1.&2.amp;3.lt;4.sup&5.gt;6.西安交通大学生命科学与技术学院生物医学信息工程教育部重点实验室&7./sup&8.人机混合增强智能全国重点实验室&9.<10.sup>11.西安交通大学生命科学与技术学院生物医学信息工程教育部重点实验室<12./sup>
国家自然科学基金
1.Key Laboratory of Biomedical Information Engineering of MOE, School of Life Science and Technology, Xi&2.amp;3.#39;4.&5.an Jiaotong University;6.National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi&7.an Jiaotong University,;8.Key Laboratory of Biomedical Information Engineering of MOE, School of Life Science and Technology, Xi'9.'
The National Natural Science Foundation of China
人工智能技术在生物学领域的应用在近几年取得了突飞猛进的发展,其中最显著的成果为蛋白质结构预测和设计,并于2024年荣获诺贝尔化学奖。可以预见,对蛋白质各类物理和化学属性的精准预测将是蛋白质预测领域下一阶段的重要发展方向。蛋白质热力学稳定性在深入了解生命活动机制、药物研发、疾病诊断和治疗,以及生物技术产业中酶制剂的生产、生物传感器研发以及蛋白质药物制备等方面均有具有重要意义。借助人工智能技术进行蛋白质热力学稳定性的精准预测将大幅提升蛋白质相关的科学研究能力和产业发展效率。本文综述了蛋白质热力学稳定性预测技术的发展历程,梳理了从生物实验测定方法、传统能量函数计算方法到现代机器学习预测方法。重点讨论了基于机器学习的预测模型,尤其是深度神经网络、图神经网络和注意力机制等前沿算法在蛋白质热力学稳定性预测中的突破。深入讨论了突变稳定性预测的核心挑战,如数据集质量与数量不平衡、模型过拟合及蛋白质动态性的建模等难题。本文旨在为研究人员提供一个全面的参考框架,助力突变蛋白质热力学稳定性预测技术的发展。
In recent years, the application of artificial intelligence (AI) technology in the field of biology has made rapid progress, with the most notable achievements emerging in protein structure prediction and design, which was awarded the Nobel Prize in Chemistry in 2024. It is foreseeable that the accurate prediction of various physical and chemical properties of proteins will be an important direction for the development of the protein prediction field in the next phase. Protein thermodynamic stability is of great significance in deepening the understanding of life mechanisms, drug development, disease diagnosis and treatment, and in the biotechnology industry for the production of enzyme preparations, the development of biosensors, and the preparation of protein drugs. Accurate prediction of Protein thermodynamic stability by artificial intelligence technology will greatly improve the research capabilities and industrial development efficiency of protein. This article reviews the development of protein thermodynamic stability prediction technology, from biological experimental determination methods, traditional energy function calculation methods to modern machine learning prediction methods. The focus is on the prediction models based on machine learning, especially the breakthroughs of cutting-edge algorithms such as deep neural networks, graph neural networks and attention mechanisms in protein thermodynamic stability prediction. The core challenges of mutation stability prediction, such as the imbalance between the quality and quantity of data sets, model overfitting and modeling of protein dynamics, are discussed in depth.This paper aims to provide researchers with a comprehensive reference framework to facilitate the development of mutation-based Protein thermodynamic stability prediction technology.
陶林节,徐凡丁,郭 宇,龙建纲,鲁卓阳.基于人工智能的蛋白质热力学稳定性预测[J].生物化学与生物物理进展,,():
复制生物化学与生物物理进展 ® 2025 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号