于超声造影图像的亮度变化曲线来预测肝细胞癌
DOI:
CSTR:
作者:
作者单位:

1.佛山大学物理与光电工程学院;2.中山大学肿瘤防治中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62075042, 62205060, 82202179),广东省医学科技研究基金项目(No. A2020306),广东省大学生科技创新培养专项基金(No. pdjh2024a387)


Predicting hepatocellular harcinoma using brightness change curves derived from contrast-enhanced ultrasound images
Author:
Affiliation:

1.Foshan University;2.Sun&3.amp;4.#160;5.Yat-sen&6.University&7.Cancer&8.Center

Fund Project:

The National Natural Science Foundation of China (62075042, 62205060, 82202179), Medical Science and Technology Research Fund Project of Guangdong Province (No. A2020306), Special Fund for Science and Technology Innovation Cultivation of Guangdong University Students (No. pdjh2024a387)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 本研究旨在建立一种基于超声造影(CEUS)图像的亮度变化来分类肝细胞癌(HCC)与非HCC恶性肿瘤的方法。 方法 本研究回顾性地纳入131例HCC患者和30例非HCC恶性肿瘤患者。首先,采用YOLOX网络自动检测B超和超声造影图像中感兴趣的肿瘤区域;然后,开发一种定制算法从超声造影感兴趣区域提取肿瘤及邻近肝实质区域的亮度随时间变化的曲线;最后,构建基于深度学习的一维卷积神经网络(1D-ResNet、1D-ConvNeXt和1D-CNN)和传统的机器学习模型组,包括支持向量机、集成学习、k近邻和决策树等,来分析亮度变化曲线,并对HCC和非HCC恶性肿瘤进行分类。 结果 各机器学习方法的受试者工作特征曲线下面积(AUC)值分别为0.70、0.56、0.63、0.72;1D-ResNet、1D-ConvNeXt和1D-CNN的AUC分别为0.72、0.82和0.84。 结论 1D-CNN可以实现基于亮度变化曲线自动分类HCC和非HCC恶性肿瘤,其准确率高于传统的机器学习方法和其他一维深度学习模型。本文提供了一种简单、低成本的计算机辅助诊断方案来协助放射科医生进行临床诊断HCC。

    Abstract:

    Objective: This study aimed to develop a light-weighted classification network for hepatocellular carcinoma (HCC) and non-HCC malignancies based on the automatic analysis of brightness change in contrast-enhanced ultrasound (CEUS). Methods: This retrospective study comprised 131 patients diagnosed with HCC and 30 patients with non-HCC malignancies. We used the YOLOX network to detect the tumor region of interest on B-mode ultrasound and CEUS images. A custom-developed algorithm extracted brightness change curves in the tumor and adjacent liver parenchyma regions from CEUS images. We also developed one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt and 1D-CNN), and machine-learning methods such as support vector machine, ensemble learning, K-nearest neighbor, and decision tree, to analyze brightness change curves and classify HCC and non-HCC malignancies. Results: Area under the receiver operating characteristic curve (AUC) of these machine-learning methods were 0.70, 0.56, 0.63, and 0.72 respectively. Meanwhile the 1D-ResNet, 1D-ConvNeXt and 1D-CNN demonstrated AUCs of 0.72, 0.82 and 0.84 for HCC and non-HCC classification based on brightness change curves. Conclusion: The 1D-CNN model can differentiate between patients with HCC and non-HCC malignancies at an accuracy that surpass those of machine learning and other deep learning methods. This paper provides a user-friendly and cost-efficient computer-aided diagnostic solution to aid radiologists in clinical decision-making of HCC.

    参考文献
    相似文献
    引证文献
引用本文

陈楹楹,江尚霖,黄良汇,曾亚光,王雪花,郑玮.基于超声造影图像的亮度变化曲线来预测肝细胞癌[J].生物化学与生物物理进展,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-11
  • 最后修改日期:2025-04-24
  • 接受日期:2025-04-27
  • 在线发布日期:
  • 出版日期: