人工智能赋能《生物化学与分子生物学》案例教学的探索与实践
CSTR:
作者:
作者单位:

宁波大学医学部基础医学院生物化学与分子生物学系,宁波 315211

作者简介:

Tel:0574-8760-9951,E-mail:mengxiaodan@nbu.edu.cnTel: 86-574-8760-9951, E-mail: mengxiaodan@nbu.edu.cn

通讯作者:

中图分类号:

基金项目:

宁波市教育科学规划课题


Exploration and Practice of Artificial Intelligence Empowering Case-based Teaching in Biochemistry and Molecular Biology
Author:
Affiliation:

School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China

Fund Project:

Ningbo Educational Science Planning Project

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,人工智能(artificial intelligence,AI)与医学教育的深度融合为《生物化学与分子生物学》教学开辟了新机遇,也为突破“蛋白质结构与功能”这一教学难点提供了新路径。本研究以非小细胞肺癌的间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)基因突变为核心案例,将AI技术融入案例教学(case-based learning,CBL),构建了AI-CBL融合教学模式。该模式整合智能病例生成系统,基于真实临床数据动态构建ALK突变情境,将分子生物学知识与临床问题紧密对接;应用AI蛋白质结构预测工具精准可视化野生型与突变型ALK蛋白的三维结构,并动态模拟其构象变化导致的功能异常;同时,通过虚拟仿真平台模拟ALK基因检测的流程,弥合理论与实操的鸿沟。由此,形成了以临床案例驱动、分子结构解析与实验技术验证相结合的多维教学体系。教学实践表明,AI技术提供的三维可视化、动态交互及智能分析功能,显著提升了学生对分子机制的理解深度、课堂参与度及科研创新能力。该模式贯通了“基础理论-科研思维-临床实践”的培养路径,为攻克教学难点提供了高效方案,也为医学教育的智能化转型探索了一条可行路径。

    Abstract:

    In recent years, the deep integration of artificial intelligence (AI) with medical education has unveiled new opportunities for teaching《Biochemistry and Molecular Biology》, while also providing novel pathways to address the pedagogical challenge of protein structure and function. Centered on the case of anaplastic lymphoma kinase (ALK) gene mutations in non-small-cell lung cancer (NSCLC), this study integrates AI technology into case-based learning (CBL), constructing an AI-CBL integrated teaching model. This model incorporates an intelligent case-generation system to dynamically build ALK mutation scenarios based on real-world clinical data, thereby tightly connecting molecular biology knowledge with clinical problems. It utilizes AI-powered protein structure prediction tools to accurately visualize the three-dimensional structures of both wild-type and mutant ALK proteins, dynamically simulating the functional abnormalities caused by their conformational changes. Furthermore, a virtual simulation platform is employed to replicate the workflow of ALK gene detection, bridging the gap between theory and practical skills. Consequently, a multi-dimensional teaching system is formed, driven by clinical cases and combining molecular structure analysis with experimental technique validation. The results of teaching practice demonstrate that the three-dimensional visualization, dynamic interactivity, and intelligent analytical capabilities provided by AI technology significantly enhance students’ comprehension depth regarding molecular mechanisms, classroom engagement, and innovative research capabilities. This model establishes a cohesive training pathway spanning “fundamental theory–scientific research thinking–clinical practice”, offering an efficient solution for overcoming teaching difficulties and exploring a viable path for the intelligent transformation of medical education.

    参考文献
    相似文献
    引证文献
引用本文

胡莹璐,林依臣,郭俊明,孟小丹.人工智能赋能《生物化学与分子生物学》案例教学的探索与实践[J].生物化学与生物物理进展,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-12
  • 最后修改日期:2025-06-23
  • 接受日期:2025-06-25
  • 在线发布日期:
  • 出版日期:
关闭