有氧运动通过调控肠道菌群—代谢物网络改善衰老小鼠认知功能
DOI:
CSTR:
作者:
作者单位:

1.武汉体育学院运动医学院,运动训练监控湖北省重点实验室;2.中南大学体育教研部

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金


Aerobic exercise improves cognitive function of aging mice by regulating intestinal flora-metabolite network
Author:
Affiliation:

1.Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University;2.Hubei Key Laboratory of Exercise Training and Monitoring,College of Sports Medicine,Wuhan Sports University;3.Department of Physical Education, Central South University

Fund Project:

The National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    衰老作为一种复杂的生物学进程,常伴肠道菌群稳态失衡、代谢紊乱、认知功能退行性病变。近年研究表明,有氧运动可通过调节肠—脑轴改善衰老相关病理表型,但其分子机制尚未完全阐明。本研究基于自然衰老小鼠模型,综合运用行为学评估、组织病理学检测、肠道菌群测序与代谢组学分析,系统阐释有氧运动通过重塑“菌群—代谢物—脑”轴改善认知功能的分子机制。本研究发现,12周中等强度跑台运动显著促进老年小鼠空间记忆能力的提高,并改善海马神经元损伤。16S rRNA测序显示运动干预显著提升肠道菌群α多样性,特异性富集双歧杆菌属、副拟杆菌属等益生菌群。广靶代谢组学鉴定出32种差异代谢物,涉及线粒体功能调控、神经炎症抑制及抗氧化防御等通路,其中L-高瓜氨酸、ADP-核糖等线粒体相关代谢物及具有神经保护作用的石胆酸、左旋肌肽显著上调。进一步构建的代谢—菌群互作网络揭示,副拟杆菌属丰度与ADP-核糖呈正相关,双歧杆菌属与石胆酸正相关,提示特定益生菌可能通过调控关键代谢产物发挥神经保护作用。本研究首次阐明有氧运动可能通过三重调控机制改善认知衰退:益生菌增殖促进代谢重编程,激活DNA修复相关调控通路;神经炎症抑制因子水平升高减轻神经退行性病变;抗氧化防御系统增强维持神经元稳态。这些发现为靶向肠道微生态的运动干预策略提供了理论依据,揭示了“菌群—代谢物—脑”轴在抗衰老中的枢纽作用。未来研究可进一步通过菌群移植与代谢物靶向干预实验验证关键代谢物的跨器官调控功能,推动个性化运动处方与益生菌干预的临床转化,为神经退行性疾病防治提供新思路。

    Abstract:

    Aging, a complex biological process, is often accompanied by gut microbiota dysbiosis, metabolic pathway disorders, and cognitive dysfunction. In recent years, studies have shown that aerobic exercise can improve aging-related pathological phenotypes by modulating the gut-brain axis, but its molecular mechanisms have not been fully elucidated. In this study, using naturally aged mice as a model, we systematically integrated behavioral assessments and gut microbiota and metabolomics analysis to uncover molecular mechanisms upon aerobic exercise, reshaping a “microbiota-metabolite-brain” network to enhance the cognitive function of aged mice. Behavioral experiments showed that 12-week moderate-intensity treadmill training significantly enhanced spatial learning and memory capacity of aged mice, as evidenced by shortened escape latency in the Morris water maze and increased exploration efficiency in the target area. Histopathological analysis further confirmed that exercise intervention could ameliorate morphological abnormalities of hippocampal neurons, suggesting its protective effect against neurodegenerative diseases. Through 16S rRNA gene sequencing, we found that exercise intervention significantly increased gut microbiota diversity and specifically enriched beneficial bacteria such as Bifidobacterium, Parabacteroides, and Rikenella. Untargeted and targeted metabolomics analysis identified 32 differential metabolites involved in key signal pathways including energy metabolism reprogramming, antioxidant defense, and neuroprotection. Among them, L-homocitrulline and ADP-ribose associated with mitochondrial function, lithocholic acid with neuroinflammation-inhibiting function, and antioxidant L-carnosine presented an obvious increase. Microbiota-metabolite interaction network analysis showed a strongly positive correlation between the abundance of Parabacteroides and ADP-ribose, and a significant association between Bifidobacterium and lithocholic acid levels, suggesting that specific microbiota may mediate neuroprotective effects through metabolites. This study elucidated the specific mechanism upon aerobic exercise for enhancing brain function via the regulation of the gut microbiota-metabolite network: exercise-induced proliferation of beneficial bacteria can induce DNA repairing, inhibit neuroinflammation, and enhance antioxidant capacity through metabolic reprogramming, thereby synergistically rescuing impaired cognitive capacity. This finding provides a theoretical basis for targeted gut microbiota-based anti-aging strategies and the application potential of probiotics combined with personalized exercise intervention. Future studies can further combine gut microbiota transplantation and metabolite-targeted intervention to verify the cross-organ regulatory mechanisms of key metabolites and promote the transformation of synergistic intervention strategies in an "exercise-microbiota" mode towards precision medicine.

    参考文献
    相似文献
    引证文献
引用本文

王安烽,吴 桐,张 虎,梁计陵,陈 宁.有氧运动通过调控肠道菌群—代谢物网络改善衰老小鼠认知功能[J].生物化学与生物物理进展,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-27
  • 最后修改日期:2025-04-25
  • 接受日期:2025-04-26
  • 在线发布日期:
  • 出版日期: